@promptbook/pdf 0.94.0 → 0.95.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. package/README.md +2 -10
  2. package/esm/index.es.js +46 -46
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/types.index.d.ts +2 -2
  5. package/esm/typings/src/_packages/{wizzard.index.d.ts → wizard.index.d.ts} +2 -2
  6. package/esm/typings/src/cli/cli-commands/prettify.d.ts +1 -1
  7. package/esm/typings/src/cli/cli-commands/test-command.d.ts +1 -1
  8. package/esm/typings/src/conversion/archive/loadArchive.d.ts +1 -1
  9. package/esm/typings/src/conversion/archive/saveArchive.d.ts +2 -2
  10. package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +1 -1
  11. package/esm/typings/src/dialogs/callback/CallbackInterfaceTools.d.ts +1 -1
  12. package/esm/typings/src/execution/AbstractTaskResult.d.ts +2 -2
  13. package/esm/typings/src/execution/createPipelineExecutor/00-CreatePipelineExecutorOptions.d.ts +1 -1
  14. package/esm/typings/src/execution/execution-report/ExecutionPromptReportJson.d.ts +2 -2
  15. package/esm/typings/src/execution/translation/automatic-translate/translateMessages.d.ts +1 -1
  16. package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForWizzardOrCli.d.ts → $provideLlmToolsForWizardOrCli.d.ts} +2 -2
  17. package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -1
  18. package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -1
  19. package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -1
  20. package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -1
  21. package/esm/typings/src/llm-providers/deepseek/register-configuration.d.ts +1 -1
  22. package/esm/typings/src/llm-providers/deepseek/register-constructor.d.ts +1 -1
  23. package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -1
  24. package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -1
  25. package/esm/typings/src/llm-providers/ollama/register-configuration.d.ts +1 -1
  26. package/esm/typings/src/llm-providers/ollama/register-constructor.d.ts +1 -1
  27. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +1 -1
  28. package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -2
  29. package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -2
  30. package/esm/typings/src/remote-server/socket-types/listModels/PromptbookServer_ListModels_Request.d.ts +1 -1
  31. package/esm/typings/src/scrapers/_boilerplate/createBoilerplateScraper.d.ts +1 -1
  32. package/esm/typings/src/scrapers/_boilerplate/register-constructor.d.ts +1 -1
  33. package/esm/typings/src/scrapers/_boilerplate/register-metadata.d.ts +2 -2
  34. package/esm/typings/src/scrapers/_common/prepareKnowledgePieces.d.ts +1 -1
  35. package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +1 -1
  36. package/esm/typings/src/scrapers/document/createDocumentScraper.d.ts +1 -1
  37. package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -1
  38. package/esm/typings/src/scrapers/document/register-metadata.d.ts +2 -2
  39. package/esm/typings/src/scrapers/document-legacy/createLegacyDocumentScraper.d.ts +1 -1
  40. package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -1
  41. package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +2 -2
  42. package/esm/typings/src/scrapers/markdown/createMarkdownScraper.d.ts +1 -4
  43. package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -1
  44. package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +2 -2
  45. package/esm/typings/src/scrapers/markitdown/createMarkitdownScraper.d.ts +1 -1
  46. package/esm/typings/src/scrapers/markitdown/register-constructor.d.ts +1 -1
  47. package/esm/typings/src/scrapers/markitdown/register-metadata.d.ts +2 -2
  48. package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
  49. package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -1
  50. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -2
  51. package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
  52. package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -1
  53. package/esm/typings/src/scrapers/website/register-metadata.d.ts +2 -2
  54. package/esm/typings/src/types/typeAliases.d.ts +1 -1
  55. package/esm/typings/src/utils/files/listAllFiles.d.ts +1 -1
  56. package/esm/typings/src/version.d.ts +1 -1
  57. package/esm/typings/src/{wizzard → wizard}/$getCompiledBook.d.ts +2 -2
  58. package/esm/typings/src/{wizzard/wizzard.d.ts → wizard/wizard.d.ts} +6 -6
  59. package/package.json +2 -14
  60. package/umd/index.umd.js +46 -46
  61. package/umd/index.umd.js.map +1 -1
package/README.md CHANGED
@@ -58,8 +58,6 @@ Rest of the documentation is common for **entire promptbook ecosystem**:
58
58
 
59
59
  During the computer revolution, we have seen [multiple generations of computer languages](https://github.com/webgptorg/promptbook/discussions/180), from the physical rewiring of the vacuum tubes through low-level machine code to the high-level languages like Python or JavaScript. And now, we're on the edge of the **next revolution**!
60
60
 
61
-
62
-
63
61
  It's a revolution of writing software in **plain human language** that is understandable and executable by both humans and machines – and it's going to change everything!
64
62
 
65
63
  The incredible growth in power of microprocessors and the Moore's Law have been the driving force behind the ever-more powerful languages, and it's been an amazing journey! Similarly, the large language models (like GPT or Claude) are the next big thing in language technology, and they're set to transform the way we interact with computers.
@@ -185,8 +183,6 @@ Join our growing community of developers and users:
185
183
 
186
184
  _A concise, Markdown-based DSL for crafting AI workflows and automations._
187
185
 
188
-
189
-
190
186
  ### Introduction
191
187
 
192
188
  Book is a Markdown-based language that simplifies the creation of AI applications, workflows, and automations. With human-readable commands, you can define inputs, outputs, personas, knowledge sources, and actions—without needing model-specific details.
@@ -236,8 +232,6 @@ Personas can have access to different knowledge, tools and actions. They can als
236
232
 
237
233
  - [PERSONA](https://github.com/webgptorg/promptbook/blob/main/documents/commands/PERSONA.md)
238
234
 
239
-
240
-
241
235
  ### **3. How:** Knowledge, Instruments and Actions
242
236
 
243
237
  The resources used by the personas are used to do the work.
@@ -285,13 +279,13 @@ Or you can install them separately:
285
279
 
286
280
  - ⭐ **[ptbk](https://www.npmjs.com/package/ptbk)** - Bundle of all packages, when you want to install everything and you don't care about the size
287
281
  - **[promptbook](https://www.npmjs.com/package/promptbook)** - Same as `ptbk`
288
- - ⭐🧙‍♂️ **[@promptbook/wizzard](https://www.npmjs.com/package/@promptbook/wizzard)** - Wizzard to just run the books in node without any struggle
282
+ - ⭐🧙‍♂️ **[@promptbook/wizard](https://www.npmjs.com/package/@promptbook/wizard)** - Wizard to just run the books in node without any struggle
289
283
  - **[@promptbook/core](https://www.npmjs.com/package/@promptbook/core)** - Core of the library, it contains the main logic for promptbooks
290
284
  - **[@promptbook/node](https://www.npmjs.com/package/@promptbook/node)** - Core of the library for Node.js environment
291
285
  - **[@promptbook/browser](https://www.npmjs.com/package/@promptbook/browser)** - Core of the library for browser environment
292
286
  - ⭐ **[@promptbook/utils](https://www.npmjs.com/package/@promptbook/utils)** - Utility functions used in the library but also useful for individual use in preprocessing and postprocessing LLM inputs and outputs
293
287
  - **[@promptbook/markdown-utils](https://www.npmjs.com/package/@promptbook/markdown-utils)** - Utility functions used for processing markdown
294
- - _(Not finished)_ **[@promptbook/wizzard](https://www.npmjs.com/package/@promptbook/wizzard)** - Wizard for creating+running promptbooks in single line
288
+ - _(Not finished)_ **[@promptbook/wizard](https://www.npmjs.com/package/@promptbook/wizard)** - Wizard for creating+running promptbooks in single line
295
289
  - **[@promptbook/javascript](https://www.npmjs.com/package/@promptbook/javascript)** - Execution tools for javascript inside promptbooks
296
290
  - **[@promptbook/openai](https://www.npmjs.com/package/@promptbook/openai)** - Execution tools for OpenAI API, wrapper around OpenAI SDK
297
291
  - **[@promptbook/anthropic-claude](https://www.npmjs.com/package/@promptbook/anthropic-claude)** - Execution tools for Anthropic Claude API, wrapper around Anthropic Claude SDK
@@ -337,8 +331,6 @@ The following glossary is used to clarify certain concepts:
337
331
 
338
332
  _Note: This section is not a complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
339
333
 
340
-
341
-
342
334
  ### 💯 Core concepts
343
335
 
344
336
  - [📚 Collection of pipelines](https://github.com/webgptorg/promptbook/discussions/65)
package/esm/index.es.js CHANGED
@@ -26,7 +26,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
26
26
  * @generated
27
27
  * @see https://github.com/webgptorg/promptbook
28
28
  */
29
- const PROMPTBOOK_ENGINE_VERSION = '0.94.0';
29
+ const PROMPTBOOK_ENGINE_VERSION = '0.95.0';
30
30
  /**
31
31
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
32
32
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -875,7 +875,7 @@ async function getScraperIntermediateSource(source, options) {
875
875
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
876
876
  */
877
877
 
878
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
878
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
879
879
 
880
880
  /**
881
881
  * Checks if value is valid email
@@ -1032,7 +1032,7 @@ function prettifyMarkdown(content) {
1032
1032
  });
1033
1033
  }
1034
1034
  catch (error) {
1035
- // TODO: [🟥] Detect browser / node and make it colorfull
1035
+ // TODO: [🟥] Detect browser / node and make it colorful
1036
1036
  console.error('There was an error with prettifying the markdown, using the original as the fallback', {
1037
1037
  error,
1038
1038
  html: content,
@@ -1314,7 +1314,7 @@ function checkSerializableAsJson(options) {
1314
1314
  else {
1315
1315
  for (const [subName, subValue] of Object.entries(value)) {
1316
1316
  if (subValue === undefined) {
1317
- // Note: undefined in object is serializable - it is just omited
1317
+ // Note: undefined in object is serializable - it is just omitted
1318
1318
  continue;
1319
1319
  }
1320
1320
  checkSerializableAsJson({ name: `${name}.${subName}`, value: subValue, message });
@@ -2004,7 +2004,7 @@ class SimplePipelineCollection {
2004
2004
 
2005
2005
  Note: You have probably forgotten to run "ptbk make" to update the collection
2006
2006
  Note: Pipelines with the same URL are not allowed
2007
- Only exepction is when the pipelines are identical
2007
+ Only exception is when the pipelines are identical
2008
2008
 
2009
2009
  `));
2010
2010
  }
@@ -2772,12 +2772,12 @@ function countUsage(llmTools) {
2772
2772
  get title() {
2773
2773
  return `${llmTools.title} (+usage)`;
2774
2774
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2775
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2775
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2776
2776
  },
2777
2777
  get description() {
2778
2778
  return `${llmTools.description} (+usage)`;
2779
2779
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2780
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2780
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2781
2781
  },
2782
2782
  checkConfiguration() {
2783
2783
  return /* not await */ llmTools.checkConfiguration();
@@ -3004,13 +3004,13 @@ function joinLlmExecutionTools(...llmExecutionTools) {
3004
3004
 
3005
3005
  Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
3006
3006
  `);
3007
- // TODO: [🟥] Detect browser / node and make it colorfull
3007
+ // TODO: [🟥] Detect browser / node and make it colorful
3008
3008
  console.warn(warningMessage);
3009
3009
  // <- TODO: [🏮] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
3010
3010
  /*
3011
3011
  return {
3012
3012
  async listModels() {
3013
- // TODO: [🟥] Detect browser / node and make it colorfull
3013
+ // TODO: [🟥] Detect browser / node and make it colorful
3014
3014
  console.warn(
3015
3015
  spaceTrim(
3016
3016
  (block) => `
@@ -3286,17 +3286,17 @@ function $registeredScrapersMessage(availableScrapers) {
3286
3286
  * Mixes registered scrapers from $scrapersMetadataRegister and $scrapersRegister
3287
3287
  */
3288
3288
  const all = [];
3289
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersMetadataRegister.list()) {
3289
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersMetadataRegister.list()) {
3290
3290
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3291
3291
  continue;
3292
3292
  }
3293
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3293
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3294
3294
  }
3295
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersRegister.list()) {
3295
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersRegister.list()) {
3296
3296
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3297
3297
  continue;
3298
3298
  }
3299
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3299
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3300
3300
  }
3301
3301
  for (const { metadata } of availableScrapers) {
3302
3302
  all.push(metadata);
@@ -3308,8 +3308,8 @@ function $registeredScrapersMessage(availableScrapers) {
3308
3308
  const isInstalled = $scrapersRegister
3309
3309
  .list()
3310
3310
  .find(({ packageName, className }) => metadata.packageName === packageName && metadata.className === className);
3311
- const isAvilableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3312
- return { ...metadata, isMetadataAviailable, isInstalled, isAvilableInTools };
3311
+ const isAvailableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3312
+ return { ...metadata, isMetadataAviailable, isInstalled, isAvailableInTools };
3313
3313
  });
3314
3314
  if (metadata.length === 0) {
3315
3315
  return spaceTrim(`
@@ -3322,7 +3322,7 @@ function $registeredScrapersMessage(availableScrapers) {
3322
3322
  return spaceTrim((block) => `
3323
3323
  Available scrapers are:
3324
3324
  ${block(metadata
3325
- .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvilableInBrowser, isAvilableInTools, }, i) => {
3325
+ .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvailableInBrowser, isAvailableInTools, }, i) => {
3326
3326
  const more = [];
3327
3327
  // TODO: [🧠] Maybe use `documentationUrl`
3328
3328
  if (isMetadataAviailable) {
@@ -3331,16 +3331,16 @@ function $registeredScrapersMessage(availableScrapers) {
3331
3331
  if (isInstalled) {
3332
3332
  more.push(`🟩 Installed`);
3333
3333
  } // not else
3334
- if (isAvilableInTools) {
3334
+ if (isAvailableInTools) {
3335
3335
  more.push(`🟦 Available in tools`);
3336
3336
  } // not else
3337
3337
  if (!isMetadataAviailable && isInstalled) {
3338
3338
  more.push(`When no metadata registered but scraper is installed, it is an unexpected behavior`);
3339
3339
  } // not else
3340
- if (!isInstalled && isAvilableInTools) {
3340
+ if (!isInstalled && isAvailableInTools) {
3341
3341
  more.push(`When the scraper is not installed but available in tools, it is an unexpected compatibility behavior`);
3342
3342
  } // not else
3343
- if (!isAvilableInBrowser) {
3343
+ if (!isAvailableInBrowser) {
3344
3344
  more.push(`Not usable in browser`);
3345
3345
  }
3346
3346
  const moreText = more.length === 0 ? '' : ` *(${more.join('; ')})*`;
@@ -3680,7 +3680,7 @@ TODO: [🧊] This is how it can look in future
3680
3680
  /**
3681
3681
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
3682
3682
  * Put `knowledgePieces` into `PrepareKnowledgeOptions`
3683
- * TODO: [🪂] More than max things can run in parallel by acident [1,[2a,2b,_],[3a,3b,_]]
3683
+ * TODO: [🪂] More than max things can run in parallel by accident [1,[2a,2b,_],[3a,3b,_]]
3684
3684
  * TODO: [🧠][❎] Do here proper M:N mapping
3685
3685
  * [x] One source can make multiple pieces
3686
3686
  * [ ] One piece can have multiple sources
@@ -5352,10 +5352,10 @@ function knowledgePiecesToString(knowledgePieces) {
5352
5352
  */
5353
5353
  async function getKnowledgeForTask(options) {
5354
5354
  const { tools, preparedPipeline, task, parameters } = options;
5355
- const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5356
- const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5355
+ const firstKnowledgePiece = preparedPipeline.knowledgePieces[0];
5356
+ const firstKnowledgeIndex = firstKnowledgePiece === null || firstKnowledgePiece === void 0 ? void 0 : firstKnowledgePiece.index[0];
5357
5357
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5358
- if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5358
+ if (firstKnowledgePiece === undefined || firstKnowledgeIndex === undefined) {
5359
5359
  return ''; // <- Note: Np knowledge present, return empty string
5360
5360
  }
5361
5361
  try {
@@ -5366,7 +5366,7 @@ async function getKnowledgeForTask(options) {
5366
5366
  title: 'Knowledge Search',
5367
5367
  modelRequirements: {
5368
5368
  modelVariant: 'EMBEDDING',
5369
- modelName: firstKnowlegeIndex.modelName,
5369
+ modelName: firstKnowledgeIndex.modelName,
5370
5370
  },
5371
5371
  content: task.content,
5372
5372
  parameters,
@@ -5374,7 +5374,7 @@ async function getKnowledgeForTask(options) {
5374
5374
  const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5375
5375
  const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5376
5376
  const { index } = knowledgePiece;
5377
- const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5377
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowledgeIndex.modelName);
5378
5378
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5379
5379
  if (knowledgePieceIndex === undefined) {
5380
5380
  return {
@@ -5395,8 +5395,8 @@ async function getKnowledgeForTask(options) {
5395
5395
  task,
5396
5396
  taskEmbeddingPrompt,
5397
5397
  taskEmbeddingResult,
5398
- firstKnowlegePiece,
5399
- firstKnowlegeIndex,
5398
+ firstKnowledgePiece,
5399
+ firstKnowledgeIndex,
5400
5400
  knowledgePiecesWithRelevance,
5401
5401
  knowledgePiecesSorted,
5402
5402
  knowledgePiecesLimited,
@@ -5465,7 +5465,7 @@ async function getReservedParametersForTask(options) {
5465
5465
  * @private internal utility of `createPipelineExecutor`
5466
5466
  */
5467
5467
  async function executeTask(options) {
5468
- const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSupressed, } = options;
5468
+ const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSuppressed, } = options;
5469
5469
  const priority = preparedPipeline.tasks.length - preparedPipeline.tasks.indexOf(currentTask);
5470
5470
  // Note: Check consistency of used and dependent parameters which was also done in `validatePipeline`, but it’s good to doublecheck
5471
5471
  const usedParameterNames = extractParameterNamesFromTask(currentTask);
@@ -5553,7 +5553,7 @@ async function executeTask(options) {
5553
5553
  cacheDirname,
5554
5554
  intermediateFilesStrategy,
5555
5555
  isAutoInstalled,
5556
- isNotPreparedWarningSupressed,
5556
+ isNotPreparedWarningSuppressed,
5557
5557
  });
5558
5558
  await onProgress({
5559
5559
  outputParameters: {
@@ -5648,7 +5648,7 @@ async function executePipeline(options) {
5648
5648
  }
5649
5649
  return exportJson({
5650
5650
  name: `executionReport`,
5651
- message: `Unuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5651
+ message: `Unsuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5652
5652
  order: [],
5653
5653
  value: {
5654
5654
  isSuccessful: false,
@@ -5685,7 +5685,7 @@ async function executePipeline(options) {
5685
5685
  return exportJson({
5686
5686
  name: 'pipelineExecutorResult',
5687
5687
  message: spaceTrim$1((block) => `
5688
- Unuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5688
+ Unsuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5689
5689
 
5690
5690
  ${block(pipelineIdentification)}
5691
5691
  `),
@@ -5826,7 +5826,7 @@ async function executePipeline(options) {
5826
5826
  }
5827
5827
  return exportJson({
5828
5828
  name: 'pipelineExecutorResult',
5829
- message: `Unuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5829
+ message: `Unsuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5830
5830
  order: [],
5831
5831
  value: {
5832
5832
  isSuccessful: false,
@@ -5877,7 +5877,7 @@ async function executePipeline(options) {
5877
5877
  * @public exported from `@promptbook/core`
5878
5878
  */
5879
5879
  function createPipelineExecutor(options) {
5880
- const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSupressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
5880
+ const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSuppressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
5881
5881
  validatePipeline(pipeline);
5882
5882
  const pipelineIdentification = (() => {
5883
5883
  // Note: This is a 😐 implementation of [🚞]
@@ -5894,7 +5894,7 @@ function createPipelineExecutor(options) {
5894
5894
  if (isPipelinePrepared(pipeline)) {
5895
5895
  preparedPipeline = pipeline;
5896
5896
  }
5897
- else if (isNotPreparedWarningSupressed !== true) {
5897
+ else if (isNotPreparedWarningSuppressed !== true) {
5898
5898
  console.warn(spaceTrim$1((block) => `
5899
5899
  Pipeline is not prepared
5900
5900
 
@@ -5927,7 +5927,7 @@ function createPipelineExecutor(options) {
5927
5927
  maxParallelCount,
5928
5928
  csvSettings,
5929
5929
  isVerbose,
5930
- isNotPreparedWarningSupressed,
5930
+ isNotPreparedWarningSuppressed,
5931
5931
  rootDirname,
5932
5932
  cacheDirname,
5933
5933
  intermediateFilesStrategy,
@@ -5936,7 +5936,7 @@ function createPipelineExecutor(options) {
5936
5936
  assertsError(error);
5937
5937
  return exportJson({
5938
5938
  name: 'pipelineExecutorResult',
5939
- message: `Unuccessful PipelineExecutorResult, last catch`,
5939
+ message: `Unsuccessful PipelineExecutorResult, last catch`,
5940
5940
  order: [],
5941
5941
  value: {
5942
5942
  isSuccessful: false,
@@ -5974,7 +5974,7 @@ const markdownScraperMetadata = $deepFreeze({
5974
5974
  className: 'MarkdownScraper',
5975
5975
  mimeTypes: ['text/markdown', 'text/plain'],
5976
5976
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
5977
- isAvilableInBrowser: true,
5977
+ isAvailableInBrowser: true,
5978
5978
  // <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
5979
5979
  requiredExecutables: [],
5980
5980
  }); /* <- Note: [🤛] */
@@ -5984,7 +5984,7 @@ const markdownScraperMetadata = $deepFreeze({
5984
5984
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
5985
5985
  *
5986
5986
  * @public exported from `@promptbook/core`
5987
- * @public exported from `@promptbook/wizzard`
5987
+ * @public exported from `@promptbook/wizard`
5988
5988
  * @public exported from `@promptbook/cli`
5989
5989
  */
5990
5990
  $scrapersMetadataRegister.register(markdownScraperMetadata);
@@ -6083,7 +6083,7 @@ class MarkdownScraper {
6083
6083
  }
6084
6084
  // ---
6085
6085
  if (!llmTools.callEmbeddingModel) {
6086
- // TODO: [🟥] Detect browser / node and make it colorfull
6086
+ // TODO: [🟥] Detect browser / node and make it colorful
6087
6087
  console.error('No callEmbeddingModel function provided');
6088
6088
  }
6089
6089
  else {
@@ -6109,7 +6109,7 @@ class MarkdownScraper {
6109
6109
  if (!(error instanceof PipelineExecutionError)) {
6110
6110
  throw error;
6111
6111
  }
6112
- // TODO: [🟥] Detect browser / node and make it colorfull
6112
+ // TODO: [🟥] Detect browser / node and make it colorful
6113
6113
  console.error(error, "<- Note: This error is not critical to prepare the pipeline, just knowledge pieces won't have embeddings");
6114
6114
  }
6115
6115
  return {
@@ -6145,7 +6145,7 @@ const markitdownScraperMetadata = $deepFreeze({
6145
6145
  // 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
6146
6146
  ],
6147
6147
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6148
- isAvilableInBrowser: false,
6148
+ isAvailableInBrowser: false,
6149
6149
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6150
6150
  requiredExecutables: [],
6151
6151
  }); /* <- Note: [🤛] */
@@ -6155,7 +6155,7 @@ const markitdownScraperMetadata = $deepFreeze({
6155
6155
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6156
6156
  *
6157
6157
  * @public exported from `@promptbook/core`
6158
- * @public exported from `@promptbook/wizzard`
6158
+ * @public exported from `@promptbook/wizard`
6159
6159
  * @public exported from `@promptbook/cli`
6160
6160
  */
6161
6161
  $scrapersMetadataRegister.register(markitdownScraperMetadata);
@@ -6292,7 +6292,7 @@ const createMarkitdownScraper = Object.assign((tools, options) => {
6292
6292
  *
6293
6293
  * @public exported from `@promptbook/markitdown`
6294
6294
  * @public exported from `@promptbook/pdf`
6295
- * @public exported from `@promptbook/wizzard`
6295
+ * @public exported from `@promptbook/wizard`
6296
6296
  * @public exported from `@promptbook/cli`
6297
6297
  */
6298
6298
  const _MarkitdownScraperRegistration = $scrapersRegister.register(createMarkitdownScraper);
@@ -6313,7 +6313,7 @@ const pdfScraperMetadata = $deepFreeze({
6313
6313
  className: 'PdfScraper',
6314
6314
  mimeTypes: ['application/pdf-DISABLED'],
6315
6315
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6316
- isAvilableInBrowser: false,
6316
+ isAvailableInBrowser: false,
6317
6317
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6318
6318
  requiredExecutables: [],
6319
6319
  }); /* <- Note: [🤛] */
@@ -6323,7 +6323,7 @@ const pdfScraperMetadata = $deepFreeze({
6323
6323
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6324
6324
  *
6325
6325
  * @public exported from `@promptbook/core`
6326
- * @public exported from `@promptbook/wizzard`
6326
+ * @public exported from `@promptbook/wizard`
6327
6327
  * @public exported from `@promptbook/cli`
6328
6328
  */
6329
6329
  $scrapersMetadataRegister.register(pdfScraperMetadata);
@@ -6398,7 +6398,7 @@ const createPdfScraper = Object.assign((tools, options) => {
6398
6398
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6399
6399
  *
6400
6400
  * @public exported from `@promptbook/pdf`
6401
- * @public exported from `@promptbook/wizzard`
6401
+ * @public exported from `@promptbook/wizard`
6402
6402
  * @public exported from `@promptbook/cli`
6403
6403
  */
6404
6404
  const _PdfScraperRegistration = $scrapersRegister.register(createPdfScraper);