@promptbook/ollama 0.94.0-5 → 0.94.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +8 -11
- package/esm/index.es.js +190 -62
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/version.d.ts +1 -1
- package/package.json +25 -2
- package/umd/index.umd.js +190 -62
- package/umd/index.umd.js.map +1 -1
package/umd/index.umd.js
CHANGED
|
@@ -25,12 +25,52 @@
|
|
|
25
25
|
* @generated
|
|
26
26
|
* @see https://github.com/webgptorg/promptbook
|
|
27
27
|
*/
|
|
28
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.94.0
|
|
28
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.94.0';
|
|
29
29
|
/**
|
|
30
30
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
31
31
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
32
32
|
*/
|
|
33
33
|
|
|
34
|
+
/**
|
|
35
|
+
* Detects if the code is running in a browser environment in main thread (Not in a web worker)
|
|
36
|
+
*
|
|
37
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
38
|
+
*
|
|
39
|
+
* @public exported from `@promptbook/utils`
|
|
40
|
+
*/
|
|
41
|
+
const $isRunningInBrowser = new Function(`
|
|
42
|
+
try {
|
|
43
|
+
return this === window;
|
|
44
|
+
} catch (e) {
|
|
45
|
+
return false;
|
|
46
|
+
}
|
|
47
|
+
`);
|
|
48
|
+
/**
|
|
49
|
+
* TODO: [🎺]
|
|
50
|
+
*/
|
|
51
|
+
|
|
52
|
+
/**
|
|
53
|
+
* Detects if the code is running in a web worker
|
|
54
|
+
*
|
|
55
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
56
|
+
*
|
|
57
|
+
* @public exported from `@promptbook/utils`
|
|
58
|
+
*/
|
|
59
|
+
const $isRunningInWebWorker = new Function(`
|
|
60
|
+
try {
|
|
61
|
+
if (typeof WorkerGlobalScope !== 'undefined' && self instanceof WorkerGlobalScope) {
|
|
62
|
+
return true;
|
|
63
|
+
} else {
|
|
64
|
+
return false;
|
|
65
|
+
}
|
|
66
|
+
} catch (e) {
|
|
67
|
+
return false;
|
|
68
|
+
}
|
|
69
|
+
`);
|
|
70
|
+
/**
|
|
71
|
+
* TODO: [🎺]
|
|
72
|
+
*/
|
|
73
|
+
|
|
34
74
|
/**
|
|
35
75
|
* Freezes the given object and all its nested objects recursively
|
|
36
76
|
*
|
|
@@ -1062,7 +1102,7 @@
|
|
|
1062
1102
|
modelVariant: 'COMPLETION',
|
|
1063
1103
|
modelTitle: 'davinci-002',
|
|
1064
1104
|
modelName: 'davinci-002',
|
|
1065
|
-
modelDescription: 'Legacy completion model with
|
|
1105
|
+
modelDescription: 'Legacy completion model with 4K token context window. Excels at complex text generation, creative writing, and detailed content creation with strong contextual understanding. Optimized for instructions requiring nuanced outputs and extended reasoning. Suitable for applications needing high-quality text generation without conversation management.',
|
|
1066
1106
|
pricing: {
|
|
1067
1107
|
prompt: pricing(`$2.00 / 1M tokens`),
|
|
1068
1108
|
output: pricing(`$2.00 / 1M tokens`),
|
|
@@ -1080,7 +1120,7 @@
|
|
|
1080
1120
|
modelVariant: 'CHAT',
|
|
1081
1121
|
modelTitle: 'gpt-3.5-turbo-16k',
|
|
1082
1122
|
modelName: 'gpt-3.5-turbo-16k',
|
|
1083
|
-
modelDescription: 'GPT-3.5 Turbo with
|
|
1123
|
+
modelDescription: 'Extended context GPT-3.5 Turbo with 16K token window. Maintains core capabilities of standard 3.5 Turbo while supporting longer conversations and documents. Features good balance of performance and cost for applications requiring more context than standard 4K models. Effective for document analysis, extended conversations, and multi-step reasoning tasks.',
|
|
1084
1124
|
pricing: {
|
|
1085
1125
|
prompt: pricing(`$3.00 / 1M tokens`),
|
|
1086
1126
|
output: pricing(`$4.00 / 1M tokens`),
|
|
@@ -1104,7 +1144,7 @@
|
|
|
1104
1144
|
modelVariant: 'CHAT',
|
|
1105
1145
|
modelTitle: 'gpt-4',
|
|
1106
1146
|
modelName: 'gpt-4',
|
|
1107
|
-
modelDescription: '
|
|
1147
|
+
modelDescription: 'Powerful language model with 8K context window featuring sophisticated reasoning, instruction-following, and knowledge capabilities. Demonstrates strong performance on complex tasks requiring deep understanding and multi-step reasoning. Excels at code generation, logical analysis, and nuanced content creation. Suitable for advanced applications requiring high-quality outputs.',
|
|
1108
1148
|
pricing: {
|
|
1109
1149
|
prompt: pricing(`$30.00 / 1M tokens`),
|
|
1110
1150
|
output: pricing(`$60.00 / 1M tokens`),
|
|
@@ -1116,7 +1156,7 @@
|
|
|
1116
1156
|
modelVariant: 'CHAT',
|
|
1117
1157
|
modelTitle: 'gpt-4-32k',
|
|
1118
1158
|
modelName: 'gpt-4-32k',
|
|
1119
|
-
modelDescription: 'Extended context version of GPT-4 with
|
|
1159
|
+
modelDescription: 'Extended context version of GPT-4 with 32K token window. Maintains all capabilities of standard GPT-4 while supporting analysis of very lengthy documents, code bases, and conversations. Features enhanced ability to maintain context over long interactions and process detailed information from large inputs. Ideal for document analysis, legal review, and complex problem-solving.',
|
|
1120
1160
|
pricing: {
|
|
1121
1161
|
prompt: pricing(`$60.00 / 1M tokens`),
|
|
1122
1162
|
output: pricing(`$120.00 / 1M tokens`),
|
|
@@ -1139,7 +1179,7 @@
|
|
|
1139
1179
|
modelVariant: 'CHAT',
|
|
1140
1180
|
modelTitle: 'gpt-4-turbo-2024-04-09',
|
|
1141
1181
|
modelName: 'gpt-4-turbo-2024-04-09',
|
|
1142
|
-
modelDescription: 'Latest stable GPT-4 Turbo
|
|
1182
|
+
modelDescription: 'Latest stable GPT-4 Turbo from April 2024 with 128K context window. Features enhanced reasoning chains, improved factual accuracy with 40% reduction in hallucinations, and better instruction following compared to earlier versions. Includes advanced function calling capabilities and knowledge up to April 2024. Provides optimal performance for enterprise applications requiring reliability.',
|
|
1143
1183
|
pricing: {
|
|
1144
1184
|
prompt: pricing(`$10.00 / 1M tokens`),
|
|
1145
1185
|
output: pricing(`$30.00 / 1M tokens`),
|
|
@@ -1151,7 +1191,7 @@
|
|
|
1151
1191
|
modelVariant: 'CHAT',
|
|
1152
1192
|
modelTitle: 'gpt-3.5-turbo-1106',
|
|
1153
1193
|
modelName: 'gpt-3.5-turbo-1106',
|
|
1154
|
-
modelDescription: 'November 2023 version of GPT-3.5 Turbo with improved instruction following and
|
|
1194
|
+
modelDescription: 'November 2023 version of GPT-3.5 Turbo with 16K token context window. Features improved instruction following, more consistent output formatting, and enhanced function calling capabilities. Includes knowledge cutoff from April 2023. Suitable for applications requiring good performance at lower cost than GPT-4 models.',
|
|
1155
1195
|
pricing: {
|
|
1156
1196
|
prompt: pricing(`$1.00 / 1M tokens`),
|
|
1157
1197
|
output: pricing(`$2.00 / 1M tokens`),
|
|
@@ -1163,7 +1203,7 @@
|
|
|
1163
1203
|
modelVariant: 'CHAT',
|
|
1164
1204
|
modelTitle: 'gpt-4-turbo',
|
|
1165
1205
|
modelName: 'gpt-4-turbo',
|
|
1166
|
-
modelDescription: 'More capable
|
|
1206
|
+
modelDescription: 'More capable and cost-efficient version of GPT-4 with 128K token context window. Features improved instruction following, advanced function calling capabilities, and better performance on coding tasks. Maintains superior reasoning and knowledge while offering substantial cost reduction compared to base GPT-4. Ideal for complex applications requiring extensive context processing.',
|
|
1167
1207
|
pricing: {
|
|
1168
1208
|
prompt: pricing(`$10.00 / 1M tokens`),
|
|
1169
1209
|
output: pricing(`$30.00 / 1M tokens`),
|
|
@@ -1175,10 +1215,10 @@
|
|
|
1175
1215
|
modelVariant: 'COMPLETION',
|
|
1176
1216
|
modelTitle: 'gpt-3.5-turbo-instruct-0914',
|
|
1177
1217
|
modelName: 'gpt-3.5-turbo-instruct-0914',
|
|
1178
|
-
modelDescription: 'September 2023 version of GPT-3.5 Turbo
|
|
1218
|
+
modelDescription: 'September 2023 version of GPT-3.5 Turbo Instruct with 4K context window. Optimized for completion-style instruction following with deterministic responses. Better suited than chat models for applications requiring specific formatted outputs without conversation management. Knowledge cutoff from September 2021.',
|
|
1179
1219
|
pricing: {
|
|
1180
1220
|
prompt: pricing(`$1.50 / 1M tokens`),
|
|
1181
|
-
output: pricing(`$2.00 / 1M tokens`),
|
|
1221
|
+
output: pricing(`$2.00 / 1M tokens`),
|
|
1182
1222
|
},
|
|
1183
1223
|
},
|
|
1184
1224
|
/**/
|
|
@@ -1187,7 +1227,7 @@
|
|
|
1187
1227
|
modelVariant: 'COMPLETION',
|
|
1188
1228
|
modelTitle: 'gpt-3.5-turbo-instruct',
|
|
1189
1229
|
modelName: 'gpt-3.5-turbo-instruct',
|
|
1190
|
-
modelDescription: 'Optimized version of GPT-3.5 for completion-style API with
|
|
1230
|
+
modelDescription: 'Optimized version of GPT-3.5 for completion-style API with 4K token context window. Features strong instruction following with single-turn design rather than multi-turn conversation. Provides more consistent, deterministic outputs compared to chat models. Well-suited for templated content generation and structured text transformation tasks.',
|
|
1191
1231
|
pricing: {
|
|
1192
1232
|
prompt: pricing(`$1.50 / 1M tokens`),
|
|
1193
1233
|
output: pricing(`$2.00 / 1M tokens`),
|
|
@@ -1205,7 +1245,7 @@
|
|
|
1205
1245
|
modelVariant: 'CHAT',
|
|
1206
1246
|
modelTitle: 'gpt-3.5-turbo',
|
|
1207
1247
|
modelName: 'gpt-3.5-turbo',
|
|
1208
|
-
modelDescription: 'Latest version of GPT-3.5 Turbo with improved performance
|
|
1248
|
+
modelDescription: 'Latest version of GPT-3.5 Turbo with 4K token default context window (16K available). Features continually improved performance with enhanced instruction following and reduced hallucinations. Offers excellent balance between capability and cost efficiency. Suitable for most general-purpose applications requiring good AI capabilities at reasonable cost.',
|
|
1209
1249
|
pricing: {
|
|
1210
1250
|
prompt: pricing(`$0.50 / 1M tokens`),
|
|
1211
1251
|
output: pricing(`$1.50 / 1M tokens`),
|
|
@@ -1217,7 +1257,7 @@
|
|
|
1217
1257
|
modelVariant: 'CHAT',
|
|
1218
1258
|
modelTitle: 'gpt-3.5-turbo-0301',
|
|
1219
1259
|
modelName: 'gpt-3.5-turbo-0301',
|
|
1220
|
-
modelDescription: 'March 2023 version of GPT-3.5 Turbo with
|
|
1260
|
+
modelDescription: 'March 2023 version of GPT-3.5 Turbo with 4K token context window. Legacy model maintained for backward compatibility with specific application behaviors. Features solid conversational abilities and basic instruction following. Knowledge cutoff from September 2021. Suitable for applications explicitly designed for this version.',
|
|
1221
1261
|
pricing: {
|
|
1222
1262
|
prompt: pricing(`$1.50 / 1M tokens`),
|
|
1223
1263
|
output: pricing(`$2.00 / 1M tokens`),
|
|
@@ -1229,7 +1269,7 @@
|
|
|
1229
1269
|
modelVariant: 'COMPLETION',
|
|
1230
1270
|
modelTitle: 'babbage-002',
|
|
1231
1271
|
modelName: 'babbage-002',
|
|
1232
|
-
modelDescription: 'Efficient legacy completion model with
|
|
1272
|
+
modelDescription: 'Efficient legacy completion model with 4K context window balancing performance and speed. Features moderate reasoning capabilities with focus on straightforward text generation tasks. Significantly more efficient than davinci models while maintaining adequate quality for many applications. Suitable for high-volume, cost-sensitive text generation needs.',
|
|
1233
1273
|
pricing: {
|
|
1234
1274
|
prompt: pricing(`$0.40 / 1M tokens`),
|
|
1235
1275
|
output: pricing(`$0.40 / 1M tokens`),
|
|
@@ -1241,7 +1281,7 @@
|
|
|
1241
1281
|
modelVariant: 'CHAT',
|
|
1242
1282
|
modelTitle: 'gpt-4-1106-preview',
|
|
1243
1283
|
modelName: 'gpt-4-1106-preview',
|
|
1244
|
-
modelDescription: 'November 2023 preview version of GPT-4 Turbo with improved instruction following and
|
|
1284
|
+
modelDescription: 'November 2023 preview version of GPT-4 Turbo with 128K token context window. Features improved instruction following, better function calling capabilities, and enhanced reasoning. Includes knowledge cutoff from April 2023. Suitable for complex applications requiring extensive document understanding and sophisticated interactions.',
|
|
1245
1285
|
pricing: {
|
|
1246
1286
|
prompt: pricing(`$10.00 / 1M tokens`),
|
|
1247
1287
|
output: pricing(`$30.00 / 1M tokens`),
|
|
@@ -1253,7 +1293,7 @@
|
|
|
1253
1293
|
modelVariant: 'CHAT',
|
|
1254
1294
|
modelTitle: 'gpt-4-0125-preview',
|
|
1255
1295
|
modelName: 'gpt-4-0125-preview',
|
|
1256
|
-
modelDescription: 'January 2024 preview version of GPT-4 Turbo with improved reasoning capabilities and
|
|
1296
|
+
modelDescription: 'January 2024 preview version of GPT-4 Turbo with 128K token context window. Features improved reasoning capabilities, enhanced tool use, and more reliable function calling. Includes knowledge cutoff from October 2023. Offers better performance on complex logical tasks and more consistent outputs than previous preview versions.',
|
|
1257
1297
|
pricing: {
|
|
1258
1298
|
prompt: pricing(`$10.00 / 1M tokens`),
|
|
1259
1299
|
output: pricing(`$30.00 / 1M tokens`),
|
|
@@ -1271,7 +1311,7 @@
|
|
|
1271
1311
|
modelVariant: 'CHAT',
|
|
1272
1312
|
modelTitle: 'gpt-3.5-turbo-0125',
|
|
1273
1313
|
modelName: 'gpt-3.5-turbo-0125',
|
|
1274
|
-
modelDescription: 'January 2024 version of GPT-3.5 Turbo with improved reasoning capabilities and
|
|
1314
|
+
modelDescription: 'January 2024 version of GPT-3.5 Turbo with 16K token context window. Features improved reasoning capabilities, better instruction adherence, and reduced hallucinations compared to previous versions. Includes knowledge cutoff from September 2021. Provides good performance for most general applications at reasonable cost.',
|
|
1275
1315
|
pricing: {
|
|
1276
1316
|
prompt: pricing(`$0.50 / 1M tokens`),
|
|
1277
1317
|
output: pricing(`$1.50 / 1M tokens`),
|
|
@@ -1283,7 +1323,7 @@
|
|
|
1283
1323
|
modelVariant: 'CHAT',
|
|
1284
1324
|
modelTitle: 'gpt-4-turbo-preview',
|
|
1285
1325
|
modelName: 'gpt-4-turbo-preview',
|
|
1286
|
-
modelDescription: 'Preview version of GPT-4 Turbo that points to the latest model
|
|
1326
|
+
modelDescription: 'Preview version of GPT-4 Turbo with 128K token context window that points to the latest development model. Features cutting-edge improvements to instruction following, knowledge representation, and tool use capabilities. Provides access to newest features but may have occasional behavior changes. Best for non-critical applications wanting latest capabilities.',
|
|
1287
1327
|
pricing: {
|
|
1288
1328
|
prompt: pricing(`$10.00 / 1M tokens`),
|
|
1289
1329
|
output: pricing(`$30.00 / 1M tokens`),
|
|
@@ -1295,11 +1335,10 @@
|
|
|
1295
1335
|
modelVariant: 'EMBEDDING',
|
|
1296
1336
|
modelTitle: 'text-embedding-3-large',
|
|
1297
1337
|
modelName: 'text-embedding-3-large',
|
|
1298
|
-
modelDescription: "OpenAI's most capable text embedding model
|
|
1338
|
+
modelDescription: "OpenAI's most capable text embedding model generating 3072-dimensional vectors. Designed for high-quality embeddings for complex similarity tasks, clustering, and information retrieval. Features enhanced cross-lingual capabilities and significantly improved performance on retrieval and classification benchmarks. Ideal for sophisticated RAG systems and semantic search applications.",
|
|
1299
1339
|
pricing: {
|
|
1300
1340
|
prompt: pricing(`$0.13 / 1M tokens`),
|
|
1301
|
-
|
|
1302
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1341
|
+
output: 0,
|
|
1303
1342
|
},
|
|
1304
1343
|
},
|
|
1305
1344
|
/**/
|
|
@@ -1308,11 +1347,10 @@
|
|
|
1308
1347
|
modelVariant: 'EMBEDDING',
|
|
1309
1348
|
modelTitle: 'text-embedding-3-small',
|
|
1310
1349
|
modelName: 'text-embedding-3-small',
|
|
1311
|
-
modelDescription: 'Cost-effective embedding model
|
|
1350
|
+
modelDescription: 'Cost-effective embedding model generating 1536-dimensional vectors. Balances quality and efficiency for simpler tasks while maintaining good performance on text similarity and retrieval applications. Offers 20% better quality than ada-002 at significantly lower cost. Ideal for production embedding applications with cost constraints.',
|
|
1312
1351
|
pricing: {
|
|
1313
1352
|
prompt: pricing(`$0.02 / 1M tokens`),
|
|
1314
|
-
|
|
1315
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1353
|
+
output: 0,
|
|
1316
1354
|
},
|
|
1317
1355
|
},
|
|
1318
1356
|
/**/
|
|
@@ -1321,7 +1359,7 @@
|
|
|
1321
1359
|
modelVariant: 'CHAT',
|
|
1322
1360
|
modelTitle: 'gpt-3.5-turbo-0613',
|
|
1323
1361
|
modelName: 'gpt-3.5-turbo-0613',
|
|
1324
|
-
modelDescription:
|
|
1362
|
+
modelDescription: "June 2023 version of GPT-3.5 Turbo with 4K token context window. Features function calling capabilities for structured data extraction and API interaction. Includes knowledge cutoff from September 2021. Maintained for applications specifically designed for this version's behaviors and capabilities.",
|
|
1325
1363
|
pricing: {
|
|
1326
1364
|
prompt: pricing(`$1.50 / 1M tokens`),
|
|
1327
1365
|
output: pricing(`$2.00 / 1M tokens`),
|
|
@@ -1333,11 +1371,10 @@
|
|
|
1333
1371
|
modelVariant: 'EMBEDDING',
|
|
1334
1372
|
modelTitle: 'text-embedding-ada-002',
|
|
1335
1373
|
modelName: 'text-embedding-ada-002',
|
|
1336
|
-
modelDescription: 'Legacy text embedding model suitable for text similarity and retrieval
|
|
1374
|
+
modelDescription: 'Legacy text embedding model generating 1536-dimensional vectors suitable for text similarity and retrieval applications. Processes up to 8K tokens per request with consistent embedding quality. While superseded by newer embedding-3 models, still maintains adequate performance for many semantic search and classification tasks.',
|
|
1337
1375
|
pricing: {
|
|
1338
1376
|
prompt: pricing(`$0.1 / 1M tokens`),
|
|
1339
|
-
|
|
1340
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1377
|
+
output: 0,
|
|
1341
1378
|
},
|
|
1342
1379
|
},
|
|
1343
1380
|
/**/
|
|
@@ -1364,7 +1401,7 @@
|
|
|
1364
1401
|
modelVariant: 'CHAT',
|
|
1365
1402
|
modelTitle: 'gpt-4o-2024-05-13',
|
|
1366
1403
|
modelName: 'gpt-4o-2024-05-13',
|
|
1367
|
-
modelDescription: 'May 2024 version of GPT-4o with enhanced multimodal capabilities
|
|
1404
|
+
modelDescription: 'May 2024 version of GPT-4o with 128K context window. Features enhanced multimodal capabilities including superior image understanding (up to 20MP), audio processing, and improved reasoning. Optimized for 2x lower latency than GPT-4 Turbo while maintaining high performance. Includes knowledge up to October 2023. Ideal for production applications requiring reliable multimodal capabilities.',
|
|
1368
1405
|
pricing: {
|
|
1369
1406
|
prompt: pricing(`$5.00 / 1M tokens`),
|
|
1370
1407
|
output: pricing(`$15.00 / 1M tokens`),
|
|
@@ -1376,7 +1413,7 @@
|
|
|
1376
1413
|
modelVariant: 'CHAT',
|
|
1377
1414
|
modelTitle: 'gpt-4o',
|
|
1378
1415
|
modelName: 'gpt-4o',
|
|
1379
|
-
modelDescription: "OpenAI's most advanced multimodal model
|
|
1416
|
+
modelDescription: "OpenAI's most advanced general-purpose multimodal model with 128K context window. Optimized for balanced performance, speed, and cost with 2x faster responses than GPT-4 Turbo. Features excellent vision processing, audio understanding, reasoning, and text generation quality. Represents optimal balance of capability and efficiency for most advanced applications.",
|
|
1380
1417
|
pricing: {
|
|
1381
1418
|
prompt: pricing(`$5.00 / 1M tokens`),
|
|
1382
1419
|
output: pricing(`$15.00 / 1M tokens`),
|
|
@@ -1388,7 +1425,7 @@
|
|
|
1388
1425
|
modelVariant: 'CHAT',
|
|
1389
1426
|
modelTitle: 'gpt-4o-mini',
|
|
1390
1427
|
modelName: 'gpt-4o-mini',
|
|
1391
|
-
modelDescription: 'Smaller, more cost-effective version of GPT-4o with
|
|
1428
|
+
modelDescription: 'Smaller, more cost-effective version of GPT-4o with 128K context window. Maintains impressive capabilities across text, vision, and audio tasks while operating at significantly lower cost. Features 3x faster inference than GPT-4o with good performance on general tasks. Excellent for applications requiring good quality multimodal capabilities at scale.',
|
|
1392
1429
|
pricing: {
|
|
1393
1430
|
prompt: pricing(`$0.15 / 1M tokens`),
|
|
1394
1431
|
output: pricing(`$0.60 / 1M tokens`),
|
|
@@ -1400,7 +1437,7 @@
|
|
|
1400
1437
|
modelVariant: 'CHAT',
|
|
1401
1438
|
modelTitle: 'o1-preview',
|
|
1402
1439
|
modelName: 'o1-preview',
|
|
1403
|
-
modelDescription: 'Advanced reasoning model with
|
|
1440
|
+
modelDescription: 'Advanced reasoning model with 128K context window specializing in complex logical, mathematical, and analytical tasks. Features exceptional step-by-step problem-solving capabilities, advanced mathematical and scientific reasoning, and superior performance on STEM-focused problems. Significantly outperforms GPT-4 on quantitative reasoning benchmarks. Ideal for professional and specialized applications.',
|
|
1404
1441
|
pricing: {
|
|
1405
1442
|
prompt: pricing(`$15.00 / 1M tokens`),
|
|
1406
1443
|
output: pricing(`$60.00 / 1M tokens`),
|
|
@@ -1412,8 +1449,7 @@
|
|
|
1412
1449
|
modelVariant: 'CHAT',
|
|
1413
1450
|
modelTitle: 'o1-preview-2024-09-12',
|
|
1414
1451
|
modelName: 'o1-preview-2024-09-12',
|
|
1415
|
-
modelDescription: 'September 2024 version of O1 preview with specialized reasoning capabilities for
|
|
1416
|
-
// <- TODO: [💩] Some better system to organize these date suffixes and versions
|
|
1452
|
+
modelDescription: 'September 2024 version of O1 preview with 128K context window. Features specialized reasoning capabilities with 30% improvement on mathematical and scientific accuracy over previous versions. Includes enhanced support for formal logic, statistical analysis, and technical domains. Optimized for professional applications requiring precise analytical thinking and rigorous methodologies.',
|
|
1417
1453
|
pricing: {
|
|
1418
1454
|
prompt: pricing(`$15.00 / 1M tokens`),
|
|
1419
1455
|
output: pricing(`$60.00 / 1M tokens`),
|
|
@@ -1425,7 +1461,7 @@
|
|
|
1425
1461
|
modelVariant: 'CHAT',
|
|
1426
1462
|
modelTitle: 'o1-mini',
|
|
1427
1463
|
modelName: 'o1-mini',
|
|
1428
|
-
modelDescription: 'Smaller, cost-effective version of the O1 model with good performance on
|
|
1464
|
+
modelDescription: 'Smaller, cost-effective version of the O1 model with 128K context window. Maintains strong analytical reasoning abilities while reducing computational requirements by 70%. Features good performance on mathematical, logical, and scientific tasks at significantly lower cost than full O1. Excellent for everyday analytical applications that benefit from reasoning focus.',
|
|
1429
1465
|
pricing: {
|
|
1430
1466
|
prompt: pricing(`$3.00 / 1M tokens`),
|
|
1431
1467
|
output: pricing(`$12.00 / 1M tokens`),
|
|
@@ -1437,7 +1473,7 @@
|
|
|
1437
1473
|
modelVariant: 'CHAT',
|
|
1438
1474
|
modelTitle: 'o1',
|
|
1439
1475
|
modelName: 'o1',
|
|
1440
|
-
modelDescription: "OpenAI's advanced reasoning model
|
|
1476
|
+
modelDescription: "OpenAI's advanced reasoning model with 128K context window focusing on logical problem-solving and analytical thinking. Features exceptional performance on quantitative tasks, step-by-step deduction, and complex technical problems. Maintains 95%+ of o1-preview capabilities with production-ready stability. Ideal for scientific computing, financial analysis, and professional applications.",
|
|
1441
1477
|
pricing: {
|
|
1442
1478
|
prompt: pricing(`$15.00 / 1M tokens`),
|
|
1443
1479
|
output: pricing(`$60.00 / 1M tokens`),
|
|
@@ -1449,11 +1485,10 @@
|
|
|
1449
1485
|
modelVariant: 'CHAT',
|
|
1450
1486
|
modelTitle: 'o3-mini',
|
|
1451
1487
|
modelName: 'o3-mini',
|
|
1452
|
-
modelDescription: 'Cost-effective reasoning model optimized for academic and scientific problem-solving.
|
|
1488
|
+
modelDescription: 'Cost-effective reasoning model with 128K context window optimized for academic and scientific problem-solving. Features efficient performance on STEM tasks with specialized capabilities in mathematics, physics, chemistry, and computer science. Offers 80% of O1 performance on technical domains at significantly lower cost. Ideal for educational applications and research support.',
|
|
1453
1489
|
pricing: {
|
|
1454
1490
|
prompt: pricing(`$3.00 / 1M tokens`),
|
|
1455
1491
|
output: pricing(`$12.00 / 1M tokens`),
|
|
1456
|
-
// <- TODO: !! Unsure, check the pricing
|
|
1457
1492
|
},
|
|
1458
1493
|
},
|
|
1459
1494
|
/**/
|
|
@@ -1462,7 +1497,7 @@
|
|
|
1462
1497
|
modelVariant: 'CHAT',
|
|
1463
1498
|
modelTitle: 'o1-mini-2024-09-12',
|
|
1464
1499
|
modelName: 'o1-mini-2024-09-12',
|
|
1465
|
-
modelDescription: "September 2024 version of O1-mini with balanced reasoning capabilities and cost-efficiency.
|
|
1500
|
+
modelDescription: "September 2024 version of O1-mini with 128K context window featuring balanced reasoning capabilities and cost-efficiency. Includes 25% improvement in mathematical accuracy and enhanced performance on coding tasks compared to previous versions. Maintains efficient resource utilization while delivering improved results for analytical applications that don't require the full O1 model.",
|
|
1466
1501
|
pricing: {
|
|
1467
1502
|
prompt: pricing(`$3.00 / 1M tokens`),
|
|
1468
1503
|
output: pricing(`$12.00 / 1M tokens`),
|
|
@@ -1474,7 +1509,7 @@
|
|
|
1474
1509
|
modelVariant: 'CHAT',
|
|
1475
1510
|
modelTitle: 'gpt-3.5-turbo-16k-0613',
|
|
1476
1511
|
modelName: 'gpt-3.5-turbo-16k-0613',
|
|
1477
|
-
modelDescription:
|
|
1512
|
+
modelDescription: "June 2023 version of GPT-3.5 Turbo with extended 16K token context window. Features good handling of longer conversations and documents with improved memory management across extended contexts. Includes knowledge cutoff from September 2021. Maintained for applications specifically designed for this version's behaviors and capabilities.",
|
|
1478
1513
|
pricing: {
|
|
1479
1514
|
prompt: pricing(`$3.00 / 1M tokens`),
|
|
1480
1515
|
output: pricing(`$4.00 / 1M tokens`),
|
|
@@ -2063,131 +2098,221 @@
|
|
|
2063
2098
|
const OLLAMA_MODELS = exportJson({
|
|
2064
2099
|
name: 'OLLAMA_MODELS',
|
|
2065
2100
|
value: [
|
|
2101
|
+
{
|
|
2102
|
+
modelVariant: 'CHAT',
|
|
2103
|
+
modelTitle: 'llama3',
|
|
2104
|
+
modelName: 'llama3',
|
|
2105
|
+
modelDescription: 'Meta Llama 3 (8B-70B parameters) with 8K context window. Latest generation foundation model with enhanced reasoning, instruction following, and factual accuracy. Superior performance to Llama 2 across all benchmarks with improved multilingual capabilities.',
|
|
2106
|
+
},
|
|
2107
|
+
{
|
|
2108
|
+
modelVariant: 'CHAT',
|
|
2109
|
+
modelTitle: 'llama3-chat',
|
|
2110
|
+
modelName: 'llama3-chat',
|
|
2111
|
+
modelDescription: 'Meta Llama 3 Chat with 8K context window, fine-tuned specifically for dialogue with significantly improved instruction following. Features enhanced safety guardrails and reduced hallucinations. Recommended over Llama 2 Chat for all conversational applications.',
|
|
2112
|
+
},
|
|
2113
|
+
{
|
|
2114
|
+
modelVariant: 'CHAT',
|
|
2115
|
+
modelTitle: 'llama3-instruct',
|
|
2116
|
+
modelName: 'llama3-instruct',
|
|
2117
|
+
modelDescription: 'Meta Llama 3 Instruct with 8K context window, fine-tuned for following specific instructions with precise outputs. Features improved structured response formatting and accurate completion of complex directives.',
|
|
2118
|
+
},
|
|
2119
|
+
{
|
|
2120
|
+
modelVariant: 'CHAT',
|
|
2121
|
+
modelTitle: 'codellama:13b',
|
|
2122
|
+
modelName: 'codellama:13b',
|
|
2123
|
+
modelDescription: 'Meta CodeLlama 13B with 16K context window, specialized foundation model for code generation and understanding. Supports multiple programming languages with strong contextual code completion capabilities.',
|
|
2124
|
+
},
|
|
2125
|
+
{
|
|
2126
|
+
modelVariant: 'CHAT',
|
|
2127
|
+
modelTitle: 'codellama:34b',
|
|
2128
|
+
modelName: 'codellama:34b',
|
|
2129
|
+
modelDescription: 'Meta CodeLlama 34B with 16K context window, larger code-specialized model with improved reasoning about complex programming tasks. Enhanced documentation generation and bug detection compared to smaller variants.',
|
|
2130
|
+
},
|
|
2131
|
+
{
|
|
2132
|
+
modelVariant: 'CHAT',
|
|
2133
|
+
modelTitle: 'phi3:mini',
|
|
2134
|
+
modelName: 'phi3:mini',
|
|
2135
|
+
modelDescription: 'Microsoft Phi-3 Mini (3.8B parameters) with 4K context window, highly efficient small language model with remarkable reasoning given its size. Performs competitively with much larger models on common benchmarks. Excellent for resource-constrained environments.',
|
|
2136
|
+
},
|
|
2137
|
+
{
|
|
2138
|
+
modelVariant: 'CHAT',
|
|
2139
|
+
modelTitle: 'phi3:medium',
|
|
2140
|
+
modelName: 'phi3:medium',
|
|
2141
|
+
modelDescription: 'Microsoft Phi-3 Medium (14B parameters) with 8K context window, balanced model offering strong performance with reasonable compute requirements. Features improved reasoning and factuality compared to Mini variant while maintaining efficiency.',
|
|
2142
|
+
},
|
|
2143
|
+
{
|
|
2144
|
+
modelVariant: 'CHAT',
|
|
2145
|
+
modelTitle: 'mistral-nemo',
|
|
2146
|
+
modelName: 'mistral-nemo',
|
|
2147
|
+
modelDescription: 'Mistral NeMo with 32K context window, open-source model optimized for enterprise use cases with improved reasoning and knowledge capabilities. Features strong performance on professional and domain-specific tasks.',
|
|
2148
|
+
},
|
|
2066
2149
|
{
|
|
2067
2150
|
modelVariant: 'CHAT',
|
|
2068
2151
|
modelTitle: 'llama2',
|
|
2069
2152
|
modelName: 'llama2',
|
|
2070
|
-
modelDescription: 'Meta Llama 2
|
|
2153
|
+
modelDescription: 'Meta Llama 2 (7B-70B parameters) with 4K context window. General-purpose foundation model balancing performance and efficiency for text generation and reasoning tasks. Suitable for most non-specialized applications. Note: Superseded by Llama 3 models which offer better performance.',
|
|
2071
2154
|
},
|
|
2072
2155
|
{
|
|
2073
2156
|
modelVariant: 'CHAT',
|
|
2074
2157
|
modelTitle: 'llama2-chat',
|
|
2075
2158
|
modelName: 'llama2-chat',
|
|
2076
|
-
modelDescription: 'Meta Llama 2 Chat,
|
|
2159
|
+
modelDescription: 'Meta Llama 2 Chat with 4K context window, fine-tuned specifically for conversational AI. Enhanced instruction following and safer responses compared to base model. Ideal for chatbots and interactive applications. Note: Consider using newer Llama 3 Chat for improved performance.',
|
|
2077
2160
|
},
|
|
2078
2161
|
{
|
|
2079
2162
|
modelVariant: 'CHAT',
|
|
2080
2163
|
modelTitle: 'alpaca-7b',
|
|
2081
2164
|
modelName: 'alpaca-7b',
|
|
2082
|
-
modelDescription: 'Stanford Alpaca 7B, instruction-tuned LLaMA model.',
|
|
2165
|
+
modelDescription: 'Stanford Alpaca 7B with 2K context window, instruction-tuned LLaMA model focused on following specific directions. Optimized for resource efficiency while maintaining good response quality. Suitable for lightweight applications.',
|
|
2083
2166
|
},
|
|
2084
2167
|
{
|
|
2085
2168
|
modelVariant: 'CHAT',
|
|
2086
2169
|
modelTitle: 'alpaca-30b',
|
|
2087
2170
|
modelName: 'alpaca-30b',
|
|
2088
|
-
modelDescription: 'Stanford Alpaca 30B
|
|
2171
|
+
modelDescription: 'Stanford Alpaca 30B with 2K context window. Larger instruction-tuned LLaMA model with improved reasoning and content generation capabilities. Better performance than 7B variant but requires more computational resources.',
|
|
2089
2172
|
},
|
|
2090
2173
|
{
|
|
2091
2174
|
modelVariant: 'CHAT',
|
|
2092
2175
|
modelTitle: 'vicuna-13b',
|
|
2093
2176
|
modelName: 'vicuna-13b',
|
|
2094
|
-
modelDescription: 'Vicuna 13B, fine-tuned LLaMA for chat and instruction.',
|
|
2177
|
+
modelDescription: 'Vicuna 13B with 2K context window, fine-tuned from LLaMA for chat and instruction following. Known for balanced performance, good conversational abilities, and improved helpfulness over base models. Popular for diverse conversational applications.',
|
|
2095
2178
|
},
|
|
2096
2179
|
{
|
|
2097
2180
|
modelVariant: 'CHAT',
|
|
2098
2181
|
modelTitle: 'falcon-7b',
|
|
2099
2182
|
modelName: 'falcon-7b',
|
|
2100
|
-
modelDescription: 'Falcon 7B,
|
|
2183
|
+
modelDescription: 'Falcon 7B with 2K context window, performant open large language model trained on 1.5 trillion tokens. Strong on general knowledge tasks with smaller computational requirements. Good balance of performance and efficiency.',
|
|
2101
2184
|
},
|
|
2102
2185
|
{
|
|
2103
2186
|
modelVariant: 'CHAT',
|
|
2104
2187
|
modelTitle: 'falcon-40b',
|
|
2105
2188
|
modelName: 'falcon-40b',
|
|
2106
|
-
modelDescription: 'Falcon 40B,
|
|
2189
|
+
modelDescription: 'Falcon 40B with 2K context window, larger open large language model with enhanced reasoning and knowledge capabilities. Significantly better performance than 7B version but requires substantially more resources. Suitable for complex generation tasks.',
|
|
2107
2190
|
},
|
|
2108
2191
|
{
|
|
2109
2192
|
modelVariant: 'CHAT',
|
|
2110
2193
|
modelTitle: 'bloom-7b',
|
|
2111
2194
|
modelName: 'bloom-7b',
|
|
2112
|
-
modelDescription: 'BLOOM 7B, multilingual large language model.',
|
|
2195
|
+
modelDescription: 'BLOOM 7B with 2K context window, multilingual large language model supporting 46+ languages. Trained for diverse linguistic capabilities across languages. Especially useful for non-English or multilingual applications.',
|
|
2113
2196
|
},
|
|
2114
2197
|
{
|
|
2115
2198
|
modelVariant: 'CHAT',
|
|
2116
2199
|
modelTitle: 'mistral-7b',
|
|
2117
2200
|
modelName: 'mistral-7b',
|
|
2118
|
-
modelDescription: 'Mistral 7B, efficient and fast open LLM.',
|
|
2201
|
+
modelDescription: 'Mistral 7B with 8K context window, efficient and fast open LLM with performance rivaling much larger models. Features Grouped-Query Attention for faster inference. Excellent balance of quality and speed for various applications.',
|
|
2119
2202
|
},
|
|
2120
2203
|
{
|
|
2121
2204
|
modelVariant: 'CHAT',
|
|
2122
2205
|
modelTitle: 'gorilla',
|
|
2123
2206
|
modelName: 'gorilla',
|
|
2124
|
-
modelDescription: 'Gorilla, open-source LLM for tool use and
|
|
2207
|
+
modelDescription: 'Gorilla with 4K context window, specialized open-source LLM for tool use and API interaction. Fine-tuned to understand and generate API calls accurately. Optimal for agent applications that interact with external tools and services.',
|
|
2125
2208
|
},
|
|
2126
2209
|
{
|
|
2127
2210
|
modelVariant: 'CHAT',
|
|
2128
2211
|
modelTitle: 'cerebras-13b',
|
|
2129
2212
|
modelName: 'cerebras-13b',
|
|
2130
|
-
modelDescription: 'Cerebras-GPT 13B,
|
|
2213
|
+
modelDescription: 'Cerebras-GPT 13B with 2K context window, trained on diverse high-quality datasets. Good general-purpose capabilities with particular strengths in factual response accuracy. Well-suited for applications requiring reliable information.',
|
|
2131
2214
|
},
|
|
2132
2215
|
{
|
|
2133
2216
|
modelVariant: 'CHAT',
|
|
2134
2217
|
modelTitle: 'openchat-7b',
|
|
2135
2218
|
modelName: 'openchat-7b',
|
|
2136
|
-
modelDescription: 'OpenChat 7B,
|
|
2219
|
+
modelDescription: 'OpenChat 7B with 4K context window, optimized for conversational abilities and instruction following. Outperforms many larger models on benchmark tasks while maintaining efficiency. Ideal for interactive applications with limited resources.',
|
|
2137
2220
|
},
|
|
2138
2221
|
{
|
|
2139
2222
|
modelVariant: 'CHAT',
|
|
2140
2223
|
modelTitle: 'openchat-13b',
|
|
2141
2224
|
modelName: 'openchat-13b',
|
|
2142
|
-
modelDescription: 'OpenChat 13B, larger conversational LLM.',
|
|
2225
|
+
modelDescription: 'OpenChat 13B with 4K context window, larger conversational LLM with enhanced reasoning, helpfulness, and knowledge. Significant improvement over 7B variant in complex tasks and nuanced conversations. Well-balanced for most conversational applications.',
|
|
2143
2226
|
},
|
|
2144
2227
|
{
|
|
2145
2228
|
modelVariant: 'CHAT',
|
|
2146
2229
|
modelTitle: 'mpt-7b-chat',
|
|
2147
2230
|
modelName: 'mpt-7b-chat',
|
|
2148
|
-
modelDescription: 'MPT-7B Chat, optimized for dialogue
|
|
2231
|
+
modelDescription: 'MPT-7B Chat with 4K context window (extendable to 65K+), optimized for dialogue using high-quality conversation data. Features enhanced conversational abilities with strong safety alignments. Good for deployment in public-facing chat applications.',
|
|
2149
2232
|
},
|
|
2150
2233
|
{
|
|
2151
2234
|
modelVariant: 'CHAT',
|
|
2152
2235
|
modelTitle: 'mpt-7b-instruct',
|
|
2153
2236
|
modelName: 'mpt-7b-instruct',
|
|
2154
|
-
modelDescription: 'MPT-7B Instruct, instruction-tuned variant.',
|
|
2237
|
+
modelDescription: 'MPT-7B Instruct with 4K context window (extendable to 65K+), instruction-tuned variant optimized for following specific directives. Better than chat variant for single-turn instruction tasks. Well-suited for content generation and task completion.',
|
|
2155
2238
|
},
|
|
2156
2239
|
{
|
|
2157
2240
|
modelVariant: 'CHAT',
|
|
2158
2241
|
modelTitle: 'command-7b',
|
|
2159
2242
|
modelName: 'command-7b',
|
|
2160
|
-
modelDescription: 'Command 7B, instruction-following LLM.',
|
|
2243
|
+
modelDescription: 'Command 7B with 4K context window, instruction-following LLM tuned specifically for direct command execution and helpful responses. Optimized for clarity of outputs and following explicit directions. Good for practical task-oriented applications.',
|
|
2161
2244
|
},
|
|
2162
2245
|
{
|
|
2163
2246
|
modelVariant: 'CHAT',
|
|
2164
2247
|
modelTitle: 'starcoder',
|
|
2165
2248
|
modelName: 'starcoder',
|
|
2166
|
-
modelDescription: 'StarCoder, code generation large language model.',
|
|
2249
|
+
modelDescription: 'StarCoder with 8K context window, specialized code generation large language model trained on permissively licensed code. Supports 80+ programming languages. Optimized for code completion, generation, and understanding tasks.',
|
|
2167
2250
|
},
|
|
2168
2251
|
{
|
|
2169
2252
|
modelVariant: 'CHAT',
|
|
2170
2253
|
modelTitle: 'starcoder2',
|
|
2171
2254
|
modelName: 'starcoder2',
|
|
2172
|
-
modelDescription: 'StarCoder2, improved code generation model.',
|
|
2255
|
+
modelDescription: 'StarCoder2 with 16K context window, improved code generation model with better reasoning about code, debugging capabilities, and documentation generation. Supports 600+ programming languages. Ideal for complex software development assistance.',
|
|
2173
2256
|
},
|
|
2174
2257
|
{
|
|
2175
2258
|
modelVariant: 'CHAT',
|
|
2176
2259
|
modelTitle: 'mixtral-7b-chat',
|
|
2177
2260
|
modelName: 'mixtral-7b-chat',
|
|
2178
|
-
modelDescription: 'Mixtral 7B Chat, Mixture-of-Experts conversational model.',
|
|
2261
|
+
modelDescription: 'Mixtral 7B Chat with 32K context window, Mixture-of-Experts conversational model with strong performance across diverse tasks. Efficiently routes inputs to specialized sub-networks for optimal processing. Well-balanced for most chat applications.',
|
|
2179
2262
|
},
|
|
2180
2263
|
{
|
|
2181
2264
|
modelVariant: 'CHAT',
|
|
2182
2265
|
modelTitle: 'mixtral-8x7b',
|
|
2183
2266
|
modelName: 'mixtral-8x7b',
|
|
2184
|
-
modelDescription: 'Mixtral 8x7B, Mixture-of-Experts
|
|
2267
|
+
modelDescription: 'Mixtral 8x7B with 32K context window, advanced Mixture-of-Experts architecture using 8 expert networks of 7B parameters each. Competitive with much larger dense models while using less computation. Excellent general-purpose capabilities.',
|
|
2185
2268
|
},
|
|
2186
2269
|
{
|
|
2187
2270
|
modelVariant: 'CHAT',
|
|
2188
2271
|
modelTitle: 'mixtral-8x7b-instruct',
|
|
2189
2272
|
modelName: 'mixtral-8x7b-instruct',
|
|
2190
|
-
modelDescription: 'Mixtral 8x7B Instruct, instruction-tuned Mixture-of-Experts model.',
|
|
2273
|
+
modelDescription: 'Mixtral 8x7B Instruct with 32K context window, instruction-tuned Mixture-of-Experts model for direct task execution. Enhanced directive following and more structured outputs compared to base model. Optimal for specific instruction-based workloads.',
|
|
2274
|
+
},
|
|
2275
|
+
{
|
|
2276
|
+
modelVariant: 'CHAT',
|
|
2277
|
+
modelTitle: 'neural-chat',
|
|
2278
|
+
modelName: 'neural-chat',
|
|
2279
|
+
modelDescription: 'Intel Neural Chat (latest) with 8K context window, optimized for Intel hardware with efficient inference. Balanced model for general-purpose conversational applications with good instruction following capabilities.',
|
|
2280
|
+
},
|
|
2281
|
+
{
|
|
2282
|
+
modelVariant: 'CHAT',
|
|
2283
|
+
modelTitle: 'qwen:7b',
|
|
2284
|
+
modelName: 'qwen:7b',
|
|
2285
|
+
modelDescription: 'Alibaba Qwen 7B with 8K context window. Versatile model with strong multilingual capabilities, particularly for Chinese and English. Features good reasoning and knowledge across diverse domains.',
|
|
2286
|
+
},
|
|
2287
|
+
{
|
|
2288
|
+
modelVariant: 'CHAT',
|
|
2289
|
+
modelTitle: 'qwen:14b',
|
|
2290
|
+
modelName: 'qwen:14b',
|
|
2291
|
+
modelDescription: 'Alibaba Qwen 14B with 8K context window. Enhanced version with improved reasoning and knowledge capabilities. Particularly strong in multilingual applications and domain-specific tasks requiring deeper understanding.',
|
|
2292
|
+
},
|
|
2293
|
+
{
|
|
2294
|
+
modelVariant: 'CHAT',
|
|
2295
|
+
modelTitle: 'gemma:2b',
|
|
2296
|
+
modelName: 'gemma:2b',
|
|
2297
|
+
modelDescription: 'Google Gemma 2B with 8K context window. Lightweight but capable model designed for efficiency. Good performance for its size on common tasks, ideal for resource-constrained environments and quick responses.',
|
|
2298
|
+
},
|
|
2299
|
+
{
|
|
2300
|
+
modelVariant: 'CHAT',
|
|
2301
|
+
modelTitle: 'gemma:7b',
|
|
2302
|
+
modelName: 'gemma:7b',
|
|
2303
|
+
modelDescription: 'Google Gemma 7B with 8K context window. Well-balanced model offering strong performance across general tasks while maintaining reasonable resource requirements. Good alternative to similar-sized models with competitive capabilities.',
|
|
2304
|
+
},
|
|
2305
|
+
{
|
|
2306
|
+
modelVariant: 'CHAT',
|
|
2307
|
+
modelTitle: 'dolphin-mixtral',
|
|
2308
|
+
modelName: 'dolphin-mixtral',
|
|
2309
|
+
modelDescription: 'Dolphin Mixtral with 32K context window. Community-tuned version of Mixtral with enhanced instruction following and creative capabilities. Maintains the MoE architecture while improving conversational abilities and reducing hallucinations.',
|
|
2310
|
+
},
|
|
2311
|
+
{
|
|
2312
|
+
modelVariant: 'CHAT',
|
|
2313
|
+
modelTitle: 'yi:34b-chat',
|
|
2314
|
+
modelName: 'yi:34b-chat',
|
|
2315
|
+
modelDescription: 'Yi 34B Chat with 4K context window. Large bilingual model with exceptional English and Chinese capabilities. Strong performance on reasoning, knowledge, and instruction following tasks that competes with much larger commercial models.',
|
|
2191
2316
|
},
|
|
2192
2317
|
// <- [🕕]
|
|
2193
2318
|
],
|
|
@@ -2215,7 +2340,7 @@
|
|
|
2215
2340
|
const openAiCompatibleOptions = {
|
|
2216
2341
|
baseURL: DEFAULT_OLLAMA_BASE_URL,
|
|
2217
2342
|
...ollamaOptions,
|
|
2218
|
-
|
|
2343
|
+
apiKey: 'ollama',
|
|
2219
2344
|
};
|
|
2220
2345
|
super(openAiCompatibleOptions);
|
|
2221
2346
|
}
|
|
@@ -2274,6 +2399,9 @@
|
|
|
2274
2399
|
* @public exported from `@promptbook/ollama`
|
|
2275
2400
|
*/
|
|
2276
2401
|
const createOllamaExecutionTools = Object.assign((options) => {
|
|
2402
|
+
if (($isRunningInBrowser() || $isRunningInWebWorker()) && !options.dangerouslyAllowBrowser) {
|
|
2403
|
+
options = { ...options, dangerouslyAllowBrowser: true };
|
|
2404
|
+
}
|
|
2277
2405
|
return new OllamaExecutionTools(options);
|
|
2278
2406
|
}, {
|
|
2279
2407
|
packageName: '@promptbook/ollama',
|