@promptbook/pdf 0.72.0 → 0.74.0-0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,4 +12,4 @@ export type TemplateType = TupleToUnion<typeof TemplateTypes>;
12
12
  * @see https://github.com/webgptorg/promptbook#template-type
13
13
  * @public exported from `@promptbook/core`
14
14
  */
15
- export declare const TemplateTypes: readonly ["PROMPT_TEMPLATE", "SIMPLE_TEMPLATE", "SCRIPT_TEMPLATE", "DIALOG_TEMPLATE", "SAMPLE", "KNOWLEDGE", "INSTRUMENT", "ACTION"];
15
+ export declare const TemplateTypes: readonly ["PROMPT_TEMPLATE", "SIMPLE_TEMPLATE", "SCRIPT_TEMPLATE", "DIALOG_TEMPLATE", "EXAMPLE", "KNOWLEDGE", "INSTRUMENT", "ACTION"];
@@ -121,7 +121,7 @@ export declare const REPLACING_NONCE = "u$k42k%!V2zo34w7Fu#@QUHYPW";
121
121
  *
122
122
  * @public exported from `@promptbook/core`
123
123
  */
124
- export declare const RESERVED_PARAMETER_NAMES: readonly ["content", "context", "knowledge", "samples", "modelName", "currentDate"];
124
+ export declare const RESERVED_PARAMETER_NAMES: readonly ["content", "context", "knowledge", "examples", "modelName", "currentDate"];
125
125
  /**
126
126
  * @@@
127
127
  *
@@ -22,9 +22,9 @@ export type renderPipelineMermaidOptions = {
22
22
  */
23
23
  export declare function renderPromptbookMermaid(pipelineJson: PipelineJson, options?: renderPipelineMermaidOptions): string;
24
24
  /**
25
- * TODO: !!!!! FOREACH in mermaid graph
26
- * TODO: !!!!! Knowledge in mermaid graph
27
- * TODO: !!!!! Personas in mermaid graph
25
+ * TODO: [🧠] !! FOREACH in mermaid graph
26
+ * TODO: [🧠] !! Knowledge in mermaid graph
27
+ * TODO: [🧠] !! Personas in mermaid graph
28
28
  * TODO: Maybe use some Mermaid package instead of string templating
29
29
  * TODO: [🕌] When more than 2 functionalities, split into separate functions
30
30
  */
@@ -9,7 +9,7 @@ import type { string_json } from '../../types/typeAliases';
9
9
  */
10
10
  export declare function stringifyPipelineJson<TType>(pipeline: TType): string_json<TType>;
11
11
  /**
12
- * TODO: [🐝] Not Working propperly @see https://promptbook.studio/samples/mixed-knowledge.ptbk.md
12
+ * TODO: [🐝] Not Working propperly @see https://promptbook.studio/examples/mixed-knowledge.ptbk.md
13
13
  * TODO: [🧠][0] Maybe rename to `stringifyPipelineJson`, `stringifyIndexedJson`,...
14
14
  * TODO: [🧠] Maybe more elegant solution than replacing via regex
15
15
  * TODO: [🍙] Make some standard order of json properties
@@ -7,7 +7,7 @@ import type { string_json } from '../../types/typeAliases';
7
7
  * Note: Using here custom import to work in jest tests
8
8
  * Note: Using sync version is 💩 in the production code, but it's ok here in tests
9
9
  *
10
- * @param path - The path to the file relative to samples/pipelines directory
10
+ * @param path - The path to the file relative to examples/pipelines directory
11
11
  * @private internal function of tests
12
12
  */
13
13
  export declare function importPipelineWithoutPreparation(path: `${string}.ptbk.md`): PipelineString;
@@ -20,7 +20,7 @@ export declare function validatePipeline(pipeline: PipelineJson): PipelineJson;
20
20
  */
21
21
  export declare function validatePipelineCore(pipeline: PipelineJson): void;
22
22
  /**
23
- * TODO: !!!!! [🧞‍♀️] Do not allow joker + foreach
23
+ * TODO: !! [🧞‍♀️] Do not allow joker + foreach
24
24
  * TODO: [🧠] Work with promptbookVersion
25
25
  * TODO: Use here some json-schema, Zod or something similar and change it to:
26
26
  * > /**
@@ -32,7 +32,7 @@ export declare function validatePipelineCore(pipeline: PipelineJson): void;
32
32
  * > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
33
33
  */
34
34
  /**
35
- * TODO: [🧳][main] !!!! Validate that all samples match expectations
35
+ * TODO: [🧳][main] !!!! Validate that all examples match expectations
36
36
  * TODO: [🧳][🐝][main] !!!! Validate that knowledge is valid (non-void)
37
37
  * TODO: [🧳][main] !!!! Validate that persona can be used only with CHAT variant
38
38
  * TODO: [🧳][main] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
@@ -7,4 +7,4 @@ import type { string_parameter_value } from '../../types/typeAliases';
7
7
  *
8
8
  * @private internal utility of `createPipelineExecutor`
9
9
  */
10
- export declare function getSamplesForTemplate(template: ReadonlyDeep<TemplateJson>): Promise<string_parameter_value & string_markdown>;
10
+ export declare function getExamplesForTemplate(template: ReadonlyDeep<TemplateJson>): Promise<string_parameter_value & string_markdown>;
@@ -15,7 +15,7 @@ export type FormatDefinition<TValue extends TPartialValue, TPartialValue extends
15
15
  /**
16
16
  * The name of the format used in .ptbk.md files
17
17
  *
18
- * @sample "JSON"
18
+ * @example "JSON"
19
19
  */
20
20
  readonly formatName: string_name & string_SCREAMING_CASE;
21
21
  /**
@@ -25,7 +25,7 @@ export type FormatDefinition<TValue extends TPartialValue, TPartialValue extends
25
25
  /**
26
26
  * The mime type of the format (if any)
27
27
  *
28
- * @sample "application/json"
28
+ * @example "application/json"
29
29
  */
30
30
  readonly mimeType?: string_mime_type;
31
31
  /**
@@ -11,7 +11,7 @@ export type FormatSubvalueDefinition<TValue extends string, TSettings extends em
11
11
  /**
12
12
  * The name of the format used in .ptbk.md files
13
13
  *
14
- * @sample "CELL"
14
+ * @example "CELL"
15
15
  */
16
16
  readonly subvalueName: string_name & string_SCREAMING_CASE;
17
17
  /**
@@ -10,7 +10,7 @@ import type { string_persona_description } from '../types/typeAliases';
10
10
  */
11
11
  export declare function preparePersona(personaDescription: string_persona_description, tools: Pick<ExecutionTools, 'llm'>, options: PrepareAndScrapeOptions): Promise<PersonaPreparedJson['modelRequirements']>;
12
12
  /**
13
- * TODO: [🔃][main] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
13
+ * TODO: [🔃][main] !! If the persona was prepared with different version or different set of models, prepare it once again
14
14
  * TODO: [🏢] !! Check validity of `modelName` in pipeline
15
15
  * TODO: [🏢] !! Check validity of `systemMessage` in pipeline
16
16
  * TODO: [🏢] !! Check validity of `temperature` in pipeline
@@ -6,11 +6,11 @@ import type { PipelineJson } from '../types/PipelineJson/PipelineJson';
6
6
  */
7
7
  export declare function isPipelinePrepared(pipeline: PipelineJson): boolean;
8
8
  /**
9
- * TODO: [🔃][main] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
9
+ * TODO: [🔃][main] !! If the pipeline was prepared with different version or different set of models, prepare it once again
10
10
  * TODO: [🐠] Maybe base this on `makeValidator`
11
11
  * TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
12
12
  * TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
13
13
  * - [🏍] ? Is context in each template
14
- * - [♨] Are samples prepared
14
+ * - [♨] Are examples prepared
15
15
  * - [♨] Are templates prepared
16
16
  */
@@ -24,7 +24,7 @@ export {};
24
24
  /**
25
25
  * TODO: [🧠] Add context to each template (if missing)
26
26
  * TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
27
- * TODO: [♨][main] !!! Prepare index the samples and maybe templates
27
+ * TODO: [♨][main] !!! Prepare index the examples and maybe templates
28
28
  * TODO: Write tests for `preparePipeline`
29
29
  * TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
30
30
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
@@ -1,4 +1,4 @@
1
1
  export {};
2
2
  /**
3
- * TODO: [📓] Maybe test all file in samples (not just 10-simple.docx)
3
+ * TODO: [📓] Maybe test all file in examples (not just 10-simple.docx)
4
4
  */
@@ -1,4 +1,4 @@
1
1
  export {};
2
2
  /**
3
- * TODO: [📓] Maybe test all file in samples (not just 10-simple.doc)
3
+ * TODO: [📓] Maybe test all file in examples (not just 10-simple.doc)
4
4
  */
@@ -1,4 +1,4 @@
1
1
  export {};
2
2
  /**
3
- * TODO: [📓] Maybe test all file in samples (not just 10-simple.md)
3
+ * TODO: [📓] Maybe test all file in examples (not just 10-simple.md)
4
4
  */
@@ -27,10 +27,10 @@ export type ParameterJson = {
27
27
  */
28
28
  readonly description?: string_markdown_text;
29
29
  /**
30
- * Sample values of the parameter
30
+ * Example values of the parameter
31
31
  * Note: This values won't be actually used as some default values, but they are just for better understanding of the parameter
32
32
  */
33
- readonly sampleValues?: Array<string_parameter_value>;
33
+ readonly exampleValues?: Array<string_parameter_value>;
34
34
  };
35
35
  /**
36
36
  * TODO: [🧠] Should be here registered subparameters from foreach or not?
@@ -18,5 +18,5 @@ export type PreparationJson = {
18
18
  /**
19
19
  * TODO: [🍙] Make some standard order of json properties
20
20
  * TODO: Maybe put here used `modelName`
21
- * TODO: [🍥] When using `date` it changes all samples .ptbk.json files each time so until some more elegant solution omit the time from prepared pipeline
21
+ * TODO: [🍥] When using `date` it changes all examples .ptbk.json files each time so until some more elegant solution omit the time from prepared pipeline
22
22
  */
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@promptbook/pdf",
3
- "version": "0.72.0",
3
+ "version": "0.74.0-0",
4
4
  "description": "Supercharge your use of large language models",
5
5
  "private": false,
6
6
  "sideEffects": false,
@@ -31,7 +31,8 @@
31
31
  "o1",
32
32
  "o1-mini",
33
33
  "o1-preview",
34
- "anthropic"
34
+ "anthropic",
35
+ "LLMOps"
35
36
  ],
36
37
  "license": "CC-BY-4.0",
37
38
  "bugs": {
@@ -52,7 +53,7 @@
52
53
  "module": "./esm/index.es.js",
53
54
  "typings": "./esm/typings/src/_packages/pdf.index.d.ts",
54
55
  "peerDependencies": {
55
- "@promptbook/core": "0.72.0"
56
+ "@promptbook/core": "0.74.0-0"
56
57
  },
57
58
  "dependencies": {
58
59
  "crypto-js": "4.2.0",
package/umd/index.umd.js CHANGED
@@ -14,7 +14,7 @@
14
14
  /**
15
15
  * The version of the Promptbook library
16
16
  */
17
- var PROMPTBOOK_VERSION = '0.72.0-34';
17
+ var PROMPTBOOK_VERSION = '0.73.0';
18
18
  // TODO: [main] !!!! List here all the versions and annotate + put into script
19
19
 
20
20
  /*! *****************************************************************************
@@ -169,7 +169,7 @@
169
169
  }
170
170
  }
171
171
 
172
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
172
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
173
173
 
174
174
  /**
175
175
  * Prettify the html code
@@ -671,10 +671,10 @@
671
671
  'content',
672
672
  'context',
673
673
  'knowledge',
674
- 'samples',
674
+ 'examples',
675
675
  'modelName',
676
676
  'currentDate',
677
- // <- TODO: !!!!! list here all command names
677
+ // <- TODO: list here all command names
678
678
  // <- TODO: Add more like 'date', 'modelName',...
679
679
  // <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
680
680
  ]);
@@ -1146,7 +1146,7 @@
1146
1146
  }
1147
1147
  }
1148
1148
  /**
1149
- * TODO: !!!!! [🧞‍♀️] Do not allow joker + foreach
1149
+ * TODO: !! [🧞‍♀️] Do not allow joker + foreach
1150
1150
  * TODO: [🧠] Work with promptbookVersion
1151
1151
  * TODO: Use here some json-schema, Zod or something similar and change it to:
1152
1152
  * > /**
@@ -1158,7 +1158,7 @@
1158
1158
  * > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
1159
1159
  */
1160
1160
  /**
1161
- * TODO: [🧳][main] !!!! Validate that all samples match expectations
1161
+ * TODO: [🧳][main] !!!! Validate that all examples match expectations
1162
1162
  * TODO: [🧳][🐝][main] !!!! Validate that knowledge is valid (non-void)
1163
1163
  * TODO: [🧳][main] !!!! Validate that persona can be used only with CHAT variant
1164
1164
  * TODO: [🧳][main] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
@@ -1930,12 +1930,12 @@
1930
1930
  return true;
1931
1931
  }
1932
1932
  /**
1933
- * TODO: [🔃][main] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
1933
+ * TODO: [🔃][main] !! If the pipeline was prepared with different version or different set of models, prepare it once again
1934
1934
  * TODO: [🐠] Maybe base this on `makeValidator`
1935
1935
  * TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
1936
1936
  * TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
1937
1937
  * - [🏍] ? Is context in each template
1938
- * - [♨] Are samples prepared
1938
+ * - [♨] Are examples prepared
1939
1939
  * - [♨] Are templates prepared
1940
1940
  */
1941
1941
 
@@ -2640,7 +2640,7 @@
2640
2640
  });
2641
2641
  }
2642
2642
  /**
2643
- * TODO: [🔃][main] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
2643
+ * TODO: [🔃][main] !! If the persona was prepared with different version or different set of models, prepare it once again
2644
2644
  * TODO: [🏢] !! Check validity of `modelName` in pipeline
2645
2645
  * TODO: [🏢] !! Check validity of `systemMessage` in pipeline
2646
2646
  * TODO: [🏢] !! Check validity of `temperature` in pipeline
@@ -3306,7 +3306,7 @@
3306
3306
  case 0:
3307
3307
  _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a;
3308
3308
  templates = pipeline.templates, parameters = pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
3309
- // TODO: [main] !!!!! Apply samples to each template (if missing and is for the template defined)
3309
+ // TODO: [main] !! Apply examples to each template (if missing and is for the template defined)
3310
3310
  TODO_USE(parameters);
3311
3311
  templatesPrepared = new Array(templates.length);
3312
3312
  return [4 /*yield*/, forEachAsync(templates, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (template, index) { return __awaiter(_this, void 0, void 0, function () {
@@ -3336,7 +3336,7 @@
3336
3336
  /**
3337
3337
  * TODO: [🧠] Add context to each template (if missing)
3338
3338
  * TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
3339
- * TODO: [♨][main] !!! Prepare index the samples and maybe templates
3339
+ * TODO: [♨][main] !!! Prepare index the examples and maybe templates
3340
3340
  * TODO: Write tests for `preparePipeline`
3341
3341
  * TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
3342
3342
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
@@ -4866,7 +4866,7 @@
4866
4866
  var preparedPipeline, template;
4867
4867
  return __generator(this, function (_a) {
4868
4868
  preparedPipeline = options.preparedPipeline, template = options.template;
4869
- // TODO: [♨] Implement Better - use real index and keyword search from `template` and {samples}
4869
+ // TODO: [♨] Implement Better - use real index and keyword search from `template` and {examples}
4870
4870
  TODO_USE(template);
4871
4871
  return [2 /*return*/, preparedPipeline.knowledgePieces.map(function (_a) {
4872
4872
  var content = _a.content;
@@ -4881,7 +4881,7 @@
4881
4881
  *
4882
4882
  * @private internal utility of `createPipelineExecutor`
4883
4883
  */
4884
- function getSamplesForTemplate(template) {
4884
+ function getExamplesForTemplate(template) {
4885
4885
  return __awaiter(this, void 0, void 0, function () {
4886
4886
  return __generator(this, function (_a) {
4887
4887
  // TODO: [♨] Implement Better - use real index and keyword search
@@ -4898,7 +4898,7 @@
4898
4898
  */
4899
4899
  function getReservedParametersForTemplate(options) {
4900
4900
  return __awaiter(this, void 0, void 0, function () {
4901
- var preparedPipeline, template, pipelineIdentification, context, knowledge, samples, currentDate, modelName, reservedParameters, _loop_1, RESERVED_PARAMETER_NAMES_1, RESERVED_PARAMETER_NAMES_1_1, parameterName;
4901
+ var preparedPipeline, template, pipelineIdentification, context, knowledge, examples, currentDate, modelName, reservedParameters, _loop_1, RESERVED_PARAMETER_NAMES_1, RESERVED_PARAMETER_NAMES_1_1, parameterName;
4902
4902
  var e_1, _a;
4903
4903
  return __generator(this, function (_b) {
4904
4904
  switch (_b.label) {
@@ -4910,16 +4910,16 @@
4910
4910
  return [4 /*yield*/, getKnowledgeForTemplate({ preparedPipeline: preparedPipeline, template: template })];
4911
4911
  case 2:
4912
4912
  knowledge = _b.sent();
4913
- return [4 /*yield*/, getSamplesForTemplate(template)];
4913
+ return [4 /*yield*/, getExamplesForTemplate(template)];
4914
4914
  case 3:
4915
- samples = _b.sent();
4915
+ examples = _b.sent();
4916
4916
  currentDate = new Date().toISOString();
4917
4917
  modelName = RESERVED_PARAMETER_MISSING_VALUE;
4918
4918
  reservedParameters = {
4919
4919
  content: RESERVED_PARAMETER_RESTRICTED,
4920
4920
  context: context,
4921
4921
  knowledge: knowledge,
4922
- samples: samples,
4922
+ examples: examples,
4923
4923
  currentDate: currentDate,
4924
4924
  modelName: modelName,
4925
4925
  };
@@ -5578,7 +5578,7 @@
5578
5578
  outputParameters = result.outputParameters;
5579
5579
  knowledgePiecesRaw = outputParameters.knowledgePieces;
5580
5580
  knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
5581
- // <- TODO: [main] !!!!! Smarter split and filter out empty pieces
5581
+ // <- TODO: [main] !! Smarter split and filter out empty pieces
5582
5582
  if (isVerbose) {
5583
5583
  console.info('knowledgeTextPieces:', knowledgeTextPieces);
5584
5584
  }