@promptbook/pdf 0.74.0-11 → 0.74.0-13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -150,7 +150,7 @@ Following is the documentation and blueprint of the Book language.
150
150
 
151
151
  File is designed to be easy to read and write. It is strict subset of markdown. It is designed to be understandable by both humans and machines and without specific knowledge of the language.
152
152
 
153
- It has file with `.ptbk.md` or `.book` extension with `UTF-8` non BOM encoding.
153
+ It has file with `.book.md` or `.book` extension with `UTF-8` non BOM encoding.
154
154
 
155
155
  As it is source code, it can leverage all the features of version control systems like git and does not suffer from the problems of binary formats, proprietary formats, or no-code solutions.
156
156
 
@@ -243,11 +243,6 @@ Or you can install them separately:
243
243
 
244
244
  ## 📚 Dictionary
245
245
 
246
-
247
-
248
-
249
-
250
-
251
246
  ### 📚 Dictionary
252
247
 
253
248
  The following glossary is used to clarify certain concepts:
@@ -263,8 +258,6 @@ The following glossary is used to clarify certain concepts:
263
258
  - **Retrieval-augmented generation** is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
264
259
  - **Longtail** refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.
265
260
 
266
-
267
-
268
261
  _Note: Thos section is not complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
269
262
 
270
263
  #### Promptbook core
@@ -325,8 +318,6 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
325
318
  - [👮 Agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39)
326
319
  - [view more](https://github.com/webgptorg/promptbook/discussions/categories/concepts)
327
320
 
328
-
329
-
330
321
  ### Terms specific to Promptbook TypeScript implementation
331
322
 
332
323
  - Anonymous mode
package/esm/index.es.js CHANGED
@@ -20,7 +20,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
20
20
  *
21
21
  * @see https://github.com/webgptorg/promptbook
22
22
  */
23
- var PROMPTBOOK_ENGINE_VERSION = '0.74.0-10';
23
+ var PROMPTBOOK_ENGINE_VERSION = '0.74.0-12';
24
24
  /**
25
25
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
26
26
  */
@@ -173,7 +173,7 @@ var NotYetImplementedError = /** @class */ (function (_super) {
173
173
  function TODO_USE() {
174
174
  }
175
175
 
176
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
176
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.book.md"}];
177
177
 
178
178
  /**
179
179
  * Prettify the html code
@@ -221,13 +221,13 @@ function capitalize(word) {
221
221
  /**
222
222
  * Converts promptbook in JSON format to string format
223
223
  *
224
- * @param pipelineJson Promptbook in JSON format (.ptbk.json)
225
- * @returns Promptbook in string format (.ptbk.md)
224
+ * @param pipelineJson Promptbook in JSON format (.book.json)
225
+ * @returns Promptbook in string format (.book.md)
226
226
  * @public exported from `@promptbook/core`
227
227
  */
228
228
  function pipelineJsonToString(pipelineJson) {
229
229
  var e_1, _a, e_2, _b, e_3, _c, e_4, _d, e_5, _e, e_6, _f;
230
- var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, promptbookVersion = pipelineJson.promptbookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
230
+ var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, bookVersion = pipelineJson.bookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
231
231
  var pipelineString = "# ".concat(title);
232
232
  if (description) {
233
233
  pipelineString += '\n\n';
@@ -237,8 +237,10 @@ function pipelineJsonToString(pipelineJson) {
237
237
  if (pipelineUrl) {
238
238
  commands.push("PIPELINE URL ".concat(pipelineUrl));
239
239
  }
240
- commands.push("PROMPTBOOK VERSION ".concat(promptbookVersion));
241
- // TODO: [main] !!! This increase size of the bundle and is probbably not necessary
240
+ if (bookVersion !== "undefined") {
241
+ commands.push("BOOK VERSION ".concat(bookVersion));
242
+ }
243
+ // TODO: [main] !!!!!! This increase size of the bundle and is probbably not necessary
242
244
  pipelineString = prettifyMarkdown(pipelineString);
243
245
  try {
244
246
  for (var _g = __values(parameters.filter(function (_a) {
@@ -418,7 +420,7 @@ function templateParameterJsonToString(templateParameterJson) {
418
420
  * TODO: [🧠] Is there a way to auto-detect missing features in pipelineJsonToString
419
421
  * TODO: [🏛] Maybe make some markdown builder
420
422
  * TODO: [🏛] Escape all
421
- * TODO: [🧠] Should be in generated .ptbk.md file GENERATOR_WARNING
423
+ * TODO: [🧠] Should be in generated .book.md file GENERATOR_WARNING
422
424
  */
423
425
 
424
426
  /**
@@ -898,7 +900,7 @@ function isValidPipelineUrl(url) {
898
900
  if (!url.startsWith('https://')) {
899
901
  return false;
900
902
  }
901
- if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.ptbk.md') || url.endsWith('.ptbk'))) {
903
+ if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
902
904
  return false;
903
905
  }
904
906
  if (url.includes('#')) {
@@ -967,9 +969,9 @@ function validatePipelineCore(pipeline) {
967
969
  // <- Note: [🚲]
968
970
  throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid promptbook URL \"".concat(pipeline.pipelineUrl, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
969
971
  }
970
- if (pipeline.promptbookVersion !== undefined && !isValidPromptbookVersion(pipeline.promptbookVersion)) {
972
+ if (pipeline.bookVersion !== undefined && !isValidPromptbookVersion(pipeline.bookVersion)) {
971
973
  // <- Note: [🚲]
972
- throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.promptbookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
974
+ throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.bookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
973
975
  }
974
976
  // TODO: [🧠] Maybe do here some propper JSON-schema / ZOD checking
975
977
  if (!Array.isArray(pipeline.parameters)) {
@@ -2602,7 +2604,7 @@ function preparePersona(personaDescription, tools, options) {
2602
2604
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
2603
2605
  _b = createPipelineExecutor;
2604
2606
  _c = {};
2605
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.ptbk.md')];
2607
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book.md')];
2606
2608
  case 1:
2607
2609
  preparePersonaExecutor = _b.apply(void 0, [(_c.pipeline = _d.sent(),
2608
2610
  _c.tools = tools,
@@ -3274,12 +3276,12 @@ TODO: [🧊] This is how it can look in future
3274
3276
  */
3275
3277
  function clonePipeline(pipeline) {
3276
3278
  // Note: Not using spread operator (...) because @@@
3277
- var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, promptbookVersion = pipeline.promptbookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
3279
+ var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, bookVersion = pipeline.bookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
3278
3280
  return {
3279
3281
  pipelineUrl: pipelineUrl,
3280
3282
  sourceFile: sourceFile,
3281
3283
  title: title,
3282
- promptbookVersion: promptbookVersion,
3284
+ bookVersion: bookVersion,
3283
3285
  description: description,
3284
3286
  parameters: parameters,
3285
3287
  templates: templates,
@@ -4527,7 +4529,7 @@ function executeAttempts(options) {
4527
4529
  promptTitle: template.title,
4528
4530
  promptMessage: replaceParameters(template.description || '', parameters),
4529
4531
  defaultValue: replaceParameters(preparedContent, parameters),
4530
- // TODO: [🧠] !! Figure out how to define placeholder in .ptbk.md file
4532
+ // TODO: [🧠] !! Figure out how to define placeholder in .book.md file
4531
4533
  placeholder: undefined,
4532
4534
  priority: priority,
4533
4535
  }))];
@@ -5093,7 +5095,7 @@ function executePipeline(options) {
5093
5095
  pipelineUrl: preparedPipeline.pipelineUrl,
5094
5096
  title: preparedPipeline.title,
5095
5097
  promptbookUsedVersion: PROMPTBOOK_ENGINE_VERSION,
5096
- promptbookRequestedVersion: preparedPipeline.promptbookVersion,
5098
+ promptbookRequestedVersion: preparedPipeline.bookVersion,
5097
5099
  description: preparedPipeline.description,
5098
5100
  promptExecutions: [],
5099
5101
  };
@@ -5489,7 +5491,7 @@ var MarkdownScraper = /** @class */ (function () {
5489
5491
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
5490
5492
  _d = createPipelineExecutor;
5491
5493
  _g = {};
5492
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md')];
5494
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md')];
5493
5495
  case 1:
5494
5496
  prepareKnowledgeFromMarkdownExecutor = _d.apply(void 0, [(_g.pipeline = _k.sent(),
5495
5497
  _g.tools = {
@@ -5498,7 +5500,7 @@ var MarkdownScraper = /** @class */ (function () {
5498
5500
  _g)]);
5499
5501
  _e = createPipelineExecutor;
5500
5502
  _h = {};
5501
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md')];
5503
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.book.md')];
5502
5504
  case 2:
5503
5505
  prepareTitleExecutor = _e.apply(void 0, [(_h.pipeline = _k.sent(),
5504
5506
  _h.tools = {
@@ -5507,7 +5509,7 @@ var MarkdownScraper = /** @class */ (function () {
5507
5509
  _h)]);
5508
5510
  _f = createPipelineExecutor;
5509
5511
  _j = {};
5510
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md')];
5512
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md')];
5511
5513
  case 3:
5512
5514
  prepareKeywordsExecutor = _f.apply(void 0, [(_j.pipeline = _k.sent(),
5513
5515
  _j.tools = {