@promptbook/pdf 0.92.0-5 → 0.92.0-6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +114 -8
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +4 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +1 -1
- package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
- package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
- package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
- package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
- package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
- package/esm/typings/src/remote-server/openapi.d.ts +397 -3
- package/package.json +2 -2
- package/umd/index.umd.js +114 -8
- package/umd/index.umd.js.map +1 -1
package/esm/index.es.js
CHANGED
|
@@ -26,7 +26,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
26
26
|
* @generated
|
|
27
27
|
* @see https://github.com/webgptorg/promptbook
|
|
28
28
|
*/
|
|
29
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-
|
|
29
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-6';
|
|
30
30
|
/**
|
|
31
31
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
32
32
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -2137,6 +2137,45 @@ function isPipelinePrepared(pipeline) {
|
|
|
2137
2137
|
* - [♨] Are tasks prepared
|
|
2138
2138
|
*/
|
|
2139
2139
|
|
|
2140
|
+
/**
|
|
2141
|
+
* Converts a JavaScript Object Notation (JSON) string into an object.
|
|
2142
|
+
*
|
|
2143
|
+
* Note: This is wrapper around `JSON.parse()` with better error and type handling
|
|
2144
|
+
*
|
|
2145
|
+
* @public exported from `@promptbook/utils`
|
|
2146
|
+
*/
|
|
2147
|
+
function jsonParse(value) {
|
|
2148
|
+
if (value === undefined) {
|
|
2149
|
+
throw new Error(`Can not parse JSON from undefined value.`);
|
|
2150
|
+
}
|
|
2151
|
+
else if (typeof value !== 'string') {
|
|
2152
|
+
console.error('Can not parse JSON from non-string value.', { text: value });
|
|
2153
|
+
throw new Error(spaceTrim(`
|
|
2154
|
+
Can not parse JSON from non-string value.
|
|
2155
|
+
|
|
2156
|
+
The value type: ${typeof value}
|
|
2157
|
+
See more in console.
|
|
2158
|
+
`));
|
|
2159
|
+
}
|
|
2160
|
+
try {
|
|
2161
|
+
return JSON.parse(value);
|
|
2162
|
+
}
|
|
2163
|
+
catch (error) {
|
|
2164
|
+
if (!(error instanceof Error)) {
|
|
2165
|
+
throw error;
|
|
2166
|
+
}
|
|
2167
|
+
throw new Error(spaceTrim((block) => `
|
|
2168
|
+
${block(error.message)}
|
|
2169
|
+
|
|
2170
|
+
The JSON text:
|
|
2171
|
+
${block(value)}
|
|
2172
|
+
`));
|
|
2173
|
+
}
|
|
2174
|
+
}
|
|
2175
|
+
/**
|
|
2176
|
+
* TODO: !!!! Use in Promptbook.studio
|
|
2177
|
+
*/
|
|
2178
|
+
|
|
2140
2179
|
/**
|
|
2141
2180
|
* Recursively converts JSON strings to JSON objects
|
|
2142
2181
|
|
|
@@ -2155,7 +2194,7 @@ function jsonStringsToJsons(object) {
|
|
|
2155
2194
|
const newObject = { ...object };
|
|
2156
2195
|
for (const [key, value] of Object.entries(object)) {
|
|
2157
2196
|
if (typeof value === 'string' && isValidJsonString(value)) {
|
|
2158
|
-
newObject[key] =
|
|
2197
|
+
newObject[key] = jsonParse(value);
|
|
2159
2198
|
}
|
|
2160
2199
|
else {
|
|
2161
2200
|
newObject[key] = jsonStringsToJsons(value);
|
|
@@ -3002,7 +3041,7 @@ async function preparePersona(personaDescription, tools, options) {
|
|
|
3002
3041
|
}).asPromise();
|
|
3003
3042
|
const { outputParameters } = result;
|
|
3004
3043
|
const { modelsRequirements: modelsRequirementsJson } = outputParameters;
|
|
3005
|
-
const modelsRequirementsUnchecked =
|
|
3044
|
+
const modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
|
|
3006
3045
|
if (isVerbose) {
|
|
3007
3046
|
console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
|
|
3008
3047
|
}
|
|
@@ -3458,7 +3497,7 @@ async function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3458
3497
|
> },
|
|
3459
3498
|
*/
|
|
3460
3499
|
async asJson() {
|
|
3461
|
-
return
|
|
3500
|
+
return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
|
|
3462
3501
|
},
|
|
3463
3502
|
async asText() {
|
|
3464
3503
|
return await tools.fs.readFile(filename, 'utf-8');
|
|
@@ -5145,13 +5184,79 @@ async function getExamplesForTask(task) {
|
|
|
5145
5184
|
/**
|
|
5146
5185
|
* @@@
|
|
5147
5186
|
*
|
|
5187
|
+
* Here is the place where RAG (retrieval-augmented generation) happens
|
|
5188
|
+
*
|
|
5148
5189
|
* @private internal utility of `createPipelineExecutor`
|
|
5149
5190
|
*/
|
|
5150
5191
|
async function getKnowledgeForTask(options) {
|
|
5151
|
-
const { preparedPipeline, task } = options;
|
|
5152
|
-
|
|
5192
|
+
const { tools, preparedPipeline, task } = options;
|
|
5193
|
+
const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
|
|
5194
|
+
const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
|
|
5195
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
|
|
5196
|
+
if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
|
|
5197
|
+
return 'No knowledge pieces found';
|
|
5198
|
+
}
|
|
5199
|
+
// TODO: [🚐] Make arrayable LLMs -> single LLM DRY
|
|
5200
|
+
const _llms = arrayableToArray(tools.llm);
|
|
5201
|
+
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
5202
|
+
const taskEmbeddingPrompt = {
|
|
5203
|
+
title: 'Knowledge Search',
|
|
5204
|
+
modelRequirements: {
|
|
5205
|
+
modelVariant: 'EMBEDDING',
|
|
5206
|
+
modelName: firstKnowlegeIndex.modelName,
|
|
5207
|
+
},
|
|
5208
|
+
content: task.content,
|
|
5209
|
+
parameters: {
|
|
5210
|
+
/* !!!!!!!! */
|
|
5211
|
+
},
|
|
5212
|
+
};
|
|
5213
|
+
const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
|
|
5214
|
+
const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
|
|
5215
|
+
const { index } = knowledgePiece;
|
|
5216
|
+
const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
|
|
5217
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model
|
|
5218
|
+
if (knowledgePieceIndex === undefined) {
|
|
5219
|
+
return {
|
|
5220
|
+
content: knowledgePiece.content,
|
|
5221
|
+
relevance: 0,
|
|
5222
|
+
};
|
|
5223
|
+
}
|
|
5224
|
+
const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
|
|
5225
|
+
return {
|
|
5226
|
+
content: knowledgePiece.content,
|
|
5227
|
+
relevance,
|
|
5228
|
+
};
|
|
5229
|
+
});
|
|
5230
|
+
const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
|
|
5231
|
+
const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
|
|
5232
|
+
console.log('!!! Embedding', {
|
|
5233
|
+
task,
|
|
5234
|
+
taskEmbeddingPrompt,
|
|
5235
|
+
taskEmbeddingResult,
|
|
5236
|
+
firstKnowlegePiece,
|
|
5237
|
+
firstKnowlegeIndex,
|
|
5238
|
+
knowledgePiecesWithRelevance,
|
|
5239
|
+
knowledgePiecesSorted,
|
|
5240
|
+
knowledgePiecesLimited,
|
|
5241
|
+
});
|
|
5242
|
+
return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
|
|
5153
5243
|
// <- TODO: [🧠] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
|
|
5154
5244
|
}
|
|
5245
|
+
// TODO: !!!!!! Annotate + to new file
|
|
5246
|
+
function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
|
|
5247
|
+
if (embeddingVector1.length !== embeddingVector2.length) {
|
|
5248
|
+
throw new TypeError('Embedding vectors must have the same length');
|
|
5249
|
+
}
|
|
5250
|
+
const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
|
|
5251
|
+
const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
|
|
5252
|
+
const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
|
|
5253
|
+
return 1 - dotProduct / (magnitude1 * magnitude2);
|
|
5254
|
+
}
|
|
5255
|
+
/**
|
|
5256
|
+
* TODO: !!!! Verify if this is working
|
|
5257
|
+
* TODO: [♨] Implement Better - use keyword search
|
|
5258
|
+
* TODO: [♨] Examples of values
|
|
5259
|
+
*/
|
|
5155
5260
|
|
|
5156
5261
|
/**
|
|
5157
5262
|
* @@@
|
|
@@ -5159,9 +5264,9 @@ async function getKnowledgeForTask(options) {
|
|
|
5159
5264
|
* @private internal utility of `createPipelineExecutor`
|
|
5160
5265
|
*/
|
|
5161
5266
|
async function getReservedParametersForTask(options) {
|
|
5162
|
-
const { preparedPipeline, task, pipelineIdentification } = options;
|
|
5267
|
+
const { tools, preparedPipeline, task, pipelineIdentification } = options;
|
|
5163
5268
|
const context = await getContextForTask(); // <- [🏍]
|
|
5164
|
-
const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
|
|
5269
|
+
const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
|
|
5165
5270
|
const examples = await getExamplesForTask();
|
|
5166
5271
|
const currentDate = new Date().toISOString(); // <- TODO: [🧠][💩] Better
|
|
5167
5272
|
const modelName = RESERVED_PARAMETER_MISSING_VALUE;
|
|
@@ -5223,6 +5328,7 @@ async function executeTask(options) {
|
|
|
5223
5328
|
}
|
|
5224
5329
|
const definedParameters = Object.freeze({
|
|
5225
5330
|
...(await getReservedParametersForTask({
|
|
5331
|
+
tools,
|
|
5226
5332
|
preparedPipeline,
|
|
5227
5333
|
task: currentTask,
|
|
5228
5334
|
pipelineIdentification,
|