@promptbook/pdf 0.89.0-9 โ†’ 0.92.0-10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/README.md +9 -7
  2. package/esm/index.es.js +303 -68
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/servers.d.ts +40 -0
  5. package/esm/typings/src/_packages/core.index.d.ts +14 -4
  6. package/esm/typings/src/_packages/deepseek.index.d.ts +2 -0
  7. package/esm/typings/src/_packages/google.index.d.ts +2 -0
  8. package/esm/typings/src/_packages/types.index.d.ts +18 -0
  9. package/esm/typings/src/_packages/utils.index.d.ts +6 -0
  10. package/esm/typings/src/cli/cli-commands/login.d.ts +0 -1
  11. package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +16 -3
  12. package/esm/typings/src/cli/test/ptbk.d.ts +1 -1
  13. package/esm/typings/src/commands/EXPECT/expectCommandParser.d.ts +2 -0
  14. package/esm/typings/src/config.d.ts +10 -19
  15. package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
  16. package/esm/typings/src/errors/0-index.d.ts +7 -4
  17. package/esm/typings/src/errors/PipelineExecutionError.d.ts +1 -1
  18. package/esm/typings/src/errors/WrappedError.d.ts +10 -0
  19. package/esm/typings/src/errors/assertsError.d.ts +11 -0
  20. package/esm/typings/src/execution/CommonToolsOptions.d.ts +4 -0
  21. package/esm/typings/src/execution/PromptbookFetch.d.ts +1 -1
  22. package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
  23. package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
  24. package/esm/typings/src/formats/csv/utils/csvParse.d.ts +12 -0
  25. package/esm/typings/src/formats/csv/utils/isValidCsvString.d.ts +9 -0
  26. package/esm/typings/src/formats/csv/utils/isValidCsvString.test.d.ts +1 -0
  27. package/esm/typings/src/formats/json/utils/isValidJsonString.d.ts +3 -0
  28. package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
  29. package/esm/typings/src/formats/xml/utils/isValidXmlString.d.ts +9 -0
  30. package/esm/typings/src/formats/xml/utils/isValidXmlString.test.d.ts +1 -0
  31. package/esm/typings/src/llm-providers/_common/filterModels.d.ts +15 -0
  32. package/esm/typings/src/llm-providers/_common/register/{$provideEnvFilepath.d.ts โ†’ $provideEnvFilename.d.ts} +2 -2
  33. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
  34. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
  35. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForWizzardOrCli.d.ts +11 -2
  36. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
  37. package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
  38. package/esm/typings/src/llm-providers/azure-openai/AzureOpenAiExecutionTools.d.ts +4 -0
  39. package/esm/typings/src/llm-providers/deepseek/deepseek-models.d.ts +23 -0
  40. package/esm/typings/src/llm-providers/google/google-models.d.ts +23 -0
  41. package/esm/typings/src/llm-providers/openai/OpenAiExecutionTools.d.ts +4 -0
  42. package/esm/typings/src/personas/preparePersona.d.ts +1 -1
  43. package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +4 -2
  44. package/esm/typings/src/remote-server/openapi-types.d.ts +626 -0
  45. package/esm/typings/src/remote-server/openapi.d.ts +581 -0
  46. package/esm/typings/src/remote-server/socket-types/_subtypes/Identification.d.ts +7 -1
  47. package/esm/typings/src/remote-server/socket-types/_subtypes/identificationToPromptbookToken.d.ts +11 -0
  48. package/esm/typings/src/remote-server/socket-types/_subtypes/promptbookTokenToIdentification.d.ts +10 -0
  49. package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -2
  50. package/esm/typings/src/remote-server/types/RemoteServerOptions.d.ts +15 -9
  51. package/esm/typings/src/storage/env-storage/$EnvStorage.d.ts +40 -0
  52. package/esm/typings/src/types/typeAliases.d.ts +26 -0
  53. package/package.json +9 -5
  54. package/umd/index.umd.js +303 -68
  55. package/umd/index.umd.js.map +1 -1
  56. package/esm/typings/src/cli/test/ptbk2.d.ts +0 -5
package/umd/index.umd.js CHANGED
@@ -25,7 +25,7 @@
25
25
  * @generated
26
26
  * @see https://github.com/webgptorg/promptbook
27
27
  */
28
- const PROMPTBOOK_ENGINE_VERSION = '0.89.0-9';
28
+ const PROMPTBOOK_ENGINE_VERSION = '0.92.0-10';
29
29
  /**
30
30
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
31
31
  * Note: [๐Ÿ’ž] Ignore a discrepancy between file name and entity name
@@ -88,6 +88,7 @@
88
88
  * @public exported from `@promptbook/core`
89
89
  */
90
90
  const ADMIN_GITHUB_NAME = 'hejny';
91
+ // <- TODO: [๐ŸŠ] Pick the best claim
91
92
  /**
92
93
  * When the title is not provided, the default title is used
93
94
  *
@@ -120,6 +121,7 @@
120
121
  infinity: '(infinity; โˆž)',
121
122
  negativeInfinity: '(negative infinity; -โˆž)',
122
123
  unserializable: '(unserializable value)',
124
+ circular: '(circular JSON)',
123
125
  };
124
126
  /**
125
127
  * Small number limit
@@ -159,7 +161,7 @@
159
161
  */
160
162
  const DEFAULT_MAX_EXECUTION_ATTEMPTS = 10; // <- TODO: [๐Ÿคนโ€โ™‚๏ธ]
161
163
  // <- TODO: [๐Ÿ•] Make also `BOOKS_DIRNAME_ALTERNATIVES`
162
- // TODO: !!!!!! Just .promptbook dir, hardocode others
164
+ // TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
163
165
  /**
164
166
  * Where to store the temporary downloads
165
167
  *
@@ -857,7 +859,7 @@
857
859
  * Note: [๐ŸŸข] Code in this file should never be never released in packages that could be imported into browser environment
858
860
  */
859
861
 
860
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
862
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
861
863
 
862
864
  /**
863
865
  * Checks if value is valid email
@@ -890,9 +892,60 @@
890
892
  * TODO: Maybe split `ParseError` and `ApplyError`
891
893
  */
892
894
 
895
+ /**
896
+ * This error type indicates that somewhere in the code non-Error object was thrown and it was wrapped into the `WrappedError`
897
+ *
898
+ * @public exported from `@promptbook/core`
899
+ */
900
+ class WrappedError extends Error {
901
+ constructor(whatWasThrown) {
902
+ const tag = `[๐Ÿคฎ]`;
903
+ console.error(tag, whatWasThrown);
904
+ super(spaceTrim.spaceTrim(`
905
+ Non-Error object was thrown
906
+
907
+ Note: Look for ${tag} in the console for more details
908
+ Please report issue on ${ADMIN_EMAIL}
909
+ `));
910
+ this.name = 'WrappedError';
911
+ Object.setPrototypeOf(this, WrappedError.prototype);
912
+ }
913
+ }
914
+
915
+ /**
916
+ * Helper used in catch blocks to assert that the error is an instance of `Error`
917
+ *
918
+ * @param whatWasThrown Any object that was thrown
919
+ * @returns Nothing if the error is an instance of `Error`
920
+ * @throws `WrappedError` or `UnexpectedError` if the error is not standard
921
+ *
922
+ * @private within the repository
923
+ */
924
+ function assertsError(whatWasThrown) {
925
+ // Case 1: Handle error which was rethrown as `WrappedError`
926
+ if (whatWasThrown instanceof WrappedError) {
927
+ const wrappedError = whatWasThrown;
928
+ throw wrappedError;
929
+ }
930
+ // Case 2: Handle unexpected errors
931
+ if (whatWasThrown instanceof UnexpectedError) {
932
+ const unexpectedError = whatWasThrown;
933
+ throw unexpectedError;
934
+ }
935
+ // Case 3: Handle standard errors - keep them up to consumer
936
+ if (whatWasThrown instanceof Error) {
937
+ return;
938
+ }
939
+ // Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
940
+ throw new WrappedError(whatWasThrown);
941
+ }
942
+
893
943
  /**
894
944
  * Function isValidJsonString will tell you if the string is valid JSON or not
895
945
  *
946
+ * @param value The string to check
947
+ * @returns True if the string is a valid JSON string, false otherwise
948
+ *
896
949
  * @public exported from `@promptbook/utils`
897
950
  */
898
951
  function isValidJsonString(value /* <- [๐Ÿ‘จโ€โš–๏ธ] */) {
@@ -901,9 +954,7 @@
901
954
  return true;
902
955
  }
903
956
  catch (error) {
904
- if (!(error instanceof Error)) {
905
- throw error;
906
- }
957
+ assertsError(error);
907
958
  if (error.message.includes('Unexpected token')) {
908
959
  return false;
909
960
  }
@@ -1256,9 +1307,7 @@
1256
1307
  JSON.stringify(value); // <- TODO: [0]
1257
1308
  }
1258
1309
  catch (error) {
1259
- if (!(error instanceof Error)) {
1260
- throw error;
1261
- }
1310
+ assertsError(error);
1262
1311
  throw new UnexpectedError(spaceTrim__default["default"]((block) => `
1263
1312
  \`${name}\` is not serializable
1264
1313
 
@@ -1853,7 +1902,7 @@
1853
1902
  */
1854
1903
  function unpreparePipeline(pipeline) {
1855
1904
  let { personas, knowledgeSources, tasks } = pipeline;
1856
- personas = personas.map((persona) => ({ ...persona, modelRequirements: undefined, preparationIds: undefined }));
1905
+ personas = personas.map((persona) => ({ ...persona, modelsRequirements: undefined, preparationIds: undefined }));
1857
1906
  knowledgeSources = knowledgeSources.map((knowledgeSource) => ({ ...knowledgeSource, preparationIds: undefined }));
1858
1907
  tasks = tasks.map((task) => {
1859
1908
  let { dependentParameterNames } = task;
@@ -2047,7 +2096,7 @@
2047
2096
  }
2048
2097
  }
2049
2098
  /**
2050
- * TODO: !!!!!! Add id to all errors
2099
+ * TODO: [๐Ÿง ][๐ŸŒ‚] Add id to all errors
2051
2100
  */
2052
2101
 
2053
2102
  /**
@@ -2063,7 +2112,7 @@
2063
2112
  if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
2064
2113
  return false;
2065
2114
  }
2066
- if (!pipeline.personas.every((persona) => persona.modelRequirements !== undefined)) {
2115
+ if (!pipeline.personas.every((persona) => persona.modelsRequirements !== undefined)) {
2067
2116
  return false;
2068
2117
  }
2069
2118
  if (!pipeline.knowledgeSources.every((knowledgeSource) => knowledgeSource.preparationIds !== undefined)) {
@@ -2087,6 +2136,45 @@
2087
2136
  * - [โ™จ] Are tasks prepared
2088
2137
  */
2089
2138
 
2139
+ /**
2140
+ * Converts a JavaScript Object Notation (JSON) string into an object.
2141
+ *
2142
+ * Note: This is wrapper around `JSON.parse()` with better error and type handling
2143
+ *
2144
+ * @public exported from `@promptbook/utils`
2145
+ */
2146
+ function jsonParse(value) {
2147
+ if (value === undefined) {
2148
+ throw new Error(`Can not parse JSON from undefined value.`);
2149
+ }
2150
+ else if (typeof value !== 'string') {
2151
+ console.error('Can not parse JSON from non-string value.', { text: value });
2152
+ throw new Error(spaceTrim__default["default"](`
2153
+ Can not parse JSON from non-string value.
2154
+
2155
+ The value type: ${typeof value}
2156
+ See more in console.
2157
+ `));
2158
+ }
2159
+ try {
2160
+ return JSON.parse(value);
2161
+ }
2162
+ catch (error) {
2163
+ if (!(error instanceof Error)) {
2164
+ throw error;
2165
+ }
2166
+ throw new Error(spaceTrim__default["default"]((block) => `
2167
+ ${block(error.message)}
2168
+
2169
+ The JSON text:
2170
+ ${block(value)}
2171
+ `));
2172
+ }
2173
+ }
2174
+ /**
2175
+ * TODO: !!!! Use in Promptbook.studio
2176
+ */
2177
+
2090
2178
  /**
2091
2179
  * Recursively converts JSON strings to JSON objects
2092
2180
 
@@ -2105,7 +2193,7 @@
2105
2193
  const newObject = { ...object };
2106
2194
  for (const [key, value] of Object.entries(object)) {
2107
2195
  if (typeof value === 'string' && isValidJsonString(value)) {
2108
- newObject[key] = JSON.parse(value);
2196
+ newObject[key] = jsonParse(value);
2109
2197
  }
2110
2198
  else {
2111
2199
  newObject[key] = jsonStringsToJsons(value);
@@ -2258,7 +2346,10 @@
2258
2346
  PipelineExecutionError,
2259
2347
  PipelineLogicError,
2260
2348
  PipelineUrlError,
2349
+ AuthenticationError,
2350
+ PromptbookFetchError,
2261
2351
  UnexpectedError,
2352
+ WrappedError,
2262
2353
  // TODO: [๐Ÿช‘]> VersionMismatchError,
2263
2354
  };
2264
2355
  /**
@@ -2275,8 +2366,6 @@
2275
2366
  TypeError,
2276
2367
  URIError,
2277
2368
  AggregateError,
2278
- AuthenticationError,
2279
- PromptbookFetchError,
2280
2369
  /*
2281
2370
  Note: Not widely supported
2282
2371
  > InternalError,
@@ -2399,8 +2488,8 @@
2399
2488
  updatedAt = new Date();
2400
2489
  errors.push(...executionResult.errors);
2401
2490
  warnings.push(...executionResult.warnings);
2402
- // <- TODO: !!! Only unique errors and warnings should be added (or filtered)
2403
- // TODO: [๐Ÿง ] !!! errors, warning, isSuccessful are redundant both in `ExecutionTask` and `ExecutionTask.currentValue`
2491
+ // <- TODO: [๐ŸŒ‚] Only unique errors and warnings should be added (or filtered)
2492
+ // TODO: [๐Ÿง ] !! errors, warning, isSuccessful are redundant both in `ExecutionTask` and `ExecutionTask.currentValue`
2404
2493
  // Also maybe move `ExecutionTask.currentValue.usage` -> `ExecutionTask.usage`
2405
2494
  // And delete `ExecutionTask.currentValue.preparedPipeline`
2406
2495
  assertsTaskSuccessful(executionResult);
@@ -2410,6 +2499,7 @@
2410
2499
  partialResultSubject.next(executionResult);
2411
2500
  }
2412
2501
  catch (error) {
2502
+ assertsError(error);
2413
2503
  status = 'ERROR';
2414
2504
  errors.push(error);
2415
2505
  partialResultSubject.error(error);
@@ -2801,14 +2891,15 @@
2801
2891
  }
2802
2892
  }
2803
2893
  catch (error) {
2804
- if (!(error instanceof Error) || error instanceof UnexpectedError) {
2894
+ assertsError(error);
2895
+ if (error instanceof UnexpectedError) {
2805
2896
  throw error;
2806
2897
  }
2807
2898
  errors.push({ llmExecutionTools, error });
2808
2899
  }
2809
2900
  }
2810
2901
  if (errors.length === 1) {
2811
- throw errors[0];
2902
+ throw errors[0].error;
2812
2903
  }
2813
2904
  else if (errors.length > 1) {
2814
2905
  throw new PipelineExecutionError(
@@ -2934,27 +3025,48 @@
2934
3025
  pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
2935
3026
  tools,
2936
3027
  });
2937
- // TODO: [๐Ÿš] Make arrayable LLMs -> single LLM DRY
2938
3028
  const _llms = arrayableToArray(tools.llm);
2939
3029
  const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
2940
- const availableModels = await llmTools.listModels();
2941
- const availableModelNames = availableModels
3030
+ const availableModels = (await llmTools.listModels())
2942
3031
  .filter(({ modelVariant }) => modelVariant === 'CHAT')
2943
- .map(({ modelName }) => modelName)
2944
- .join(',');
2945
- const result = await preparePersonaExecutor({ availableModelNames, personaDescription }).asPromise();
3032
+ .map(({ modelName, modelDescription }) => ({
3033
+ modelName,
3034
+ modelDescription,
3035
+ // <- Note: `modelTitle` and `modelVariant` is not relevant for this task
3036
+ }));
3037
+ const result = await preparePersonaExecutor({
3038
+ availableModels /* <- Note: Passing as JSON */,
3039
+ personaDescription,
3040
+ }).asPromise();
2946
3041
  const { outputParameters } = result;
2947
- const { modelRequirements: modelRequirementsRaw } = outputParameters;
2948
- const modelRequirements = JSON.parse(modelRequirementsRaw);
3042
+ const { modelsRequirements: modelsRequirementsJson } = outputParameters;
3043
+ let modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
2949
3044
  if (isVerbose) {
2950
- console.info(`PERSONA ${personaDescription}`, modelRequirements);
3045
+ console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
2951
3046
  }
2952
- const { modelName, systemMessage, temperature } = modelRequirements;
2953
- return {
3047
+ if (!Array.isArray(modelsRequirementsUnchecked)) {
3048
+ // <- TODO: Book should have syntax and system to enforce shape of JSON
3049
+ modelsRequirementsUnchecked = [modelsRequirementsUnchecked];
3050
+ /*
3051
+ throw new UnexpectedError(
3052
+ spaceTrim(
3053
+ (block) => `
3054
+ Invalid \`modelsRequirements\`:
3055
+
3056
+ \`\`\`json
3057
+ ${block(JSON.stringify(modelsRequirementsUnchecked, null, 4))}
3058
+ \`\`\`
3059
+ `,
3060
+ ),
3061
+ );
3062
+ */
3063
+ }
3064
+ const modelsRequirements = modelsRequirementsUnchecked.map((modelRequirements) => ({
2954
3065
  modelVariant: 'CHAT',
2955
- modelName,
2956
- systemMessage,
2957
- temperature,
3066
+ ...modelRequirements,
3067
+ }));
3068
+ return {
3069
+ modelsRequirements,
2958
3070
  };
2959
3071
  }
2960
3072
  /**
@@ -3263,9 +3375,7 @@
3263
3375
  return await fetch(urlOrRequest, init);
3264
3376
  }
3265
3377
  catch (error) {
3266
- if (!(error instanceof Error)) {
3267
- throw error;
3268
- }
3378
+ assertsError(error);
3269
3379
  let url;
3270
3380
  if (typeof urlOrRequest === 'string') {
3271
3381
  url = urlOrRequest;
@@ -3394,7 +3504,7 @@
3394
3504
  > },
3395
3505
  */
3396
3506
  async asJson() {
3397
- return JSON.parse(await tools.fs.readFile(filename, 'utf-8'));
3507
+ return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
3398
3508
  },
3399
3509
  async asText() {
3400
3510
  return await tools.fs.readFile(filename, 'utf-8');
@@ -3496,9 +3606,7 @@
3496
3606
  knowledgePreparedUnflatten[index] = pieces;
3497
3607
  }
3498
3608
  catch (error) {
3499
- if (!(error instanceof Error)) {
3500
- throw error;
3501
- }
3609
+ assertsError(error);
3502
3610
  console.warn(error);
3503
3611
  // <- TODO: [๐Ÿฎ] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
3504
3612
  }
@@ -3654,14 +3762,14 @@
3654
3762
  // TODO: [๐Ÿ–Œ][๐Ÿง ] Implement some `mapAsync` function
3655
3763
  const preparedPersonas = new Array(personas.length);
3656
3764
  await forEachAsync(personas, { maxParallelCount /* <- TODO: [๐Ÿช‚] When there are subtasks, this maximul limit can be broken */ }, async (persona, index) => {
3657
- const modelRequirements = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
3765
+ const { modelsRequirements } = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
3658
3766
  rootDirname,
3659
3767
  maxParallelCount /* <- TODO: [๐Ÿช‚] */,
3660
3768
  isVerbose,
3661
3769
  });
3662
3770
  const preparedPersona = {
3663
3771
  ...persona,
3664
- modelRequirements,
3772
+ modelsRequirements,
3665
3773
  preparationIds: [/* TODO: [๐ŸงŠ] -> */ currentPreparation.id],
3666
3774
  // <- TODO: [๐Ÿ™] Make some standard order of json properties
3667
3775
  };
@@ -3790,13 +3898,19 @@
3790
3898
  return value.toISOString();
3791
3899
  }
3792
3900
  else {
3793
- return JSON.stringify(value);
3901
+ try {
3902
+ return JSON.stringify(value);
3903
+ }
3904
+ catch (error) {
3905
+ if (error instanceof TypeError && error.message.includes('circular structure')) {
3906
+ return VALUE_STRINGS.circular;
3907
+ }
3908
+ throw error;
3909
+ }
3794
3910
  }
3795
3911
  }
3796
3912
  catch (error) {
3797
- if (!(error instanceof Error)) {
3798
- throw error;
3799
- }
3913
+ assertsError(error);
3800
3914
  console.error(error);
3801
3915
  return VALUE_STRINGS.unserializable;
3802
3916
  }
@@ -3853,9 +3967,7 @@
3853
3967
  }
3854
3968
  }
3855
3969
  catch (error) {
3856
- if (!(error instanceof Error)) {
3857
- throw error;
3858
- }
3970
+ assertsError(error);
3859
3971
  throw new ParseError(spaceTrim.spaceTrim((block) => `
3860
3972
  Can not extract variables from the script
3861
3973
  ${block(error.stack || error.message)}
@@ -3974,6 +4086,46 @@
3974
4086
  // encoding: 'utf-8',
3975
4087
  });
3976
4088
 
4089
+ /**
4090
+ * Function to check if a string is valid CSV
4091
+ *
4092
+ * @param value The string to check
4093
+ * @returns True if the string is a valid CSV string, false otherwise
4094
+ *
4095
+ * @public exported from `@promptbook/utils`
4096
+ */
4097
+ function isValidCsvString(value) {
4098
+ try {
4099
+ // A simple check for CSV format: at least one comma and no invalid characters
4100
+ if (value.includes(',') && /^[\w\s,"']+$/.test(value)) {
4101
+ return true;
4102
+ }
4103
+ return false;
4104
+ }
4105
+ catch (error) {
4106
+ assertsError(error);
4107
+ return false;
4108
+ }
4109
+ }
4110
+
4111
+ /**
4112
+ * Converts a CSV string into an object
4113
+ *
4114
+ * Note: This is wrapper around `papaparse.parse()` with better autohealing
4115
+ *
4116
+ * @private - for now until `@promptbook/csv` is released
4117
+ */
4118
+ function csvParse(value /* <- TODO: string_csv */, settings, schema /* <- TODO: Make CSV Schemas */) {
4119
+ settings = { ...settings, ...MANDATORY_CSV_SETTINGS };
4120
+ // Note: Autoheal invalid '\n' characters
4121
+ if (settings.newline && !settings.newline.includes('\r') && value.includes('\r')) {
4122
+ console.warn('CSV string contains carriage return characters, but in the CSV settings the `newline` setting does not include them. Autohealing the CSV string.');
4123
+ value = value.replace(/\r\n/g, '\n').replace(/\r/g, '\n');
4124
+ }
4125
+ const csv = papaparse.parse(value, settings);
4126
+ return csv;
4127
+ }
4128
+
3977
4129
  /**
3978
4130
  * Definition for CSV spreadsheet
3979
4131
  *
@@ -3984,7 +4136,7 @@
3984
4136
  formatName: 'CSV',
3985
4137
  aliases: ['SPREADSHEET', 'TABLE'],
3986
4138
  isValid(value, settings, schema) {
3987
- return true;
4139
+ return isValidCsvString(value);
3988
4140
  },
3989
4141
  canBeValid(partialValue, settings, schema) {
3990
4142
  return true;
@@ -3996,8 +4148,7 @@
3996
4148
  {
3997
4149
  subvalueName: 'ROW',
3998
4150
  async mapValues(value, outputParameterName, settings, mapCallback) {
3999
- // TODO: [๐Ÿ‘จ๐Ÿพโ€๐Ÿคโ€๐Ÿ‘จ๐Ÿผ] DRY csv parsing
4000
- const csv = papaparse.parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
4151
+ const csv = csvParse(value, settings);
4001
4152
  if (csv.errors.length !== 0) {
4002
4153
  throw new CsvFormatError(spaceTrim__default["default"]((block) => `
4003
4154
  CSV parsing error
@@ -4027,8 +4178,7 @@
4027
4178
  {
4028
4179
  subvalueName: 'CELL',
4029
4180
  async mapValues(value, outputParameterName, settings, mapCallback) {
4030
- // TODO: [๐Ÿ‘จ๐Ÿพโ€๐Ÿคโ€๐Ÿ‘จ๐Ÿผ] DRY csv parsing
4031
- const csv = papaparse.parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
4181
+ const csv = csvParse(value, settings);
4032
4182
  if (csv.errors.length !== 0) {
4033
4183
  throw new CsvFormatError(spaceTrim__default["default"]((block) => `
4034
4184
  CSV parsing error
@@ -4138,6 +4288,30 @@
4138
4288
  * TODO: [๐Ÿข] Allow to expect something inside each item of list and other formats
4139
4289
  */
4140
4290
 
4291
+ /**
4292
+ * Function to check if a string is valid XML
4293
+ *
4294
+ * @param value
4295
+ * @returns True if the string is a valid XML string, false otherwise
4296
+ *
4297
+ * @public exported from `@promptbook/utils`
4298
+ */
4299
+ function isValidXmlString(value) {
4300
+ try {
4301
+ const parser = new DOMParser();
4302
+ const parsedDocument = parser.parseFromString(value, 'application/xml');
4303
+ const parserError = parsedDocument.getElementsByTagName('parsererror');
4304
+ if (parserError.length > 0) {
4305
+ return false;
4306
+ }
4307
+ return true;
4308
+ }
4309
+ catch (error) {
4310
+ assertsError(error);
4311
+ return false;
4312
+ }
4313
+ }
4314
+
4141
4315
  /**
4142
4316
  * Definition for XML format
4143
4317
  *
@@ -4147,7 +4321,7 @@
4147
4321
  formatName: 'XML',
4148
4322
  mimeType: 'application/xml',
4149
4323
  isValid(value, settings, schema) {
4150
- return true;
4324
+ return isValidXmlString(value);
4151
4325
  },
4152
4326
  canBeValid(partialValue, settings, schema) {
4153
4327
  return true;
@@ -4720,9 +4894,7 @@
4720
4894
  break scripts;
4721
4895
  }
4722
4896
  catch (error) {
4723
- if (!(error instanceof Error)) {
4724
- throw error;
4725
- }
4897
+ assertsError(error);
4726
4898
  if (error instanceof UnexpectedError) {
4727
4899
  throw error;
4728
4900
  }
@@ -4792,9 +4964,7 @@
4792
4964
  break scripts;
4793
4965
  }
4794
4966
  catch (error) {
4795
- if (!(error instanceof Error)) {
4796
- throw error;
4797
- }
4967
+ assertsError(error);
4798
4968
  if (error instanceof UnexpectedError) {
4799
4969
  throw error;
4800
4970
  }
@@ -5037,13 +5207,79 @@
5037
5207
  /**
5038
5208
  * @@@
5039
5209
  *
5210
+ * Here is the place where RAG (retrieval-augmented generation) happens
5211
+ *
5040
5212
  * @private internal utility of `createPipelineExecutor`
5041
5213
  */
5042
5214
  async function getKnowledgeForTask(options) {
5043
- const { preparedPipeline, task } = options;
5044
- return preparedPipeline.knowledgePieces.map(({ content }) => `- ${content}`).join('\n');
5215
+ const { tools, preparedPipeline, task } = options;
5216
+ const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5217
+ const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5218
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5219
+ if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5220
+ return 'No knowledge pieces found';
5221
+ }
5222
+ // TODO: [๐Ÿš] Make arrayable LLMs -> single LLM DRY
5223
+ const _llms = arrayableToArray(tools.llm);
5224
+ const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
5225
+ const taskEmbeddingPrompt = {
5226
+ title: 'Knowledge Search',
5227
+ modelRequirements: {
5228
+ modelVariant: 'EMBEDDING',
5229
+ modelName: firstKnowlegeIndex.modelName,
5230
+ },
5231
+ content: task.content,
5232
+ parameters: {
5233
+ /* !!!!!!!! */
5234
+ },
5235
+ };
5236
+ const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5237
+ const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5238
+ const { index } = knowledgePiece;
5239
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5240
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5241
+ if (knowledgePieceIndex === undefined) {
5242
+ return {
5243
+ content: knowledgePiece.content,
5244
+ relevance: 0,
5245
+ };
5246
+ }
5247
+ const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
5248
+ return {
5249
+ content: knowledgePiece.content,
5250
+ relevance,
5251
+ };
5252
+ });
5253
+ const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
5254
+ const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
5255
+ console.log('!!! Embedding', {
5256
+ task,
5257
+ taskEmbeddingPrompt,
5258
+ taskEmbeddingResult,
5259
+ firstKnowlegePiece,
5260
+ firstKnowlegeIndex,
5261
+ knowledgePiecesWithRelevance,
5262
+ knowledgePiecesSorted,
5263
+ knowledgePiecesLimited,
5264
+ });
5265
+ return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
5045
5266
  // <- TODO: [๐Ÿง ] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
5046
5267
  }
5268
+ // TODO: !!!!!! Annotate + to new file
5269
+ function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
5270
+ if (embeddingVector1.length !== embeddingVector2.length) {
5271
+ throw new TypeError('Embedding vectors must have the same length');
5272
+ }
5273
+ const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
5274
+ const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
5275
+ const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
5276
+ return 1 - dotProduct / (magnitude1 * magnitude2);
5277
+ }
5278
+ /**
5279
+ * TODO: !!!! Verify if this is working
5280
+ * TODO: [โ™จ] Implement Better - use keyword search
5281
+ * TODO: [โ™จ] Examples of values
5282
+ */
5047
5283
 
5048
5284
  /**
5049
5285
  * @@@
@@ -5051,9 +5287,9 @@
5051
5287
  * @private internal utility of `createPipelineExecutor`
5052
5288
  */
5053
5289
  async function getReservedParametersForTask(options) {
5054
- const { preparedPipeline, task, pipelineIdentification } = options;
5290
+ const { tools, preparedPipeline, task, pipelineIdentification } = options;
5055
5291
  const context = await getContextForTask(); // <- [๐Ÿ]
5056
- const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
5292
+ const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
5057
5293
  const examples = await getExamplesForTask();
5058
5294
  const currentDate = new Date().toISOString(); // <- TODO: [๐Ÿง ][๐Ÿ’ฉ] Better
5059
5295
  const modelName = RESERVED_PARAMETER_MISSING_VALUE;
@@ -5115,6 +5351,7 @@
5115
5351
  }
5116
5352
  const definedParameters = Object.freeze({
5117
5353
  ...(await getReservedParametersForTask({
5354
+ tools,
5118
5355
  preparedPipeline,
5119
5356
  task: currentTask,
5120
5357
  pipelineIdentification,
@@ -5415,9 +5652,7 @@
5415
5652
  await Promise.all(resolving);
5416
5653
  }
5417
5654
  catch (error /* <- Note: [3] */) {
5418
- if (!(error instanceof Error)) {
5419
- throw error;
5420
- }
5655
+ assertsError(error);
5421
5656
  // Note: No need to rethrow UnexpectedError
5422
5657
  // if (error instanceof UnexpectedError) {
5423
5658
  // Note: Count usage, [๐Ÿง ] Maybe put to separate function executionReportJsonToUsage + DRY [๐Ÿคนโ€โ™‚๏ธ]