@promptbook/pdf 0.80.0 → 0.81.0-6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +6 -0
- package/esm/index.es.js +140 -15
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +15 -0
- package/esm/typings/src/_packages/core.index.d.ts +2 -6
- package/esm/typings/src/_packages/editable.index.d.ts +10 -0
- package/esm/typings/src/_packages/templates.index.d.ts +4 -0
- package/esm/typings/src/_packages/types.index.d.ts +4 -0
- package/esm/typings/src/_packages/utils.index.d.ts +10 -2
- package/esm/typings/src/config.d.ts +26 -0
- package/esm/typings/src/execution/ExecutionTools.d.ts +7 -0
- package/esm/typings/src/execution/PromptbookFetch.d.ts +5 -0
- package/esm/typings/src/execution/PromptbookFetch.test-type.d.ts +5 -0
- package/esm/typings/src/expectations/drafts/isDomainNameFree.d.ts +2 -1
- package/esm/typings/src/expectations/drafts/isGithubNameFree.d.ts +2 -1
- package/esm/typings/src/high-level-abstractions/index.d.ts +10 -0
- package/esm/typings/src/other/templates/getBookTemplate.d.ts +12 -0
- package/esm/typings/src/other/templates/getTemplatesPipelineCollection.d.ts +10 -0
- package/esm/typings/src/pipeline/PipelineJson/PipelineJson.d.ts +10 -0
- package/esm/typings/src/scrapers/_common/utils/makeKnowledgeSourceHandler.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/utils/scraperFetch.d.ts +7 -0
- package/esm/typings/src/utils/editable/types/PipelineEditableSerialized.d.ts +27 -0
- package/esm/typings/src/{conversion → utils/editable}/utils/removePipelineCommand.d.ts +3 -3
- package/esm/typings/src/{conversion → utils/editable}/utils/renamePipelineParameter.d.ts +3 -3
- package/esm/typings/src/{conversion → utils/editable}/utils/stringifyPipelineJson.d.ts +2 -2
- package/esm/typings/src/utils/parameters/numberToString.d.ts +7 -0
- package/esm/typings/src/utils/parameters/{replaceParameters.d.ts → templateParameters.d.ts} +6 -2
- package/esm/typings/src/utils/parameters/valueToString.d.ts +17 -0
- package/esm/typings/src/utils/parameters/valueToString.test.d.ts +1 -0
- package/esm/typings/src/utils/serialization/asSerializable.d.ts +4 -0
- package/package.json +2 -2
- package/umd/index.umd.js +140 -15
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/utils/formatNumber.d.ts +0 -6
- /package/esm/typings/src/{conversion → utils/editable}/utils/removePipelineCommand.test.d.ts +0 -0
- /package/esm/typings/src/{conversion → utils/editable}/utils/renamePipelineParameter.test.d.ts +0 -0
- /package/esm/typings/src/{conversion → utils/editable}/utils/stringifyPipelineJson.test.d.ts +0 -0
- /package/esm/typings/src/utils/{formatNumber.test.d.ts → parameters/numberToString.test.d.ts} +0 -0
- /package/esm/typings/src/utils/parameters/{replaceParameters.test.d.ts → templateParameters.test.d.ts} +0 -0
package/umd/index.umd.js
CHANGED
|
@@ -22,7 +22,7 @@
|
|
|
22
22
|
*
|
|
23
23
|
* @see https://github.com/webgptorg/promptbook
|
|
24
24
|
*/
|
|
25
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.
|
|
25
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-5';
|
|
26
26
|
/**
|
|
27
27
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
28
28
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -176,7 +176,7 @@
|
|
|
176
176
|
function TODO_USE() {
|
|
177
177
|
}
|
|
178
178
|
|
|
179
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-persona.book.md"}];
|
|
179
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
|
|
180
180
|
|
|
181
181
|
/**
|
|
182
182
|
* Prettify the html code
|
|
@@ -475,6 +475,26 @@
|
|
|
475
475
|
* @private within the repository - too low-level in comparison with other `MAX_...`
|
|
476
476
|
*/
|
|
477
477
|
var LOOP_LIMIT = 1000;
|
|
478
|
+
/**
|
|
479
|
+
* Strings to represent various values in the context of parameter values
|
|
480
|
+
*
|
|
481
|
+
* @public exported from `@promptbook/utils`
|
|
482
|
+
*/
|
|
483
|
+
var VALUE_STRINGS = {
|
|
484
|
+
empty: '(nothing; empty string)',
|
|
485
|
+
null: '(no value; null)',
|
|
486
|
+
undefined: '(unknown value; undefined)',
|
|
487
|
+
nan: '(not a number; NaN)',
|
|
488
|
+
infinity: '(infinity; ∞)',
|
|
489
|
+
negativeInfinity: '(negative infinity; -∞)',
|
|
490
|
+
unserializable: '(unserializable value)',
|
|
491
|
+
};
|
|
492
|
+
/**
|
|
493
|
+
* Small number limit
|
|
494
|
+
*
|
|
495
|
+
* @public exported from `@promptbook/utils`
|
|
496
|
+
*/
|
|
497
|
+
var SMALL_NUMBER = 0.001;
|
|
478
498
|
/**
|
|
479
499
|
* Short time interval to prevent race conditions in milliseconds
|
|
480
500
|
*
|
|
@@ -818,6 +838,7 @@
|
|
|
818
838
|
* @public exported from `@promptbook/core`
|
|
819
839
|
*/
|
|
820
840
|
var ORDER_OF_PIPELINE_JSON = [
|
|
841
|
+
// Note: [🍙] In this order will be pipeline serialized
|
|
821
842
|
'title',
|
|
822
843
|
'pipelineUrl',
|
|
823
844
|
'bookVersion',
|
|
@@ -829,6 +850,7 @@
|
|
|
829
850
|
'preparations',
|
|
830
851
|
'knowledgeSources',
|
|
831
852
|
'knowledgePieces',
|
|
853
|
+
'sources', // <- TODO: [🧠] Where should the `sources` be
|
|
832
854
|
];
|
|
833
855
|
/**
|
|
834
856
|
* Nonce which is used for replacing things in strings
|
|
@@ -3220,6 +3242,30 @@
|
|
|
3220
3242
|
return false;
|
|
3221
3243
|
}
|
|
3222
3244
|
|
|
3245
|
+
/**
|
|
3246
|
+
* The built-in `fetch' function with a lightweight error handling wrapper as default fetch function used in Promptbook scrapers
|
|
3247
|
+
*
|
|
3248
|
+
* @private as default `fetch` function used in Promptbook scrapers
|
|
3249
|
+
*/
|
|
3250
|
+
var scraperFetch = function (url, init) { return __awaiter(void 0, void 0, void 0, function () {
|
|
3251
|
+
var error_1;
|
|
3252
|
+
return __generator(this, function (_a) {
|
|
3253
|
+
switch (_a.label) {
|
|
3254
|
+
case 0:
|
|
3255
|
+
_a.trys.push([0, 2, , 3]);
|
|
3256
|
+
return [4 /*yield*/, fetch(url, init)];
|
|
3257
|
+
case 1: return [2 /*return*/, _a.sent()];
|
|
3258
|
+
case 2:
|
|
3259
|
+
error_1 = _a.sent();
|
|
3260
|
+
if (!(error_1 instanceof Error)) {
|
|
3261
|
+
throw error_1;
|
|
3262
|
+
}
|
|
3263
|
+
throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Can not fetch \"".concat(url, "\"\n\n Fetch error:\n ").concat(block(error_1.message), "\n\n "); }));
|
|
3264
|
+
case 3: return [2 /*return*/];
|
|
3265
|
+
}
|
|
3266
|
+
});
|
|
3267
|
+
}); };
|
|
3268
|
+
|
|
3223
3269
|
/**
|
|
3224
3270
|
* @@@
|
|
3225
3271
|
*
|
|
@@ -3228,13 +3274,14 @@
|
|
|
3228
3274
|
function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
3229
3275
|
var _a;
|
|
3230
3276
|
return __awaiter(this, void 0, void 0, function () {
|
|
3231
|
-
var sourceContent, name,
|
|
3232
|
-
return __generator(this, function (
|
|
3233
|
-
switch (
|
|
3277
|
+
var _b, fetch, sourceContent, name, _c, _d, rootDirname, url, response_1, mimeType, filename_1, fileExtension, mimeType;
|
|
3278
|
+
return __generator(this, function (_f) {
|
|
3279
|
+
switch (_f.label) {
|
|
3234
3280
|
case 0:
|
|
3281
|
+
_b = tools.fetch, fetch = _b === void 0 ? scraperFetch : _b;
|
|
3235
3282
|
sourceContent = knowledgeSource.sourceContent;
|
|
3236
3283
|
name = knowledgeSource.name;
|
|
3237
|
-
|
|
3284
|
+
_c = options || {}, _d = _c.rootDirname, rootDirname = _d === void 0 ? null : _d, _c.isVerbose;
|
|
3238
3285
|
if (!name) {
|
|
3239
3286
|
name = sourceContentToName(sourceContent);
|
|
3240
3287
|
}
|
|
@@ -3242,7 +3289,7 @@
|
|
|
3242
3289
|
url = sourceContent;
|
|
3243
3290
|
return [4 /*yield*/, fetch(url)];
|
|
3244
3291
|
case 1:
|
|
3245
|
-
response_1 =
|
|
3292
|
+
response_1 = _f.sent();
|
|
3246
3293
|
mimeType = ((_a = response_1.headers.get('content-type')) === null || _a === void 0 ? void 0 : _a.split(';')[0]) || 'text/html';
|
|
3247
3294
|
return [2 /*return*/, {
|
|
3248
3295
|
source: name,
|
|
@@ -3299,7 +3346,7 @@
|
|
|
3299
3346
|
mimeType = extensionToMimeType(fileExtension || '');
|
|
3300
3347
|
return [4 /*yield*/, isFileExisting(filename_1, tools.fs)];
|
|
3301
3348
|
case 3:
|
|
3302
|
-
if (!(
|
|
3349
|
+
if (!(_f.sent())) {
|
|
3303
3350
|
throw new NotFoundError(spaceTrim__default["default"](function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(filename_1), "\n "); }));
|
|
3304
3351
|
}
|
|
3305
3352
|
// TODO: [🧠][😿] Test security file - file is scoped to the project (BUT maybe do this in `filesystemTools`)
|
|
@@ -4327,16 +4374,94 @@
|
|
|
4327
4374
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
4328
4375
|
*/
|
|
4329
4376
|
|
|
4377
|
+
/**
|
|
4378
|
+
* Format either small or big number
|
|
4379
|
+
*
|
|
4380
|
+
* @public exported from `@promptbook/utils`
|
|
4381
|
+
*/
|
|
4382
|
+
function numberToString(value) {
|
|
4383
|
+
if (value === 0) {
|
|
4384
|
+
return '0';
|
|
4385
|
+
}
|
|
4386
|
+
else if (Number.isNaN(value)) {
|
|
4387
|
+
return VALUE_STRINGS.nan;
|
|
4388
|
+
}
|
|
4389
|
+
else if (value === Infinity) {
|
|
4390
|
+
return VALUE_STRINGS.infinity;
|
|
4391
|
+
}
|
|
4392
|
+
else if (value === -Infinity) {
|
|
4393
|
+
return VALUE_STRINGS.negativeInfinity;
|
|
4394
|
+
}
|
|
4395
|
+
for (var exponent = 0; exponent < 15; exponent++) {
|
|
4396
|
+
var factor = Math.pow(10, exponent);
|
|
4397
|
+
var valueRounded = Math.round(value * factor) / factor;
|
|
4398
|
+
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
4399
|
+
return valueRounded.toFixed(exponent);
|
|
4400
|
+
}
|
|
4401
|
+
}
|
|
4402
|
+
return value.toString();
|
|
4403
|
+
}
|
|
4404
|
+
|
|
4405
|
+
/**
|
|
4406
|
+
* Function `valueToString` will convert the given value to string
|
|
4407
|
+
* This is useful and used in the `templateParameters` function
|
|
4408
|
+
*
|
|
4409
|
+
* Note: This function is not just calling `toString` method
|
|
4410
|
+
* It's more complex and can handle this conversion specifically for LLM models
|
|
4411
|
+
* See `VALUE_STRINGS`
|
|
4412
|
+
*
|
|
4413
|
+
* Note: There are 2 similar functions
|
|
4414
|
+
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
4415
|
+
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
4416
|
+
*
|
|
4417
|
+
* @public exported from `@promptbook/utils`
|
|
4418
|
+
*/
|
|
4419
|
+
function valueToString(value) {
|
|
4420
|
+
try {
|
|
4421
|
+
if (value === '') {
|
|
4422
|
+
return VALUE_STRINGS.empty;
|
|
4423
|
+
}
|
|
4424
|
+
else if (value === null) {
|
|
4425
|
+
return VALUE_STRINGS.null;
|
|
4426
|
+
}
|
|
4427
|
+
else if (value === undefined) {
|
|
4428
|
+
return VALUE_STRINGS.undefined;
|
|
4429
|
+
}
|
|
4430
|
+
else if (typeof value === 'string') {
|
|
4431
|
+
return value;
|
|
4432
|
+
}
|
|
4433
|
+
else if (typeof value === 'number') {
|
|
4434
|
+
return numberToString(value);
|
|
4435
|
+
}
|
|
4436
|
+
else if (value instanceof Date) {
|
|
4437
|
+
return value.toISOString();
|
|
4438
|
+
}
|
|
4439
|
+
else {
|
|
4440
|
+
return JSON.stringify(value);
|
|
4441
|
+
}
|
|
4442
|
+
}
|
|
4443
|
+
catch (error) {
|
|
4444
|
+
if (!(error instanceof Error)) {
|
|
4445
|
+
throw error;
|
|
4446
|
+
}
|
|
4447
|
+
console.error(error);
|
|
4448
|
+
return VALUE_STRINGS.unserializable;
|
|
4449
|
+
}
|
|
4450
|
+
}
|
|
4451
|
+
|
|
4330
4452
|
/**
|
|
4331
4453
|
* Replaces parameters in template with values from parameters object
|
|
4332
4454
|
*
|
|
4455
|
+
* Note: This function is not places strings into string,
|
|
4456
|
+
* It's more complex and can handle this operation specifically for LLM models
|
|
4457
|
+
*
|
|
4333
4458
|
* @param template the template with parameters in {curly} braces
|
|
4334
4459
|
* @param parameters the object with parameters
|
|
4335
4460
|
* @returns the template with replaced parameters
|
|
4336
4461
|
* @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
|
|
4337
4462
|
* @public exported from `@promptbook/utils`
|
|
4338
4463
|
*/
|
|
4339
|
-
function
|
|
4464
|
+
function templateParameters(template, parameters) {
|
|
4340
4465
|
var e_1, _a;
|
|
4341
4466
|
try {
|
|
4342
4467
|
for (var _b = __values(Object.entries(parameters)), _c = _b.next(); !_c.done; _c = _b.next()) {
|
|
@@ -4362,7 +4487,7 @@
|
|
|
4362
4487
|
var loopLimit = LOOP_LIMIT;
|
|
4363
4488
|
var _loop_1 = function () {
|
|
4364
4489
|
if (loopLimit-- < 0) {
|
|
4365
|
-
throw new LimitReachedError('Loop limit reached during parameters replacement in `
|
|
4490
|
+
throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
|
|
4366
4491
|
}
|
|
4367
4492
|
var precol = match.groups.precol;
|
|
4368
4493
|
var parameterName = match.groups.parameterName;
|
|
@@ -4379,7 +4504,7 @@
|
|
|
4379
4504
|
if (parameterValue === undefined) {
|
|
4380
4505
|
throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
|
|
4381
4506
|
}
|
|
4382
|
-
parameterValue = parameterValue
|
|
4507
|
+
parameterValue = valueToString(parameterValue);
|
|
4383
4508
|
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4384
4509
|
parameterValue = parameterValue
|
|
4385
4510
|
.split('\n')
|
|
@@ -4614,7 +4739,7 @@
|
|
|
4614
4739
|
}
|
|
4615
4740
|
return [3 /*break*/, 24];
|
|
4616
4741
|
case 2:
|
|
4617
|
-
$ongoingTaskResult.$resultString =
|
|
4742
|
+
$ongoingTaskResult.$resultString = templateParameters(preparedContent, parameters);
|
|
4618
4743
|
return [3 /*break*/, 25];
|
|
4619
4744
|
case 3:
|
|
4620
4745
|
modelRequirements = __assign(__assign({ modelVariant: 'CHAT' }, (preparedPipeline.defaultModelRequirements || {})), (task.modelRequirements || {}));
|
|
@@ -4737,8 +4862,8 @@
|
|
|
4737
4862
|
_j = $ongoingTaskResult;
|
|
4738
4863
|
return [4 /*yield*/, tools.userInterface.promptDialog($deepFreeze({
|
|
4739
4864
|
promptTitle: task.title,
|
|
4740
|
-
promptMessage:
|
|
4741
|
-
defaultValue:
|
|
4865
|
+
promptMessage: templateParameters(task.description || '', parameters),
|
|
4866
|
+
defaultValue: templateParameters(preparedContent, parameters),
|
|
4742
4867
|
// TODO: [🧠] !! Figure out how to define placeholder in .book.md file
|
|
4743
4868
|
placeholder: undefined,
|
|
4744
4869
|
priority: priority,
|
|
@@ -4862,7 +4987,7 @@
|
|
|
4862
4987
|
if (!isJokerAttempt &&
|
|
4863
4988
|
task.taskType === 'PROMPT_TASK' &&
|
|
4864
4989
|
$ongoingTaskResult.$prompt
|
|
4865
|
-
// <- Note: [2] When some expected parameter is not defined, error will occur in
|
|
4990
|
+
// <- Note: [2] When some expected parameter is not defined, error will occur in templateParameters
|
|
4866
4991
|
// In that case we don’t want to make a report about it because it’s not a llm execution error
|
|
4867
4992
|
) {
|
|
4868
4993
|
// TODO: [🧠] Maybe put other taskTypes into report
|