@promptbook/pdf 0.89.0 → 0.92.0-11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. package/README.md +4 -0
  2. package/esm/index.es.js +173 -30
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/core.index.d.ts +6 -0
  5. package/esm/typings/src/_packages/deepseek.index.d.ts +2 -0
  6. package/esm/typings/src/_packages/google.index.d.ts +2 -0
  7. package/esm/typings/src/_packages/utils.index.d.ts +2 -0
  8. package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +1 -1
  9. package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
  10. package/esm/typings/src/execution/CommonToolsOptions.d.ts +4 -0
  11. package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
  12. package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
  13. package/esm/typings/src/formats/csv/utils/csvParse.d.ts +12 -0
  14. package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
  15. package/esm/typings/src/llm-providers/_common/filterModels.d.ts +15 -0
  16. package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
  17. package/esm/typings/src/llm-providers/azure-openai/AzureOpenAiExecutionTools.d.ts +4 -0
  18. package/esm/typings/src/llm-providers/deepseek/deepseek-models.d.ts +23 -0
  19. package/esm/typings/src/llm-providers/google/google-models.d.ts +23 -0
  20. package/esm/typings/src/llm-providers/openai/OpenAiExecutionTools.d.ts +4 -0
  21. package/esm/typings/src/personas/preparePersona.d.ts +1 -1
  22. package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +4 -2
  23. package/esm/typings/src/remote-server/openapi-types.d.ts +348 -6
  24. package/esm/typings/src/remote-server/openapi.d.ts +397 -3
  25. package/package.json +2 -2
  26. package/umd/index.umd.js +173 -30
  27. package/umd/index.umd.js.map +1 -1
package/README.md CHANGED
@@ -23,6 +23,10 @@
23
23
 
24
24
 
25
25
 
26
+ <blockquote style="color: #ff8811">
27
+ <b>⚠ Warning:</b> This is a pre-release version of the library. It is not yet ready for production use. Please look at <a href="https://www.npmjs.com/package/@promptbook/core?activeTab=versions">latest stable release</a>.
28
+ </blockquote>
29
+
26
30
  ## 📦 Package `@promptbook/pdf`
27
31
 
28
32
  - Promptbooks are [divided into several](#-packages) packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
package/esm/index.es.js CHANGED
@@ -26,7 +26,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
26
26
  * @generated
27
27
  * @see https://github.com/webgptorg/promptbook
28
28
  */
29
- const PROMPTBOOK_ENGINE_VERSION = '0.89.0';
29
+ const PROMPTBOOK_ENGINE_VERSION = '0.92.0-11';
30
30
  /**
31
31
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
32
32
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -860,7 +860,7 @@ async function getScraperIntermediateSource(source, options) {
860
860
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
861
861
  */
862
862
 
863
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
863
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
864
864
 
865
865
  /**
866
866
  * Checks if value is valid email
@@ -1903,7 +1903,7 @@ function extractParameterNames(template) {
1903
1903
  */
1904
1904
  function unpreparePipeline(pipeline) {
1905
1905
  let { personas, knowledgeSources, tasks } = pipeline;
1906
- personas = personas.map((persona) => ({ ...persona, modelRequirements: undefined, preparationIds: undefined }));
1906
+ personas = personas.map((persona) => ({ ...persona, modelsRequirements: undefined, preparationIds: undefined }));
1907
1907
  knowledgeSources = knowledgeSources.map((knowledgeSource) => ({ ...knowledgeSource, preparationIds: undefined }));
1908
1908
  tasks = tasks.map((task) => {
1909
1909
  let { dependentParameterNames } = task;
@@ -2113,7 +2113,7 @@ function isPipelinePrepared(pipeline) {
2113
2113
  if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
2114
2114
  return false;
2115
2115
  }
2116
- if (!pipeline.personas.every((persona) => persona.modelRequirements !== undefined)) {
2116
+ if (!pipeline.personas.every((persona) => persona.modelsRequirements !== undefined)) {
2117
2117
  return false;
2118
2118
  }
2119
2119
  if (!pipeline.knowledgeSources.every((knowledgeSource) => knowledgeSource.preparationIds !== undefined)) {
@@ -2137,6 +2137,45 @@ function isPipelinePrepared(pipeline) {
2137
2137
  * - [♨] Are tasks prepared
2138
2138
  */
2139
2139
 
2140
+ /**
2141
+ * Converts a JavaScript Object Notation (JSON) string into an object.
2142
+ *
2143
+ * Note: This is wrapper around `JSON.parse()` with better error and type handling
2144
+ *
2145
+ * @public exported from `@promptbook/utils`
2146
+ */
2147
+ function jsonParse(value) {
2148
+ if (value === undefined) {
2149
+ throw new Error(`Can not parse JSON from undefined value.`);
2150
+ }
2151
+ else if (typeof value !== 'string') {
2152
+ console.error('Can not parse JSON from non-string value.', { text: value });
2153
+ throw new Error(spaceTrim(`
2154
+ Can not parse JSON from non-string value.
2155
+
2156
+ The value type: ${typeof value}
2157
+ See more in console.
2158
+ `));
2159
+ }
2160
+ try {
2161
+ return JSON.parse(value);
2162
+ }
2163
+ catch (error) {
2164
+ if (!(error instanceof Error)) {
2165
+ throw error;
2166
+ }
2167
+ throw new Error(spaceTrim((block) => `
2168
+ ${block(error.message)}
2169
+
2170
+ The JSON text:
2171
+ ${block(value)}
2172
+ `));
2173
+ }
2174
+ }
2175
+ /**
2176
+ * TODO: !!!! Use in Promptbook.studio
2177
+ */
2178
+
2140
2179
  /**
2141
2180
  * Recursively converts JSON strings to JSON objects
2142
2181
 
@@ -2155,7 +2194,7 @@ function jsonStringsToJsons(object) {
2155
2194
  const newObject = { ...object };
2156
2195
  for (const [key, value] of Object.entries(object)) {
2157
2196
  if (typeof value === 'string' && isValidJsonString(value)) {
2158
- newObject[key] = JSON.parse(value);
2197
+ newObject[key] = jsonParse(value);
2159
2198
  }
2160
2199
  else {
2161
2200
  newObject[key] = jsonStringsToJsons(value);
@@ -2987,27 +3026,48 @@ async function preparePersona(personaDescription, tools, options) {
2987
3026
  pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
2988
3027
  tools,
2989
3028
  });
2990
- // TODO: [🚐] Make arrayable LLMs -> single LLM DRY
2991
3029
  const _llms = arrayableToArray(tools.llm);
2992
3030
  const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
2993
- const availableModels = await llmTools.listModels();
2994
- const availableModelNames = availableModels
3031
+ const availableModels = (await llmTools.listModels())
2995
3032
  .filter(({ modelVariant }) => modelVariant === 'CHAT')
2996
- .map(({ modelName }) => modelName)
2997
- .join(',');
2998
- const result = await preparePersonaExecutor({ availableModelNames, personaDescription }).asPromise();
3033
+ .map(({ modelName, modelDescription }) => ({
3034
+ modelName,
3035
+ modelDescription,
3036
+ // <- Note: `modelTitle` and `modelVariant` is not relevant for this task
3037
+ }));
3038
+ const result = await preparePersonaExecutor({
3039
+ availableModels /* <- Note: Passing as JSON */,
3040
+ personaDescription,
3041
+ }).asPromise();
2999
3042
  const { outputParameters } = result;
3000
- const { modelRequirements: modelRequirementsRaw } = outputParameters;
3001
- const modelRequirements = JSON.parse(modelRequirementsRaw);
3043
+ const { modelsRequirements: modelsRequirementsJson } = outputParameters;
3044
+ let modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
3002
3045
  if (isVerbose) {
3003
- console.info(`PERSONA ${personaDescription}`, modelRequirements);
3046
+ console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
3004
3047
  }
3005
- const { modelName, systemMessage, temperature } = modelRequirements;
3006
- return {
3048
+ if (!Array.isArray(modelsRequirementsUnchecked)) {
3049
+ // <- TODO: Book should have syntax and system to enforce shape of JSON
3050
+ modelsRequirementsUnchecked = [modelsRequirementsUnchecked];
3051
+ /*
3052
+ throw new UnexpectedError(
3053
+ spaceTrim(
3054
+ (block) => `
3055
+ Invalid \`modelsRequirements\`:
3056
+
3057
+ \`\`\`json
3058
+ ${block(JSON.stringify(modelsRequirementsUnchecked, null, 4))}
3059
+ \`\`\`
3060
+ `,
3061
+ ),
3062
+ );
3063
+ */
3064
+ }
3065
+ const modelsRequirements = modelsRequirementsUnchecked.map((modelRequirements) => ({
3007
3066
  modelVariant: 'CHAT',
3008
- modelName,
3009
- systemMessage,
3010
- temperature,
3067
+ ...modelRequirements,
3068
+ }));
3069
+ return {
3070
+ modelsRequirements,
3011
3071
  };
3012
3072
  }
3013
3073
  /**
@@ -3445,7 +3505,7 @@ async function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
3445
3505
  > },
3446
3506
  */
3447
3507
  async asJson() {
3448
- return JSON.parse(await tools.fs.readFile(filename, 'utf-8'));
3508
+ return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
3449
3509
  },
3450
3510
  async asText() {
3451
3511
  return await tools.fs.readFile(filename, 'utf-8');
@@ -3703,14 +3763,14 @@ async function preparePipeline(pipeline, tools, options) {
3703
3763
  // TODO: [🖌][🧠] Implement some `mapAsync` function
3704
3764
  const preparedPersonas = new Array(personas.length);
3705
3765
  await forEachAsync(personas, { maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, async (persona, index) => {
3706
- const modelRequirements = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
3766
+ const { modelsRequirements } = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
3707
3767
  rootDirname,
3708
3768
  maxParallelCount /* <- TODO: [🪂] */,
3709
3769
  isVerbose,
3710
3770
  });
3711
3771
  const preparedPersona = {
3712
3772
  ...persona,
3713
- modelRequirements,
3773
+ modelsRequirements,
3714
3774
  preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id],
3715
3775
  // <- TODO: [🍙] Make some standard order of json properties
3716
3776
  };
@@ -4049,6 +4109,24 @@ function isValidCsvString(value) {
4049
4109
  }
4050
4110
  }
4051
4111
 
4112
+ /**
4113
+ * Converts a CSV string into an object
4114
+ *
4115
+ * Note: This is wrapper around `papaparse.parse()` with better autohealing
4116
+ *
4117
+ * @private - for now until `@promptbook/csv` is released
4118
+ */
4119
+ function csvParse(value /* <- TODO: string_csv */, settings, schema /* <- TODO: Make CSV Schemas */) {
4120
+ settings = { ...settings, ...MANDATORY_CSV_SETTINGS };
4121
+ // Note: Autoheal invalid '\n' characters
4122
+ if (settings.newline && !settings.newline.includes('\r') && value.includes('\r')) {
4123
+ console.warn('CSV string contains carriage return characters, but in the CSV settings the `newline` setting does not include them. Autohealing the CSV string.');
4124
+ value = value.replace(/\r\n/g, '\n').replace(/\r/g, '\n');
4125
+ }
4126
+ const csv = parse(value, settings);
4127
+ return csv;
4128
+ }
4129
+
4052
4130
  /**
4053
4131
  * Definition for CSV spreadsheet
4054
4132
  *
@@ -4071,8 +4149,7 @@ const CsvFormatDefinition = {
4071
4149
  {
4072
4150
  subvalueName: 'ROW',
4073
4151
  async mapValues(value, outputParameterName, settings, mapCallback) {
4074
- // TODO: [👨🏾‍🤝‍👨🏼] DRY csv parsing
4075
- const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
4152
+ const csv = csvParse(value, settings);
4076
4153
  if (csv.errors.length !== 0) {
4077
4154
  throw new CsvFormatError(spaceTrim((block) => `
4078
4155
  CSV parsing error
@@ -4102,8 +4179,7 @@ const CsvFormatDefinition = {
4102
4179
  {
4103
4180
  subvalueName: 'CELL',
4104
4181
  async mapValues(value, outputParameterName, settings, mapCallback) {
4105
- // TODO: [👨🏾‍🤝‍👨🏼] DRY csv parsing
4106
- const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
4182
+ const csv = csvParse(value, settings);
4107
4183
  if (csv.errors.length !== 0) {
4108
4184
  throw new CsvFormatError(spaceTrim((block) => `
4109
4185
  CSV parsing error
@@ -5132,13 +5208,79 @@ async function getExamplesForTask(task) {
5132
5208
  /**
5133
5209
  * @@@
5134
5210
  *
5211
+ * Here is the place where RAG (retrieval-augmented generation) happens
5212
+ *
5135
5213
  * @private internal utility of `createPipelineExecutor`
5136
5214
  */
5137
5215
  async function getKnowledgeForTask(options) {
5138
- const { preparedPipeline, task } = options;
5139
- return preparedPipeline.knowledgePieces.map(({ content }) => `- ${content}`).join('\n');
5216
+ const { tools, preparedPipeline, task } = options;
5217
+ const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5218
+ const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5219
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5220
+ if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5221
+ return 'No knowledge pieces found';
5222
+ }
5223
+ // TODO: [🚐] Make arrayable LLMs -> single LLM DRY
5224
+ const _llms = arrayableToArray(tools.llm);
5225
+ const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
5226
+ const taskEmbeddingPrompt = {
5227
+ title: 'Knowledge Search',
5228
+ modelRequirements: {
5229
+ modelVariant: 'EMBEDDING',
5230
+ modelName: firstKnowlegeIndex.modelName,
5231
+ },
5232
+ content: task.content,
5233
+ parameters: {
5234
+ /* !!!!!!!! */
5235
+ },
5236
+ };
5237
+ const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5238
+ const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5239
+ const { index } = knowledgePiece;
5240
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5241
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5242
+ if (knowledgePieceIndex === undefined) {
5243
+ return {
5244
+ content: knowledgePiece.content,
5245
+ relevance: 0,
5246
+ };
5247
+ }
5248
+ const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
5249
+ return {
5250
+ content: knowledgePiece.content,
5251
+ relevance,
5252
+ };
5253
+ });
5254
+ const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
5255
+ const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
5256
+ console.log('!!! Embedding', {
5257
+ task,
5258
+ taskEmbeddingPrompt,
5259
+ taskEmbeddingResult,
5260
+ firstKnowlegePiece,
5261
+ firstKnowlegeIndex,
5262
+ knowledgePiecesWithRelevance,
5263
+ knowledgePiecesSorted,
5264
+ knowledgePiecesLimited,
5265
+ });
5266
+ return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
5140
5267
  // <- TODO: [🧠] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
5141
5268
  }
5269
+ // TODO: !!!!!! Annotate + to new file
5270
+ function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
5271
+ if (embeddingVector1.length !== embeddingVector2.length) {
5272
+ throw new TypeError('Embedding vectors must have the same length');
5273
+ }
5274
+ const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
5275
+ const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
5276
+ const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
5277
+ return 1 - dotProduct / (magnitude1 * magnitude2);
5278
+ }
5279
+ /**
5280
+ * TODO: !!!! Verify if this is working
5281
+ * TODO: [♨] Implement Better - use keyword search
5282
+ * TODO: [♨] Examples of values
5283
+ */
5142
5284
 
5143
5285
  /**
5144
5286
  * @@@
@@ -5146,9 +5288,9 @@ async function getKnowledgeForTask(options) {
5146
5288
  * @private internal utility of `createPipelineExecutor`
5147
5289
  */
5148
5290
  async function getReservedParametersForTask(options) {
5149
- const { preparedPipeline, task, pipelineIdentification } = options;
5291
+ const { tools, preparedPipeline, task, pipelineIdentification } = options;
5150
5292
  const context = await getContextForTask(); // <- [🏍]
5151
- const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
5293
+ const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
5152
5294
  const examples = await getExamplesForTask();
5153
5295
  const currentDate = new Date().toISOString(); // <- TODO: [🧠][💩] Better
5154
5296
  const modelName = RESERVED_PARAMETER_MISSING_VALUE;
@@ -5210,6 +5352,7 @@ async function executeTask(options) {
5210
5352
  }
5211
5353
  const definedParameters = Object.freeze({
5212
5354
  ...(await getReservedParametersForTask({
5355
+ tools,
5213
5356
  preparedPipeline,
5214
5357
  task: currentTask,
5215
5358
  pipelineIdentification,