@promptbook/pdf 0.92.0-15 → 0.92.0-17
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/esm/index.es.js
CHANGED
|
@@ -26,7 +26,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
26
26
|
* @generated
|
|
27
27
|
* @see https://github.com/webgptorg/promptbook
|
|
28
28
|
*/
|
|
29
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-
|
|
29
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-17';
|
|
30
30
|
/**
|
|
31
31
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
32
32
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -4562,10 +4562,12 @@ function templateParameters(template, parameters) {
|
|
|
4562
4562
|
throw new PipelineExecutionError('Parameter is already opened or not closed');
|
|
4563
4563
|
}
|
|
4564
4564
|
if (parameters[parameterName] === undefined) {
|
|
4565
|
+
console.log('!!! templateParameters 1', { parameterName, template, parameters });
|
|
4565
4566
|
throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
|
|
4566
4567
|
}
|
|
4567
4568
|
let parameterValue = parameters[parameterName];
|
|
4568
4569
|
if (parameterValue === undefined) {
|
|
4570
|
+
console.log('!!! templateParameters 2', { parameterName, template, parameters });
|
|
4569
4571
|
throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
|
|
4570
4572
|
}
|
|
4571
4573
|
parameterValue = valueToString(parameterValue);
|
|
@@ -5221,6 +5223,23 @@ function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
|
|
|
5221
5223
|
return 1 - dotProduct / (magnitude1 * magnitude2);
|
|
5222
5224
|
}
|
|
5223
5225
|
|
|
5226
|
+
/**
|
|
5227
|
+
*
|
|
5228
|
+
* @param knowledgePieces
|
|
5229
|
+
* @returns
|
|
5230
|
+
*
|
|
5231
|
+
* @private internal utility of `createPipelineExecutor`
|
|
5232
|
+
*/
|
|
5233
|
+
function knowledgePiecesToString(knowledgePieces) {
|
|
5234
|
+
return knowledgePieces
|
|
5235
|
+
.map((knowledgePiece) => {
|
|
5236
|
+
const { content } = knowledgePiece;
|
|
5237
|
+
return `- ${content}`;
|
|
5238
|
+
})
|
|
5239
|
+
.join('\n');
|
|
5240
|
+
// <- TODO: [🧠] Some smarter aggregation of knowledge pieces, single-line vs multi-line vs mixed
|
|
5241
|
+
}
|
|
5242
|
+
|
|
5224
5243
|
/**
|
|
5225
5244
|
* @@@
|
|
5226
5245
|
*
|
|
@@ -5234,53 +5253,60 @@ async function getKnowledgeForTask(options) {
|
|
|
5234
5253
|
const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
|
|
5235
5254
|
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
|
|
5236
5255
|
if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
|
|
5237
|
-
return '
|
|
5256
|
+
return ''; // <- Note: Np knowledge present, return empty string
|
|
5238
5257
|
}
|
|
5239
|
-
|
|
5240
|
-
|
|
5241
|
-
|
|
5242
|
-
|
|
5243
|
-
|
|
5244
|
-
|
|
5245
|
-
|
|
5246
|
-
|
|
5247
|
-
|
|
5248
|
-
|
|
5249
|
-
|
|
5250
|
-
|
|
5251
|
-
|
|
5252
|
-
|
|
5253
|
-
|
|
5254
|
-
|
|
5255
|
-
const
|
|
5256
|
-
|
|
5257
|
-
|
|
5258
|
-
|
|
5258
|
+
try {
|
|
5259
|
+
// TODO: [🚐] Make arrayable LLMs -> single LLM DRY
|
|
5260
|
+
const _llms = arrayableToArray(tools.llm);
|
|
5261
|
+
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
5262
|
+
const taskEmbeddingPrompt = {
|
|
5263
|
+
title: 'Knowledge Search',
|
|
5264
|
+
modelRequirements: {
|
|
5265
|
+
modelVariant: 'EMBEDDING',
|
|
5266
|
+
modelName: firstKnowlegeIndex.modelName,
|
|
5267
|
+
},
|
|
5268
|
+
content: task.content,
|
|
5269
|
+
parameters: {
|
|
5270
|
+
/* !!!! */
|
|
5271
|
+
},
|
|
5272
|
+
};
|
|
5273
|
+
const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
|
|
5274
|
+
const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
|
|
5275
|
+
const { index } = knowledgePiece;
|
|
5276
|
+
const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
|
|
5277
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model
|
|
5278
|
+
if (knowledgePieceIndex === undefined) {
|
|
5279
|
+
return {
|
|
5280
|
+
content: knowledgePiece.content,
|
|
5281
|
+
relevance: 0,
|
|
5282
|
+
};
|
|
5283
|
+
}
|
|
5284
|
+
const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
|
|
5259
5285
|
return {
|
|
5260
5286
|
content: knowledgePiece.content,
|
|
5261
|
-
relevance
|
|
5287
|
+
relevance,
|
|
5262
5288
|
};
|
|
5263
|
-
}
|
|
5264
|
-
const
|
|
5265
|
-
|
|
5266
|
-
|
|
5267
|
-
|
|
5268
|
-
|
|
5269
|
-
|
|
5270
|
-
|
|
5271
|
-
|
|
5272
|
-
|
|
5273
|
-
|
|
5274
|
-
|
|
5275
|
-
|
|
5276
|
-
|
|
5277
|
-
|
|
5278
|
-
|
|
5279
|
-
|
|
5280
|
-
|
|
5281
|
-
|
|
5282
|
-
|
|
5283
|
-
|
|
5289
|
+
});
|
|
5290
|
+
const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
|
|
5291
|
+
const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
|
|
5292
|
+
console.log('!!! Embedding', {
|
|
5293
|
+
task,
|
|
5294
|
+
taskEmbeddingPrompt,
|
|
5295
|
+
taskEmbeddingResult,
|
|
5296
|
+
firstKnowlegePiece,
|
|
5297
|
+
firstKnowlegeIndex,
|
|
5298
|
+
knowledgePiecesWithRelevance,
|
|
5299
|
+
knowledgePiecesSorted,
|
|
5300
|
+
knowledgePiecesLimited,
|
|
5301
|
+
});
|
|
5302
|
+
return knowledgePiecesToString(knowledgePiecesLimited);
|
|
5303
|
+
}
|
|
5304
|
+
catch (error) {
|
|
5305
|
+
assertsError(error);
|
|
5306
|
+
console.error('Error in `getKnowledgeForTask`', error);
|
|
5307
|
+
// Note: If the LLM fails, just return all knowledge pieces
|
|
5308
|
+
return knowledgePiecesToString(preparedPipeline.knowledgePieces);
|
|
5309
|
+
}
|
|
5284
5310
|
}
|
|
5285
5311
|
/**
|
|
5286
5312
|
* TODO: !!!! Verify if this is working
|