@promptbook/ollama 0.94.0-1 → 0.94.0-3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/esm/index.es.js CHANGED
@@ -1,7 +1,8 @@
1
1
  import Bottleneck from 'bottleneck';
2
- import fetch from 'node-fetch';
3
- import { randomBytes } from 'crypto';
2
+ import colors from 'colors';
3
+ import OpenAI from 'openai';
4
4
  import spaceTrim, { spaceTrim as spaceTrim$1 } from 'spacetrim';
5
+ import { randomBytes } from 'crypto';
5
6
 
6
7
  // ⚠️ WARNING: This code has been generated so that any manual changes will be overwritten
7
8
  /**
@@ -17,12 +18,52 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
17
18
  * @generated
18
19
  * @see https://github.com/webgptorg/promptbook
19
20
  */
20
- const PROMPTBOOK_ENGINE_VERSION = '0.94.0-1';
21
+ const PROMPTBOOK_ENGINE_VERSION = '0.94.0-3';
21
22
  /**
22
23
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
23
24
  * Note: [💞] Ignore a discrepancy between file name and entity name
24
25
  */
25
26
 
27
+ /**
28
+ * Detects if the code is running in a browser environment in main thread (Not in a web worker)
29
+ *
30
+ * Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
31
+ *
32
+ * @public exported from `@promptbook/utils`
33
+ */
34
+ const $isRunningInBrowser = new Function(`
35
+ try {
36
+ return this === window;
37
+ } catch (e) {
38
+ return false;
39
+ }
40
+ `);
41
+ /**
42
+ * TODO: [🎺]
43
+ */
44
+
45
+ /**
46
+ * Detects if the code is running in a web worker
47
+ *
48
+ * Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
49
+ *
50
+ * @public exported from `@promptbook/utils`
51
+ */
52
+ const $isRunningInWebWorker = new Function(`
53
+ try {
54
+ if (typeof WorkerGlobalScope !== 'undefined' && self instanceof WorkerGlobalScope) {
55
+ return true;
56
+ } else {
57
+ return false;
58
+ }
59
+ } catch (e) {
60
+ return false;
61
+ }
62
+ `);
63
+ /**
64
+ * TODO: [🎺]
65
+ */
66
+
26
67
  /**
27
68
  * Name for the Promptbook
28
69
  *
@@ -43,6 +84,34 @@ const ADMIN_EMAIL = 'pavol@ptbk.io';
43
84
  * @public exported from `@promptbook/core`
44
85
  */
45
86
  const ADMIN_GITHUB_NAME = 'hejny';
87
+ // <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
88
+ /**
89
+ * The maximum number of iterations for a loops
90
+ *
91
+ * @private within the repository - too low-level in comparison with other `MAX_...`
92
+ */
93
+ const LOOP_LIMIT = 1000;
94
+ /**
95
+ * Strings to represent various values in the context of parameter values
96
+ *
97
+ * @public exported from `@promptbook/utils`
98
+ */
99
+ const VALUE_STRINGS = {
100
+ empty: '(nothing; empty string)',
101
+ null: '(no value; null)',
102
+ undefined: '(unknown value; undefined)',
103
+ nan: '(not a number; NaN)',
104
+ infinity: '(infinity; ∞)',
105
+ negativeInfinity: '(negative infinity; -∞)',
106
+ unserializable: '(unserializable value)',
107
+ circular: '(circular JSON)',
108
+ };
109
+ /**
110
+ * Small number limit
111
+ *
112
+ * @public exported from `@promptbook/utils`
113
+ */
114
+ const SMALL_NUMBER = 0.001;
46
115
  // <- TODO: [🧜‍♂️]
47
116
  /**
48
117
  * Default settings for parsing and generating CSV files in Promptbook.
@@ -68,40 +137,6 @@ const DEFAULT_MAX_REQUESTS_PER_MINUTE = 60;
68
137
  * TODO: [🧠][🧜‍♂️] Maybe join remoteServerUrl and path into single value
69
138
  */
70
139
 
71
- /**
72
- * Generates random token
73
- *
74
- * Note: This function is cryptographically secure (it uses crypto.randomBytes internally)
75
- *
76
- * @private internal helper function
77
- * @returns secure random token
78
- */
79
- function $randomToken(randomness) {
80
- return randomBytes(randomness).toString('hex');
81
- }
82
- /**
83
- * TODO: Maybe use nanoid instead https://github.com/ai/nanoid
84
- */
85
-
86
- /**
87
- * This error indicates errors during the execution of the pipeline
88
- *
89
- * @public exported from `@promptbook/core`
90
- */
91
- class PipelineExecutionError extends Error {
92
- constructor(message) {
93
- // Added id parameter
94
- super(message);
95
- this.name = 'PipelineExecutionError';
96
- // TODO: [🐙] DRY - Maybe $randomId
97
- this.id = `error-${$randomToken(8 /* <- TODO: To global config + Use Base58 to avoid similar char conflicts */)}`;
98
- Object.setPrototypeOf(this, PipelineExecutionError.prototype);
99
- }
100
- }
101
- /**
102
- * TODO: [🧠][🌂] Add id to all errors
103
- */
104
-
105
140
  /**
106
141
  * Make error report URL for the given error
107
142
  *
@@ -170,6 +205,88 @@ class UnexpectedError extends Error {
170
205
  }
171
206
  }
172
207
 
208
+ /**
209
+ * This error type indicates that somewhere in the code non-Error object was thrown and it was wrapped into the `WrappedError`
210
+ *
211
+ * @public exported from `@promptbook/core`
212
+ */
213
+ class WrappedError extends Error {
214
+ constructor(whatWasThrown) {
215
+ const tag = `[🤮]`;
216
+ console.error(tag, whatWasThrown);
217
+ super(spaceTrim$1(`
218
+ Non-Error object was thrown
219
+
220
+ Note: Look for ${tag} in the console for more details
221
+ Please report issue on ${ADMIN_EMAIL}
222
+ `));
223
+ this.name = 'WrappedError';
224
+ Object.setPrototypeOf(this, WrappedError.prototype);
225
+ }
226
+ }
227
+
228
+ /**
229
+ * Helper used in catch blocks to assert that the error is an instance of `Error`
230
+ *
231
+ * @param whatWasThrown Any object that was thrown
232
+ * @returns Nothing if the error is an instance of `Error`
233
+ * @throws `WrappedError` or `UnexpectedError` if the error is not standard
234
+ *
235
+ * @private within the repository
236
+ */
237
+ function assertsError(whatWasThrown) {
238
+ // Case 1: Handle error which was rethrown as `WrappedError`
239
+ if (whatWasThrown instanceof WrappedError) {
240
+ const wrappedError = whatWasThrown;
241
+ throw wrappedError;
242
+ }
243
+ // Case 2: Handle unexpected errors
244
+ if (whatWasThrown instanceof UnexpectedError) {
245
+ const unexpectedError = whatWasThrown;
246
+ throw unexpectedError;
247
+ }
248
+ // Case 3: Handle standard errors - keep them up to consumer
249
+ if (whatWasThrown instanceof Error) {
250
+ return;
251
+ }
252
+ // Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
253
+ throw new WrappedError(whatWasThrown);
254
+ }
255
+
256
+ /**
257
+ * Generates random token
258
+ *
259
+ * Note: This function is cryptographically secure (it uses crypto.randomBytes internally)
260
+ *
261
+ * @private internal helper function
262
+ * @returns secure random token
263
+ */
264
+ function $randomToken(randomness) {
265
+ return randomBytes(randomness).toString('hex');
266
+ }
267
+ /**
268
+ * TODO: Maybe use nanoid instead https://github.com/ai/nanoid
269
+ */
270
+
271
+ /**
272
+ * This error indicates errors during the execution of the pipeline
273
+ *
274
+ * @public exported from `@promptbook/core`
275
+ */
276
+ class PipelineExecutionError extends Error {
277
+ constructor(message) {
278
+ // Added id parameter
279
+ super(message);
280
+ this.name = 'PipelineExecutionError';
281
+ // TODO: [🐙] DRY - Maybe $randomId
282
+ this.id = `error-${$randomToken(8 /* <- TODO: To global config + Use Base58 to avoid similar char conflicts */)}`;
283
+ Object.setPrototypeOf(this, PipelineExecutionError.prototype);
284
+ }
285
+ }
286
+ /**
287
+ * TODO: [🧠][🌂] Add id to all errors
288
+ */
289
+
173
290
  /**
174
291
  * Simple wrapper `new Date().toISOString()`
175
292
  *
@@ -224,54 +341,6 @@ function $deepFreeze(objectValue) {
224
341
  * TODO: [🧠] Is there a way how to meaningfully test this utility
225
342
  */
226
343
 
227
- /**
228
- * This error type indicates that somewhere in the code non-Error object was thrown and it was wrapped into the `WrappedError`
229
- *
230
- * @public exported from `@promptbook/core`
231
- */
232
- class WrappedError extends Error {
233
- constructor(whatWasThrown) {
234
- const tag = `[🤮]`;
235
- console.error(tag, whatWasThrown);
236
- super(spaceTrim$1(`
237
- Non-Error object was thrown
238
-
239
- Note: Look for ${tag} in the console for more details
240
- Please report issue on ${ADMIN_EMAIL}
241
- `));
242
- this.name = 'WrappedError';
243
- Object.setPrototypeOf(this, WrappedError.prototype);
244
- }
245
- }
246
-
247
- /**
248
- * Helper used in catch blocks to assert that the error is an instance of `Error`
249
- *
250
- * @param whatWasThrown Any object that was thrown
251
- * @returns Nothing if the error is an instance of `Error`
252
- * @throws `WrappedError` or `UnexpectedError` if the error is not standard
253
- *
254
- * @private within the repository
255
- */
256
- function assertsError(whatWasThrown) {
257
- // Case 1: Handle error which was rethrown as `WrappedError`
258
- if (whatWasThrown instanceof WrappedError) {
259
- const wrappedError = whatWasThrown;
260
- throw wrappedError;
261
- }
262
- // Case 2: Handle unexpected errors
263
- if (whatWasThrown instanceof UnexpectedError) {
264
- const unexpectedError = whatWasThrown;
265
- throw unexpectedError;
266
- }
267
- // Case 3: Handle standard errors - keep them up to consumer
268
- if (whatWasThrown instanceof Error) {
269
- return;
270
- }
271
- // Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
272
- throw new WrappedError(whatWasThrown);
273
- }
274
-
275
344
  /**
276
345
  * Checks if the value is [🚉] serializable as JSON
277
346
  * If not, throws an UnexpectedError with a rich error message and tracking
@@ -472,89 +541,1637 @@ function exportJson(options) {
472
541
  */
473
542
 
474
543
  /**
475
- * Execution Tools for calling a local Ollama model via HTTP API
544
+ * Nonce which is used for replacing things in strings
476
545
  *
477
- * @public exported from `@promptbook/ollama`
546
+ * @private within the repository
478
547
  */
479
- class OllamaExecutionTools {
480
- constructor(options) {
481
- this.options = options;
482
- this.limiter = new Bottleneck({
483
- minTime: 60000 / (options.maxRequestsPerMinute || DEFAULT_MAX_REQUESTS_PER_MINUTE),
484
- });
548
+ const REPLACING_NONCE = 'ptbkauk42kV2dzao34faw7FudQUHYPtW';
549
+ /**
550
+ * Nonce which is used as string which is not occurring in normal text
551
+ *
552
+ * @private within the repository
553
+ */
554
+ const SALT_NONCE = 'ptbkghhewbvruets21t54et5';
555
+ /**
556
+ * Placeholder value indicating a parameter is missing its value.
557
+ *
558
+ * @private within the repository
559
+ */
560
+ const RESERVED_PARAMETER_MISSING_VALUE = 'MISSING-' + REPLACING_NONCE;
561
+ /**
562
+ * Placeholder value indicating a parameter is restricted and cannot be used directly.
563
+ *
564
+ * @private within the repository
565
+ */
566
+ const RESERVED_PARAMETER_RESTRICTED = 'RESTRICTED-' + REPLACING_NONCE;
567
+ /**
568
+ * The names of the parameters that are reserved for special purposes
569
+ *
570
+ * @public exported from `@promptbook/core`
571
+ */
572
+ exportJson({
573
+ name: 'RESERVED_PARAMETER_NAMES',
574
+ message: `The names of the parameters that are reserved for special purposes`,
575
+ value: [
576
+ 'content',
577
+ 'context',
578
+ 'knowledge',
579
+ 'examples',
580
+ 'modelName',
581
+ 'currentDate',
582
+ // <- TODO: list here all command names
583
+ // <- TODO: Add more like 'date', 'modelName',...
584
+ // <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
585
+ ],
586
+ });
587
+ /**
588
+ * Note: [💞] Ignore a discrepancy between file name and entity name
589
+ */
590
+
591
+ /**
592
+ * This error type indicates that some limit was reached
593
+ *
594
+ * @public exported from `@promptbook/core`
595
+ */
596
+ class LimitReachedError extends Error {
597
+ constructor(message) {
598
+ super(message);
599
+ this.name = 'LimitReachedError';
600
+ Object.setPrototypeOf(this, LimitReachedError.prototype);
485
601
  }
486
- get title() {
487
- return 'Ollama';
602
+ }
603
+
604
+ /**
605
+ * Format either small or big number
606
+ *
607
+ * @public exported from `@promptbook/utils`
608
+ */
609
+ function numberToString(value) {
610
+ if (value === 0) {
611
+ return '0';
488
612
  }
489
- get description() {
490
- return 'Local Ollama LLM via HTTP';
613
+ else if (Number.isNaN(value)) {
614
+ return VALUE_STRINGS.nan;
491
615
  }
492
- async checkConfiguration() {
493
- const res = await fetch(`${this.options.baseUrl}/models`);
494
- if (!res.ok)
495
- throw new UnexpectedError(`Failed to reach Ollama API at ${this.options.baseUrl}`);
616
+ else if (value === Infinity) {
617
+ return VALUE_STRINGS.infinity;
496
618
  }
497
- async listModels() {
498
- const res = await fetch(`${this.options.baseUrl}/models`);
499
- if (!res.ok)
500
- throw new UnexpectedError(`Error listing Ollama models: ${res.statusText}`);
501
- const data = (await res.json());
502
- return data.map((m) => ({ modelName: m.name, modelVariant: 'CHAT' }));
619
+ else if (value === -Infinity) {
620
+ return VALUE_STRINGS.negativeInfinity;
503
621
  }
504
- async callChatModel(prompt) {
505
- const { content, parameters, modelRequirements } = prompt;
506
- if (modelRequirements.modelVariant !== 'CHAT') {
507
- throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
508
- }
509
- const modelName = modelRequirements.modelName || this.options.model;
510
- const body = {
511
- model: modelName,
512
- messages: [
513
- ...(modelRequirements.systemMessage
514
- ? [{ role: 'system', content: modelRequirements.systemMessage }]
515
- : []),
516
- { role: 'user', content: content },
517
- ],
518
- parameters: parameters,
519
- };
520
- const start = $getCurrentDate();
521
- const res = await this.limiter.schedule(() => fetch(`${this.options.baseUrl}/chat/completions`, {
522
- method: 'POST',
523
- headers: { 'Content-Type': 'application/json' },
524
- body: JSON.stringify(body),
525
- }));
526
- if (!res.ok)
527
- throw new PipelineExecutionError(`Ollama API error: ${res.statusText}`);
528
- const json = await res.json();
529
- const complete = $getCurrentDate();
530
- if (!json.choices || !json.choices[0]) {
531
- throw new PipelineExecutionError('No choices from Ollama');
622
+ for (let exponent = 0; exponent < 15; exponent++) {
623
+ const factor = 10 ** exponent;
624
+ const valueRounded = Math.round(value * factor) / factor;
625
+ if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
626
+ return valueRounded.toFixed(exponent);
532
627
  }
533
- const resultContent = json.choices[0].message.content;
534
- const usage = { price: { value: 0, isUncertain: true }, input: {}, output: {} }; /* <- !!! */
535
- return exportJson({
536
- name: 'promptResult',
537
- message: 'Result of Ollama',
538
- order: [],
539
- value: {
540
- content: resultContent,
541
- modelName,
542
- timing: { start, complete },
543
- usage,
544
- rawPromptContent: content,
545
- rawRequest: body,
546
- rawResponse: json,
628
+ }
629
+ return value.toString();
630
+ }
631
+
632
+ /**
633
+ * Function `valueToString` will convert the given value to string
634
+ * This is useful and used in the `templateParameters` function
635
+ *
636
+ * Note: This function is not just calling `toString` method
637
+ * It's more complex and can handle this conversion specifically for LLM models
638
+ * See `VALUE_STRINGS`
639
+ *
640
+ * Note: There are 2 similar functions
641
+ * - `valueToString` converts value to string for LLM models as human-readable string
642
+ * - `asSerializable` converts value to string to preserve full information to be able to convert it back
643
+ *
644
+ * @public exported from `@promptbook/utils`
645
+ */
646
+ function valueToString(value) {
647
+ try {
648
+ if (value === '') {
649
+ return VALUE_STRINGS.empty;
650
+ }
651
+ else if (value === null) {
652
+ return VALUE_STRINGS.null;
653
+ }
654
+ else if (value === undefined) {
655
+ return VALUE_STRINGS.undefined;
656
+ }
657
+ else if (typeof value === 'string') {
658
+ return value;
659
+ }
660
+ else if (typeof value === 'number') {
661
+ return numberToString(value);
662
+ }
663
+ else if (value instanceof Date) {
664
+ return value.toISOString();
665
+ }
666
+ else {
667
+ try {
668
+ return JSON.stringify(value);
669
+ }
670
+ catch (error) {
671
+ if (error instanceof TypeError && error.message.includes('circular structure')) {
672
+ return VALUE_STRINGS.circular;
673
+ }
674
+ throw error;
675
+ }
676
+ }
677
+ }
678
+ catch (error) {
679
+ assertsError(error);
680
+ console.error(error);
681
+ return VALUE_STRINGS.unserializable;
682
+ }
683
+ }
684
+
685
+ /**
686
+ * Replaces parameters in template with values from parameters object
687
+ *
688
+ * Note: This function is not places strings into string,
689
+ * It's more complex and can handle this operation specifically for LLM models
690
+ *
691
+ * @param template the template with parameters in {curly} braces
692
+ * @param parameters the object with parameters
693
+ * @returns the template with replaced parameters
694
+ * @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
695
+ * @public exported from `@promptbook/utils`
696
+ */
697
+ function templateParameters(template, parameters) {
698
+ for (const [parameterName, parameterValue] of Object.entries(parameters)) {
699
+ if (parameterValue === RESERVED_PARAMETER_MISSING_VALUE) {
700
+ throw new UnexpectedError(`Parameter \`{${parameterName}}\` has missing value`);
701
+ }
702
+ else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
703
+ // TODO: [🍵]
704
+ throw new UnexpectedError(`Parameter \`{${parameterName}}\` is restricted to use`);
705
+ }
706
+ }
707
+ let replacedTemplates = template;
708
+ let match;
709
+ let loopLimit = LOOP_LIMIT;
710
+ while ((match = /^(?<precol>.*){(?<parameterName>\w+)}(.*)/m /* <- Not global */
711
+ .exec(replacedTemplates))) {
712
+ if (loopLimit-- < 0) {
713
+ throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
714
+ }
715
+ const precol = match.groups.precol;
716
+ const parameterName = match.groups.parameterName;
717
+ if (parameterName === '') {
718
+ // Note: Skip empty placeholders. It's used to avoid confusion with JSON-like strings
719
+ continue;
720
+ }
721
+ if (parameterName.indexOf('{') !== -1 || parameterName.indexOf('}') !== -1) {
722
+ throw new PipelineExecutionError('Parameter is already opened or not closed');
723
+ }
724
+ if (parameters[parameterName] === undefined) {
725
+ throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
726
+ }
727
+ let parameterValue = parameters[parameterName];
728
+ if (parameterValue === undefined) {
729
+ throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
730
+ }
731
+ parameterValue = valueToString(parameterValue);
732
+ // Escape curly braces in parameter values to prevent prompt-injection
733
+ parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
734
+ if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
735
+ parameterValue = parameterValue
736
+ .split('\n')
737
+ .map((line, index) => (index === 0 ? line : `${precol}${line}`))
738
+ .join('\n');
739
+ }
740
+ replacedTemplates =
741
+ replacedTemplates.substring(0, match.index + precol.length) +
742
+ parameterValue +
743
+ replacedTemplates.substring(match.index + precol.length + parameterName.length + 2);
744
+ }
745
+ // [💫] Check if there are parameters that are not closed properly
746
+ if (/{\w+$/.test(replacedTemplates)) {
747
+ throw new PipelineExecutionError('Parameter is not closed');
748
+ }
749
+ // [💫] Check if there are parameters that are not opened properly
750
+ if (/^\w+}/.test(replacedTemplates)) {
751
+ throw new PipelineExecutionError('Parameter is not opened');
752
+ }
753
+ return replacedTemplates;
754
+ }
755
+
756
+ /**
757
+ * Counts number of characters in the text
758
+ *
759
+ * @public exported from `@promptbook/utils`
760
+ */
761
+ function countCharacters(text) {
762
+ // Remove null characters
763
+ text = text.replace(/\0/g, '');
764
+ // Replace emojis (and also ZWJ sequence) with hyphens
765
+ text = text.replace(/(\p{Extended_Pictographic})\p{Modifier_Symbol}/gu, '$1');
766
+ text = text.replace(/(\p{Extended_Pictographic})[\u{FE00}-\u{FE0F}]/gu, '$1');
767
+ text = text.replace(/\p{Extended_Pictographic}(\u{200D}\p{Extended_Pictographic})*/gu, '-');
768
+ return text.length;
769
+ }
770
+ /**
771
+ * TODO: [🥴] Implement counting in formats - like JSON, CSV, XML,...
772
+ */
773
+
774
+ /**
775
+ * Number of characters per standard line with 11pt Arial font size.
776
+ *
777
+ * @public exported from `@promptbook/utils`
778
+ */
779
+ const CHARACTERS_PER_STANDARD_LINE = 63;
780
+ /**
781
+ * Number of lines per standard A4 page with 11pt Arial font size and standard margins and spacing.
782
+ *
783
+ * @public exported from `@promptbook/utils`
784
+ */
785
+ const LINES_PER_STANDARD_PAGE = 44;
786
+ /**
787
+ * TODO: [🧠] Should be this `constants.ts` or `config.ts`?
788
+ * Note: [💞] Ignore a discrepancy between file name and entity name
789
+ */
790
+
791
+ /**
792
+ * Counts number of lines in the text
793
+ *
794
+ * Note: This does not check only for the presence of newlines, but also for the length of the standard line.
795
+ *
796
+ * @public exported from `@promptbook/utils`
797
+ */
798
+ function countLines(text) {
799
+ text = text.replace('\r\n', '\n');
800
+ text = text.replace('\r', '\n');
801
+ const lines = text.split('\n');
802
+ return lines.reduce((count, line) => count + Math.ceil(line.length / CHARACTERS_PER_STANDARD_LINE), 0);
803
+ }
804
+ /**
805
+ * TODO: [🥴] Implement counting in formats - like JSON, CSV, XML,...
806
+ */
807
+
808
+ /**
809
+ * Counts number of pages in the text
810
+ *
811
+ * Note: This does not check only for the count of newlines, but also for the length of the standard line and length of the standard page.
812
+ *
813
+ * @public exported from `@promptbook/utils`
814
+ */
815
+ function countPages(text) {
816
+ return Math.ceil(countLines(text) / LINES_PER_STANDARD_PAGE);
817
+ }
818
+ /**
819
+ * TODO: [🥴] Implement counting in formats - like JSON, CSV, XML,...
820
+ */
821
+
822
+ /**
823
+ * Counts number of paragraphs in the text
824
+ *
825
+ * @public exported from `@promptbook/utils`
826
+ */
827
+ function countParagraphs(text) {
828
+ return text.split(/\n\s*\n/).filter((paragraph) => paragraph.trim() !== '').length;
829
+ }
830
+ /**
831
+ * TODO: [🥴] Implement counting in formats - like JSON, CSV, XML,...
832
+ */
833
+
834
+ /**
835
+ * Split text into sentences
836
+ *
837
+ * @public exported from `@promptbook/utils`
838
+ */
839
+ function splitIntoSentences(text) {
840
+ return text.split(/[.!?]+/).filter((sentence) => sentence.trim() !== '');
841
+ }
842
+ /**
843
+ * Counts number of sentences in the text
844
+ *
845
+ * @public exported from `@promptbook/utils`
846
+ */
847
+ function countSentences(text) {
848
+ return splitIntoSentences(text).length;
849
+ }
850
+ /**
851
+ * TODO: [🥴] Implement counting in formats - like JSON, CSV, XML,...
852
+ */
853
+
854
+ const defaultDiacriticsRemovalMap = [
855
+ {
856
+ base: 'A',
857
+ letters: '\u0041\u24B6\uFF21\u00C0\u00C1\u00C2\u1EA6\u1EA4\u1EAA\u1EA8\u00C3\u0100\u0102\u1EB0\u1EAE\u1EB4\u1EB2\u0226\u01E0\u00C4\u01DE\u1EA2\u00C5\u01FA\u01CD\u0200\u0202\u1EA0\u1EAC\u1EB6\u1E00\u0104\u023A\u2C6F',
858
+ },
859
+ { base: 'AA', letters: '\uA732' },
860
+ { base: 'AE', letters: '\u00C6\u01FC\u01E2' },
861
+ { base: 'AO', letters: '\uA734' },
862
+ { base: 'AU', letters: '\uA736' },
863
+ { base: 'AV', letters: '\uA738\uA73A' },
864
+ { base: 'AY', letters: '\uA73C' },
865
+ {
866
+ base: 'B',
867
+ letters: '\u0042\u24B7\uFF22\u1E02\u1E04\u1E06\u0243\u0182\u0181',
868
+ },
869
+ {
870
+ base: 'C',
871
+ letters: '\u0043\u24B8\uFF23\u0106\u0108\u010A\u010C\u00C7\u1E08\u0187\u023B\uA73E',
872
+ },
873
+ {
874
+ base: 'D',
875
+ letters: '\u0044\u24B9\uFF24\u1E0A\u010E\u1E0C\u1E10\u1E12\u1E0E\u0110\u018B\u018A\u0189\uA779\u00D0',
876
+ },
877
+ { base: 'DZ', letters: '\u01F1\u01C4' },
878
+ { base: 'Dz', letters: '\u01F2\u01C5' },
879
+ {
880
+ base: 'E',
881
+ letters: '\u0045\u24BA\uFF25\u00C8\u00C9\u00CA\u1EC0\u1EBE\u1EC4\u1EC2\u1EBC\u0112\u1E14\u1E16\u0114\u0116\u00CB\u1EBA\u011A\u0204\u0206\u1EB8\u1EC6\u0228\u1E1C\u0118\u1E18\u1E1A\u0190\u018E',
882
+ },
883
+ { base: 'F', letters: '\u0046\u24BB\uFF26\u1E1E\u0191\uA77B' },
884
+ {
885
+ base: 'G',
886
+ letters: '\u0047\u24BC\uFF27\u01F4\u011C\u1E20\u011E\u0120\u01E6\u0122\u01E4\u0193\uA7A0\uA77D\uA77E',
887
+ },
888
+ {
889
+ base: 'H',
890
+ letters: '\u0048\u24BD\uFF28\u0124\u1E22\u1E26\u021E\u1E24\u1E28\u1E2A\u0126\u2C67\u2C75\uA78D',
891
+ },
892
+ {
893
+ base: 'I',
894
+ letters: '\u0049\u24BE\uFF29\u00CC\u00CD\u00CE\u0128\u012A\u012C\u0130\u00CF\u1E2E\u1EC8\u01CF\u0208\u020A\u1ECA\u012E\u1E2C\u0197',
895
+ },
896
+ { base: 'J', letters: '\u004A\u24BF\uFF2A\u0134\u0248' },
897
+ {
898
+ base: 'K',
899
+ letters: '\u004B\u24C0\uFF2B\u1E30\u01E8\u1E32\u0136\u1E34\u0198\u2C69\uA740\uA742\uA744\uA7A2',
900
+ },
901
+ {
902
+ base: 'L',
903
+ letters: '\u004C\u24C1\uFF2C\u013F\u0139\u013D\u1E36\u1E38\u013B\u1E3C\u1E3A\u0141\u023D\u2C62\u2C60\uA748\uA746\uA780',
904
+ },
905
+ { base: 'LJ', letters: '\u01C7' },
906
+ { base: 'Lj', letters: '\u01C8' },
907
+ { base: 'M', letters: '\u004D\u24C2\uFF2D\u1E3E\u1E40\u1E42\u2C6E\u019C' },
908
+ {
909
+ base: 'N',
910
+ letters: '\u004E\u24C3\uFF2E\u01F8\u0143\u00D1\u1E44\u0147\u1E46\u0145\u1E4A\u1E48\u0220\u019D\uA790\uA7A4',
911
+ },
912
+ { base: 'NJ', letters: '\u01CA' },
913
+ { base: 'Nj', letters: '\u01CB' },
914
+ {
915
+ base: 'O',
916
+ letters: '\u004F\u24C4\uFF2F\u00D2\u00D3\u00D4\u1ED2\u1ED0\u1ED6\u1ED4\u00D5\u1E4C\u022C\u1E4E\u014C\u1E50\u1E52\u014E\u022E\u0230\u00D6\u022A\u1ECE\u0150\u01D1\u020C\u020E\u01A0\u1EDC\u1EDA\u1EE0\u1EDE\u1EE2\u1ECC\u1ED8\u01EA\u01EC\u00D8\u01FE\u0186\u019F\uA74A\uA74C',
917
+ },
918
+ { base: 'OI', letters: '\u01A2' },
919
+ { base: 'OO', letters: '\uA74E' },
920
+ { base: 'OU', letters: '\u0222' },
921
+ { base: 'OE', letters: '\u008C\u0152' },
922
+ { base: 'oe', letters: '\u009C\u0153' },
923
+ {
924
+ base: 'P',
925
+ letters: '\u0050\u24C5\uFF30\u1E54\u1E56\u01A4\u2C63\uA750\uA752\uA754',
926
+ },
927
+ { base: 'Q', letters: '\u0051\u24C6\uFF31\uA756\uA758\u024A' },
928
+ {
929
+ base: 'R',
930
+ letters: '\u0052\u24C7\uFF32\u0154\u1E58\u0158\u0210\u0212\u1E5A\u1E5C\u0156\u1E5E\u024C\u2C64\uA75A\uA7A6\uA782',
931
+ },
932
+ {
933
+ base: 'S',
934
+ letters: '\u0053\u24C8\uFF33\u1E9E\u015A\u1E64\u015C\u1E60\u0160\u1E66\u1E62\u1E68\u0218\u015E\u2C7E\uA7A8\uA784',
935
+ },
936
+ {
937
+ base: 'T',
938
+ letters: '\u0054\u24C9\uFF34\u1E6A\u0164\u1E6C\u021A\u0162\u1E70\u1E6E\u0166\u01AC\u01AE\u023E\uA786',
939
+ },
940
+ { base: 'TZ', letters: '\uA728' },
941
+ {
942
+ base: 'U',
943
+ letters: '\u0055\u24CA\uFF35\u00D9\u00DA\u00DB\u0168\u1E78\u016A\u1E7A\u016C\u00DC\u01DB\u01D7\u01D5\u01D9\u1EE6\u016E\u0170\u01D3\u0214\u0216\u01AF\u1EEA\u1EE8\u1EEE\u1EEC\u1EF0\u1EE4\u1E72\u0172\u1E76\u1E74\u0244',
944
+ },
945
+ { base: 'V', letters: '\u0056\u24CB\uFF36\u1E7C\u1E7E\u01B2\uA75E\u0245' },
946
+ { base: 'VY', letters: '\uA760' },
947
+ {
948
+ base: 'W',
949
+ letters: '\u0057\u24CC\uFF37\u1E80\u1E82\u0174\u1E86\u1E84\u1E88\u2C72',
950
+ },
951
+ { base: 'X', letters: '\u0058\u24CD\uFF38\u1E8A\u1E8C' },
952
+ {
953
+ base: 'Y',
954
+ letters: '\u0059\u24CE\uFF39\u1EF2\u00DD\u0176\u1EF8\u0232\u1E8E\u0178\u1EF6\u1EF4\u01B3\u024E\u1EFE',
955
+ },
956
+ {
957
+ base: 'Z',
958
+ letters: '\u005A\u24CF\uFF3A\u0179\u1E90\u017B\u017D\u1E92\u1E94\u01B5\u0224\u2C7F\u2C6B\uA762',
959
+ },
960
+ {
961
+ base: 'a',
962
+ letters: '\u0061\u24D0\uFF41\u1E9A\u00E0\u00E1\u00E2\u1EA7\u1EA5\u1EAB\u1EA9\u00E3\u0101\u0103\u1EB1\u1EAF\u1EB5\u1EB3\u0227\u01E1\u00E4\u01DF\u1EA3\u00E5\u01FB\u01CE\u0201\u0203\u1EA1\u1EAD\u1EB7\u1E01\u0105\u2C65\u0250',
963
+ },
964
+ { base: 'aa', letters: '\uA733' },
965
+ { base: 'ae', letters: '\u00E6\u01FD\u01E3' },
966
+ { base: 'ao', letters: '\uA735' },
967
+ { base: 'au', letters: '\uA737' },
968
+ { base: 'av', letters: '\uA739\uA73B' },
969
+ { base: 'ay', letters: '\uA73D' },
970
+ {
971
+ base: 'b',
972
+ letters: '\u0062\u24D1\uFF42\u1E03\u1E05\u1E07\u0180\u0183\u0253',
973
+ },
974
+ {
975
+ base: 'c',
976
+ letters: '\u0063\u24D2\uFF43\u0107\u0109\u010B\u010D\u00E7\u1E09\u0188\u023C\uA73F\u2184',
977
+ },
978
+ {
979
+ base: 'd',
980
+ letters: '\u0064\u24D3\uFF44\u1E0B\u010F\u1E0D\u1E11\u1E13\u1E0F\u0111\u018C\u0256\u0257\uA77A',
981
+ },
982
+ { base: 'dz', letters: '\u01F3\u01C6' },
983
+ {
984
+ base: 'e',
985
+ letters: '\u0065\u24D4\uFF45\u00E8\u00E9\u00EA\u1EC1\u1EBF\u1EC5\u1EC3\u1EBD\u0113\u1E15\u1E17\u0115\u0117\u00EB\u1EBB\u011B\u0205\u0207\u1EB9\u1EC7\u0229\u1E1D\u0119\u1E19\u1E1B\u0247\u025B\u01DD',
986
+ },
987
+ { base: 'f', letters: '\u0066\u24D5\uFF46\u1E1F\u0192\uA77C' },
988
+ {
989
+ base: 'g',
990
+ letters: '\u0067\u24D6\uFF47\u01F5\u011D\u1E21\u011F\u0121\u01E7\u0123\u01E5\u0260\uA7A1\u1D79\uA77F',
991
+ },
992
+ {
993
+ base: 'h',
994
+ letters: '\u0068\u24D7\uFF48\u0125\u1E23\u1E27\u021F\u1E25\u1E29\u1E2B\u1E96\u0127\u2C68\u2C76\u0265',
995
+ },
996
+ { base: 'hv', letters: '\u0195' },
997
+ {
998
+ base: 'i',
999
+ letters: '\u0069\u24D8\uFF49\u00EC\u00ED\u00EE\u0129\u012B\u012D\u00EF\u1E2F\u1EC9\u01D0\u0209\u020B\u1ECB\u012F\u1E2D\u0268\u0131',
1000
+ },
1001
+ { base: 'j', letters: '\u006A\u24D9\uFF4A\u0135\u01F0\u0249' },
1002
+ {
1003
+ base: 'k',
1004
+ letters: '\u006B\u24DA\uFF4B\u1E31\u01E9\u1E33\u0137\u1E35\u0199\u2C6A\uA741\uA743\uA745\uA7A3',
1005
+ },
1006
+ {
1007
+ base: 'l',
1008
+ letters: '\u006C\u24DB\uFF4C\u0140\u013A\u013E\u1E37\u1E39\u013C\u1E3D\u1E3B\u017F\u0142\u019A\u026B\u2C61\uA749\uA781\uA747',
1009
+ },
1010
+ { base: 'lj', letters: '\u01C9' },
1011
+ { base: 'm', letters: '\u006D\u24DC\uFF4D\u1E3F\u1E41\u1E43\u0271\u026F' },
1012
+ {
1013
+ base: 'n',
1014
+ letters: '\u006E\u24DD\uFF4E\u01F9\u0144\u00F1\u1E45\u0148\u1E47\u0146\u1E4B\u1E49\u019E\u0272\u0149\uA791\uA7A5',
1015
+ },
1016
+ { base: 'nj', letters: '\u01CC' },
1017
+ {
1018
+ base: 'o',
1019
+ letters: '\u006F\u24DE\uFF4F\u00F2\u00F3\u00F4\u1ED3\u1ED1\u1ED7\u1ED5\u00F5\u1E4D\u022D\u1E4F\u014D\u1E51\u1E53\u014F\u022F\u0231\u00F6\u022B\u1ECF\u0151\u01D2\u020D\u020F\u01A1\u1EDD\u1EDB\u1EE1\u1EDF\u1EE3\u1ECD\u1ED9\u01EB\u01ED\u00F8\u01FF\u0254\uA74B\uA74D\u0275',
1020
+ },
1021
+ { base: 'oi', letters: '\u01A3' },
1022
+ { base: 'ou', letters: '\u0223' },
1023
+ { base: 'oo', letters: '\uA74F' },
1024
+ {
1025
+ base: 'p',
1026
+ letters: '\u0070\u24DF\uFF50\u1E55\u1E57\u01A5\u1D7D\uA751\uA753\uA755',
1027
+ },
1028
+ { base: 'q', letters: '\u0071\u24E0\uFF51\u024B\uA757\uA759' },
1029
+ {
1030
+ base: 'r',
1031
+ letters: '\u0072\u24E1\uFF52\u0155\u1E59\u0159\u0211\u0213\u1E5B\u1E5D\u0157\u1E5F\u024D\u027D\uA75B\uA7A7\uA783',
1032
+ },
1033
+ {
1034
+ base: 's',
1035
+ letters: '\u0073\u24E2\uFF53\u00DF\u015B\u1E65\u015D\u1E61\u0161\u1E67\u1E63\u1E69\u0219\u015F\u023F\uA7A9\uA785\u1E9B',
1036
+ },
1037
+ {
1038
+ base: 't',
1039
+ letters: '\u0074\u24E3\uFF54\u1E6B\u1E97\u0165\u1E6D\u021B\u0163\u1E71\u1E6F\u0167\u01AD\u0288\u2C66\uA787',
1040
+ },
1041
+ { base: 'tz', letters: '\uA729' },
1042
+ {
1043
+ base: 'u',
1044
+ letters: '\u0075\u24E4\uFF55\u00F9\u00FA\u00FB\u0169\u1E79\u016B\u1E7B\u016D\u00FC\u01DC\u01D8\u01D6\u01DA\u1EE7\u016F\u0171\u01D4\u0215\u0217\u01B0\u1EEB\u1EE9\u1EEF\u1EED\u1EF1\u1EE5\u1E73\u0173\u1E77\u1E75\u0289',
1045
+ },
1046
+ { base: 'v', letters: '\u0076\u24E5\uFF56\u1E7D\u1E7F\u028B\uA75F\u028C' },
1047
+ { base: 'vy', letters: '\uA761' },
1048
+ {
1049
+ base: 'w',
1050
+ letters: '\u0077\u24E6\uFF57\u1E81\u1E83\u0175\u1E87\u1E85\u1E98\u1E89\u2C73',
1051
+ },
1052
+ { base: 'x', letters: '\u0078\u24E7\uFF58\u1E8B\u1E8D' },
1053
+ {
1054
+ base: 'y',
1055
+ letters: '\u0079\u24E8\uFF59\u1EF3\u00FD\u0177\u1EF9\u0233\u1E8F\u00FF\u1EF7\u1E99\u1EF5\u01B4\u024F\u1EFF',
1056
+ },
1057
+ {
1058
+ base: 'z',
1059
+ letters: '\u007A\u24E9\uFF5A\u017A\u1E91\u017C\u017E\u1E93\u1E95\u01B6\u0225\u0240\u2C6C\uA763',
1060
+ },
1061
+ ];
1062
+ /**
1063
+ * Map of letters from diacritic variant to diacritless variant
1064
+ * Contains lowercase and uppercase separatelly
1065
+ *
1066
+ * > "á" => "a"
1067
+ * > "ě" => "e"
1068
+ * > "Ă" => "A"
1069
+ * > ...
1070
+ *
1071
+ * @public exported from `@promptbook/utils`
1072
+ */
1073
+ const DIACRITIC_VARIANTS_LETTERS = {};
1074
+ // tslint:disable-next-line: prefer-for-of
1075
+ for (let i = 0; i < defaultDiacriticsRemovalMap.length; i++) {
1076
+ const letters = defaultDiacriticsRemovalMap[i].letters;
1077
+ // tslint:disable-next-line: prefer-for-of
1078
+ for (let j = 0; j < letters.length; j++) {
1079
+ DIACRITIC_VARIANTS_LETTERS[letters[j]] = defaultDiacriticsRemovalMap[i].base;
1080
+ }
1081
+ }
1082
+ // <- TODO: [🍓] Put to maker function to save execution time if not needed
1083
+ /*
1084
+ @see https://stackoverflow.com/questions/990904/remove-accents-diacritics-in-a-string-in-javascript
1085
+ Licensed under the Apache License, Version 2.0 (the "License");
1086
+ you may not use this file except in compliance with the License.
1087
+ You may obtain a copy of the License at
1088
+
1089
+ http://www.apache.org/licenses/LICENSE-2.0
1090
+
1091
+ Unless required by applicable law or agreed to in writing, software
1092
+ distributed under the License is distributed on an "AS IS" BASIS,
1093
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
1094
+ See the License for the specific language governing permissions and
1095
+ limitations under the License.
1096
+ */
1097
+
1098
+ /**
1099
+ * Removes diacritic marks (accents) from characters in a string.
1100
+ *
1101
+ * @param input The string containing diacritics to be normalized.
1102
+ * @returns The string with diacritics removed or normalized.
1103
+ * @public exported from `@promptbook/utils`
1104
+ */
1105
+ function removeDiacritics(input) {
1106
+ /*eslint no-control-regex: "off"*/
1107
+ return input.replace(/[^\u0000-\u007E]/g, (a) => {
1108
+ return DIACRITIC_VARIANTS_LETTERS[a] || a;
1109
+ });
1110
+ }
1111
+ /**
1112
+ * TODO: [Ж] Variant for cyrillic (and in general non-latin) letters
1113
+ */
1114
+
1115
+ /**
1116
+ * Counts number of words in the text
1117
+ *
1118
+ * @public exported from `@promptbook/utils`
1119
+ */
1120
+ function countWords(text) {
1121
+ text = text.replace(/[\p{Extended_Pictographic}]/gu, 'a');
1122
+ text = removeDiacritics(text);
1123
+ // Add spaces before uppercase letters preceded by lowercase letters (for camelCase)
1124
+ text = text.replace(/([a-z])([A-Z])/g, '$1 $2');
1125
+ return text.split(/[^a-zа-я0-9]+/i).filter((word) => word.length > 0).length;
1126
+ }
1127
+ /**
1128
+ * TODO: [🥴] Implement counting in formats - like JSON, CSV, XML,...
1129
+ */
1130
+
1131
+ /**
1132
+ * Helper of usage compute
1133
+ *
1134
+ * @param content the content of prompt or response
1135
+ * @returns part of UsageCounts
1136
+ *
1137
+ * @private internal utility of LlmExecutionTools
1138
+ */
1139
+ function computeUsageCounts(content) {
1140
+ return {
1141
+ charactersCount: { value: countCharacters(content) },
1142
+ wordsCount: { value: countWords(content) },
1143
+ sentencesCount: { value: countSentences(content) },
1144
+ linesCount: { value: countLines(content) },
1145
+ paragraphsCount: { value: countParagraphs(content) },
1146
+ pagesCount: { value: countPages(content) },
1147
+ };
1148
+ }
1149
+
1150
+ /**
1151
+ * Represents the uncertain value
1152
+ *
1153
+ * @public exported from `@promptbook/core`
1154
+ */
1155
+ const ZERO_VALUE = $deepFreeze({ value: 0 });
1156
+ /**
1157
+ * Represents the uncertain value
1158
+ *
1159
+ * @public exported from `@promptbook/core`
1160
+ */
1161
+ const UNCERTAIN_ZERO_VALUE = $deepFreeze({ value: 0, isUncertain: true });
1162
+ /**
1163
+ * Represents the usage with no resources consumed
1164
+ *
1165
+ * @public exported from `@promptbook/core`
1166
+ */
1167
+ $deepFreeze({
1168
+ price: ZERO_VALUE,
1169
+ input: {
1170
+ tokensCount: ZERO_VALUE,
1171
+ charactersCount: ZERO_VALUE,
1172
+ wordsCount: ZERO_VALUE,
1173
+ sentencesCount: ZERO_VALUE,
1174
+ linesCount: ZERO_VALUE,
1175
+ paragraphsCount: ZERO_VALUE,
1176
+ pagesCount: ZERO_VALUE,
1177
+ },
1178
+ output: {
1179
+ tokensCount: ZERO_VALUE,
1180
+ charactersCount: ZERO_VALUE,
1181
+ wordsCount: ZERO_VALUE,
1182
+ sentencesCount: ZERO_VALUE,
1183
+ linesCount: ZERO_VALUE,
1184
+ paragraphsCount: ZERO_VALUE,
1185
+ pagesCount: ZERO_VALUE,
1186
+ },
1187
+ });
1188
+ /**
1189
+ * Represents the usage with unknown resources consumed
1190
+ *
1191
+ * @public exported from `@promptbook/core`
1192
+ */
1193
+ $deepFreeze({
1194
+ price: UNCERTAIN_ZERO_VALUE,
1195
+ input: {
1196
+ tokensCount: UNCERTAIN_ZERO_VALUE,
1197
+ charactersCount: UNCERTAIN_ZERO_VALUE,
1198
+ wordsCount: UNCERTAIN_ZERO_VALUE,
1199
+ sentencesCount: UNCERTAIN_ZERO_VALUE,
1200
+ linesCount: UNCERTAIN_ZERO_VALUE,
1201
+ paragraphsCount: UNCERTAIN_ZERO_VALUE,
1202
+ pagesCount: UNCERTAIN_ZERO_VALUE,
1203
+ },
1204
+ output: {
1205
+ tokensCount: UNCERTAIN_ZERO_VALUE,
1206
+ charactersCount: UNCERTAIN_ZERO_VALUE,
1207
+ wordsCount: UNCERTAIN_ZERO_VALUE,
1208
+ sentencesCount: UNCERTAIN_ZERO_VALUE,
1209
+ linesCount: UNCERTAIN_ZERO_VALUE,
1210
+ paragraphsCount: UNCERTAIN_ZERO_VALUE,
1211
+ pagesCount: UNCERTAIN_ZERO_VALUE,
1212
+ },
1213
+ });
1214
+ /**
1215
+ * Note: [💞] Ignore a discrepancy between file name and entity name
1216
+ */
1217
+
1218
+ /**
1219
+ * Make UncertainNumber
1220
+ *
1221
+ * @param value value of the uncertain number, if `NaN` or `undefined`, it will be set to 0 and `isUncertain=true`
1222
+ * @param isUncertain if `true`, the value is uncertain, otherwise depends on the value
1223
+ *
1224
+ * @private utility for initializating UncertainNumber
1225
+ */
1226
+ function uncertainNumber(value, isUncertain) {
1227
+ if (value === null || value === undefined || Number.isNaN(value)) {
1228
+ return UNCERTAIN_ZERO_VALUE;
1229
+ }
1230
+ if (isUncertain === true) {
1231
+ return { value, isUncertain };
1232
+ }
1233
+ return { value };
1234
+ }
1235
+
1236
+ /**
1237
+ * Function computeUsage will create price per one token based on the string value found on openai page
1238
+ *
1239
+ * @private within the repository, used only as internal helper for `OPENAI_MODELS`
1240
+ */
1241
+ function computeUsage(value) {
1242
+ const [price, tokens] = value.split(' / ');
1243
+ return parseFloat(price.replace('$', '')) / parseFloat(tokens.replace('M tokens', '')) / 1000000;
1244
+ }
1245
+
1246
+ /**
1247
+ * List of available OpenAI models with pricing
1248
+ *
1249
+ * Note: Done at 2025-05-06
1250
+ *
1251
+ * @see https://platform.openai.com/docs/models/
1252
+ * @see https://openai.com/api/pricing/
1253
+ * @public exported from `@promptbook/openai`
1254
+ */
1255
+ const OPENAI_MODELS = exportJson({
1256
+ name: 'OPENAI_MODELS',
1257
+ value: [
1258
+ /*/
1259
+ {
1260
+ modelTitle: 'dall-e-3',
1261
+ modelName: 'dall-e-3',
1262
+ },
1263
+ /**/
1264
+ /*/
1265
+ {
1266
+ modelTitle: 'whisper-1',
1267
+ modelName: 'whisper-1',
1268
+ },
1269
+ /**/
1270
+ /**/
1271
+ {
1272
+ modelVariant: 'COMPLETION',
1273
+ modelTitle: 'davinci-002',
1274
+ modelName: 'davinci-002',
1275
+ modelDescription: 'Legacy completion model with strong performance on text generation tasks. Optimized for complex instructions and longer outputs.',
1276
+ pricing: {
1277
+ prompt: computeUsage(`$2.00 / 1M tokens`),
1278
+ output: computeUsage(`$2.00 / 1M tokens`),
1279
+ },
1280
+ },
1281
+ /**/
1282
+ /*/
1283
+ {
1284
+ modelTitle: 'dall-e-2',
1285
+ modelName: 'dall-e-2',
1286
+ },
1287
+ /**/
1288
+ /**/
1289
+ {
1290
+ modelVariant: 'CHAT',
1291
+ modelTitle: 'gpt-3.5-turbo-16k',
1292
+ modelName: 'gpt-3.5-turbo-16k',
1293
+ modelDescription: 'GPT-3.5 Turbo with extended 16k token context length for handling longer conversations and documents.',
1294
+ pricing: {
1295
+ prompt: computeUsage(`$3.00 / 1M tokens`),
1296
+ output: computeUsage(`$4.00 / 1M tokens`),
1297
+ },
1298
+ },
1299
+ /**/
1300
+ /*/
1301
+ {
1302
+ modelTitle: 'tts-1-hd-1106',
1303
+ modelName: 'tts-1-hd-1106',
1304
+ },
1305
+ /**/
1306
+ /*/
1307
+ {
1308
+ modelTitle: 'tts-1-hd',
1309
+ modelName: 'tts-1-hd',
1310
+ },
1311
+ /**/
1312
+ /**/
1313
+ {
1314
+ modelVariant: 'CHAT',
1315
+ modelTitle: 'gpt-4',
1316
+ modelName: 'gpt-4',
1317
+ modelDescription: 'GPT-4 is a powerful language model with enhanced reasoning, instruction-following capabilities, and 8K context window. Optimized for complex tasks requiring deep understanding.',
1318
+ pricing: {
1319
+ prompt: computeUsage(`$30.00 / 1M tokens`),
1320
+ output: computeUsage(`$60.00 / 1M tokens`),
1321
+ },
1322
+ },
1323
+ /**/
1324
+ /**/
1325
+ {
1326
+ modelVariant: 'CHAT',
1327
+ modelTitle: 'gpt-4-32k',
1328
+ modelName: 'gpt-4-32k',
1329
+ modelDescription: 'Extended context version of GPT-4 with a 32K token window for processing very long inputs and generating comprehensive responses for complex tasks.',
1330
+ pricing: {
1331
+ prompt: computeUsage(`$60.00 / 1M tokens`),
1332
+ output: computeUsage(`$120.00 / 1M tokens`),
1333
+ },
1334
+ },
1335
+ /**/
1336
+ /*/
1337
+ {
1338
+ modelVariant: 'CHAT',
1339
+ modelTitle: 'gpt-4-0613',
1340
+ modelName: 'gpt-4-0613',
1341
+ pricing: {
1342
+ prompt: computeUsage(` / 1M tokens`),
1343
+ output: computeUsage(` / 1M tokens`),
1344
+ },
1345
+ },
1346
+ /**/
1347
+ /**/
1348
+ {
1349
+ modelVariant: 'CHAT',
1350
+ modelTitle: 'gpt-4-turbo-2024-04-09',
1351
+ modelName: 'gpt-4-turbo-2024-04-09',
1352
+ modelDescription: 'Latest stable GPT-4 Turbo model from April 2024 with enhanced reasoning and context handling capabilities. Offers 128K context window and improved performance.',
1353
+ pricing: {
1354
+ prompt: computeUsage(`$10.00 / 1M tokens`),
1355
+ output: computeUsage(`$30.00 / 1M tokens`),
1356
+ },
1357
+ },
1358
+ /**/
1359
+ /**/
1360
+ {
1361
+ modelVariant: 'CHAT',
1362
+ modelTitle: 'gpt-3.5-turbo-1106',
1363
+ modelName: 'gpt-3.5-turbo-1106',
1364
+ modelDescription: 'November 2023 version of GPT-3.5 Turbo with improved instruction following and a 16K token context window.',
1365
+ pricing: {
1366
+ prompt: computeUsage(`$1.00 / 1M tokens`),
1367
+ output: computeUsage(`$2.00 / 1M tokens`),
1368
+ },
1369
+ },
1370
+ /**/
1371
+ /**/
1372
+ {
1373
+ modelVariant: 'CHAT',
1374
+ modelTitle: 'gpt-4-turbo',
1375
+ modelName: 'gpt-4-turbo',
1376
+ modelDescription: 'More capable model than GPT-4 with improved instruction following, function calling and a 128K token context window for handling very large documents.',
1377
+ pricing: {
1378
+ prompt: computeUsage(`$10.00 / 1M tokens`),
1379
+ output: computeUsage(`$30.00 / 1M tokens`),
1380
+ },
1381
+ },
1382
+ /**/
1383
+ /**/
1384
+ {
1385
+ modelVariant: 'COMPLETION',
1386
+ modelTitle: 'gpt-3.5-turbo-instruct-0914',
1387
+ modelName: 'gpt-3.5-turbo-instruct-0914',
1388
+ modelDescription: 'September 2023 version of GPT-3.5 Turbo optimized for completion-style instruction following with a 4K context window.',
1389
+ pricing: {
1390
+ prompt: computeUsage(`$1.50 / 1M tokens`),
1391
+ output: computeUsage(`$2.00 / 1M tokens`), // <- For gpt-3.5-turbo-instruct
1392
+ },
1393
+ },
1394
+ /**/
1395
+ /**/
1396
+ {
1397
+ modelVariant: 'COMPLETION',
1398
+ modelTitle: 'gpt-3.5-turbo-instruct',
1399
+ modelName: 'gpt-3.5-turbo-instruct',
1400
+ modelDescription: 'Optimized version of GPT-3.5 for completion-style API with good instruction following and a 4K token context window.',
1401
+ pricing: {
1402
+ prompt: computeUsage(`$1.50 / 1M tokens`),
1403
+ output: computeUsage(`$2.00 / 1M tokens`),
1404
+ },
1405
+ },
1406
+ /**/
1407
+ /*/
1408
+ {
1409
+ modelTitle: 'tts-1',
1410
+ modelName: 'tts-1',
1411
+ },
1412
+ /**/
1413
+ /**/
1414
+ {
1415
+ modelVariant: 'CHAT',
1416
+ modelTitle: 'gpt-3.5-turbo',
1417
+ modelName: 'gpt-3.5-turbo',
1418
+ modelDescription: 'Latest version of GPT-3.5 Turbo with improved performance and instruction following capabilities. Default 4K context window with options for 16K.',
1419
+ pricing: {
1420
+ prompt: computeUsage(`$0.50 / 1M tokens`),
1421
+ output: computeUsage(`$1.50 / 1M tokens`),
1422
+ },
1423
+ },
1424
+ /**/
1425
+ /**/
1426
+ {
1427
+ modelVariant: 'CHAT',
1428
+ modelTitle: 'gpt-3.5-turbo-0301',
1429
+ modelName: 'gpt-3.5-turbo-0301',
1430
+ modelDescription: 'March 2023 version of GPT-3.5 Turbo with a 4K token context window. Legacy model maintained for backward compatibility.',
1431
+ pricing: {
1432
+ prompt: computeUsage(`$1.50 / 1M tokens`),
1433
+ output: computeUsage(`$2.00 / 1M tokens`),
1434
+ },
1435
+ },
1436
+ /**/
1437
+ /**/
1438
+ {
1439
+ modelVariant: 'COMPLETION',
1440
+ modelTitle: 'babbage-002',
1441
+ modelName: 'babbage-002',
1442
+ modelDescription: 'Efficient legacy completion model with a good balance of performance and speed. Suitable for straightforward text generation tasks.',
1443
+ pricing: {
1444
+ prompt: computeUsage(`$0.40 / 1M tokens`),
1445
+ output: computeUsage(`$0.40 / 1M tokens`),
1446
+ },
1447
+ },
1448
+ /**/
1449
+ /**/
1450
+ {
1451
+ modelVariant: 'CHAT',
1452
+ modelTitle: 'gpt-4-1106-preview',
1453
+ modelName: 'gpt-4-1106-preview',
1454
+ modelDescription: 'November 2023 preview version of GPT-4 Turbo with improved instruction following and a 128K token context window.',
1455
+ pricing: {
1456
+ prompt: computeUsage(`$10.00 / 1M tokens`),
1457
+ output: computeUsage(`$30.00 / 1M tokens`),
1458
+ },
1459
+ },
1460
+ /**/
1461
+ /**/
1462
+ {
1463
+ modelVariant: 'CHAT',
1464
+ modelTitle: 'gpt-4-0125-preview',
1465
+ modelName: 'gpt-4-0125-preview',
1466
+ modelDescription: 'January 2024 preview version of GPT-4 Turbo with improved reasoning capabilities and a 128K token context window.',
1467
+ pricing: {
1468
+ prompt: computeUsage(`$10.00 / 1M tokens`),
1469
+ output: computeUsage(`$30.00 / 1M tokens`),
1470
+ },
1471
+ },
1472
+ /**/
1473
+ /*/
1474
+ {
1475
+ modelTitle: 'tts-1-1106',
1476
+ modelName: 'tts-1-1106',
1477
+ },
1478
+ /**/
1479
+ /**/
1480
+ {
1481
+ modelVariant: 'CHAT',
1482
+ modelTitle: 'gpt-3.5-turbo-0125',
1483
+ modelName: 'gpt-3.5-turbo-0125',
1484
+ modelDescription: 'January 2024 version of GPT-3.5 Turbo with improved reasoning capabilities and a 16K token context window.',
1485
+ pricing: {
1486
+ prompt: computeUsage(`$0.50 / 1M tokens`),
1487
+ output: computeUsage(`$1.50 / 1M tokens`),
1488
+ },
1489
+ },
1490
+ /**/
1491
+ /**/
1492
+ {
1493
+ modelVariant: 'CHAT',
1494
+ modelTitle: 'gpt-4-turbo-preview',
1495
+ modelName: 'gpt-4-turbo-preview',
1496
+ modelDescription: 'Preview version of GPT-4 Turbo that points to the latest model version. Features improved instruction following, 128K token context window and lower latency.',
1497
+ pricing: {
1498
+ prompt: computeUsage(`$10.00 / 1M tokens`),
1499
+ output: computeUsage(`$30.00 / 1M tokens`),
1500
+ },
1501
+ },
1502
+ /**/
1503
+ /**/
1504
+ {
1505
+ modelVariant: 'EMBEDDING',
1506
+ modelTitle: 'text-embedding-3-large',
1507
+ modelName: 'text-embedding-3-large',
1508
+ modelDescription: "OpenAI's most capable text embedding model designed for high-quality embeddings for complex similarity tasks and information retrieval.",
1509
+ pricing: {
1510
+ prompt: computeUsage(`$0.13 / 1M tokens`),
1511
+ // TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
1512
+ output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
1513
+ },
1514
+ },
1515
+ /**/
1516
+ /**/
1517
+ {
1518
+ modelVariant: 'EMBEDDING',
1519
+ modelTitle: 'text-embedding-3-small',
1520
+ modelName: 'text-embedding-3-small',
1521
+ modelDescription: 'Cost-effective embedding model with good performance for simpler tasks like text similarity and retrieval. Good balance of quality and efficiency.',
1522
+ pricing: {
1523
+ prompt: computeUsage(`$0.02 / 1M tokens`),
1524
+ // TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
1525
+ output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
1526
+ },
1527
+ },
1528
+ /**/
1529
+ /**/
1530
+ {
1531
+ modelVariant: 'CHAT',
1532
+ modelTitle: 'gpt-3.5-turbo-0613',
1533
+ modelName: 'gpt-3.5-turbo-0613',
1534
+ modelDescription: 'June 2023 version of GPT-3.5 Turbo with function calling capabilities and a 4K token context window.',
1535
+ pricing: {
1536
+ prompt: computeUsage(`$1.50 / 1M tokens`),
1537
+ output: computeUsage(`$2.00 / 1M tokens`),
1538
+ },
1539
+ },
1540
+ /**/
1541
+ /**/
1542
+ {
1543
+ modelVariant: 'EMBEDDING',
1544
+ modelTitle: 'text-embedding-ada-002',
1545
+ modelName: 'text-embedding-ada-002',
1546
+ modelDescription: 'Legacy text embedding model suitable for text similarity and retrieval augmented generation use cases. Replaced by newer embedding-3 models.',
1547
+ pricing: {
1548
+ prompt: computeUsage(`$0.1 / 1M tokens`),
1549
+ // TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
1550
+ output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
547
1551
  },
1552
+ },
1553
+ /**/
1554
+ /*/
1555
+ {
1556
+ modelVariant: 'CHAT',
1557
+ modelTitle: 'gpt-4-1106-vision-preview',
1558
+ modelName: 'gpt-4-1106-vision-preview',
1559
+ },
1560
+ /**/
1561
+ /*/
1562
+ {
1563
+ modelVariant: 'CHAT',
1564
+ modelTitle: 'gpt-4-vision-preview',
1565
+ modelName: 'gpt-4-vision-preview',
1566
+ pricing: {
1567
+ prompt: computeUsage(`$10.00 / 1M tokens`),
1568
+ output: computeUsage(`$30.00 / 1M tokens`),
1569
+ },
1570
+ },
1571
+ /**/
1572
+ /**/
1573
+ {
1574
+ modelVariant: 'CHAT',
1575
+ modelTitle: 'gpt-4o-2024-05-13',
1576
+ modelName: 'gpt-4o-2024-05-13',
1577
+ modelDescription: 'May 2024 version of GPT-4o with enhanced multimodal capabilities, improved reasoning, and optimized for vision, audio and chat at lower latencies.',
1578
+ pricing: {
1579
+ prompt: computeUsage(`$5.00 / 1M tokens`),
1580
+ output: computeUsage(`$15.00 / 1M tokens`),
1581
+ },
1582
+ },
1583
+ /**/
1584
+ /**/
1585
+ {
1586
+ modelVariant: 'CHAT',
1587
+ modelTitle: 'gpt-4o',
1588
+ modelName: 'gpt-4o',
1589
+ modelDescription: "OpenAI's most advanced multimodal model optimized for performance, speed, and cost. Capable of vision, reasoning, and high quality text generation.",
1590
+ pricing: {
1591
+ prompt: computeUsage(`$5.00 / 1M tokens`),
1592
+ output: computeUsage(`$15.00 / 1M tokens`),
1593
+ },
1594
+ },
1595
+ /**/
1596
+ /**/
1597
+ {
1598
+ modelVariant: 'CHAT',
1599
+ modelTitle: 'gpt-4o-mini',
1600
+ modelName: 'gpt-4o-mini',
1601
+ modelDescription: 'Smaller, more cost-effective version of GPT-4o with good performance across text, vision, and audio tasks at reduced complexity.',
1602
+ pricing: {
1603
+ prompt: computeUsage(`$0.15 / 1M tokens`),
1604
+ output: computeUsage(`$0.60 / 1M tokens`),
1605
+ },
1606
+ },
1607
+ /**/
1608
+ /**/
1609
+ {
1610
+ modelVariant: 'CHAT',
1611
+ modelTitle: 'o1-preview',
1612
+ modelName: 'o1-preview',
1613
+ modelDescription: 'Advanced reasoning model with exceptional performance on complex logical, mathematical, and analytical tasks. Built for deep reasoning and specialized professional tasks.',
1614
+ pricing: {
1615
+ prompt: computeUsage(`$15.00 / 1M tokens`),
1616
+ output: computeUsage(`$60.00 / 1M tokens`),
1617
+ },
1618
+ },
1619
+ /**/
1620
+ /**/
1621
+ {
1622
+ modelVariant: 'CHAT',
1623
+ modelTitle: 'o1-preview-2024-09-12',
1624
+ modelName: 'o1-preview-2024-09-12',
1625
+ modelDescription: 'September 2024 version of O1 preview with specialized reasoning capabilities for complex tasks requiring precise analytical thinking.',
1626
+ // <- TODO: [💩] Some better system to organize these date suffixes and versions
1627
+ pricing: {
1628
+ prompt: computeUsage(`$15.00 / 1M tokens`),
1629
+ output: computeUsage(`$60.00 / 1M tokens`),
1630
+ },
1631
+ },
1632
+ /**/
1633
+ /**/
1634
+ {
1635
+ modelVariant: 'CHAT',
1636
+ modelTitle: 'o1-mini',
1637
+ modelName: 'o1-mini',
1638
+ modelDescription: 'Smaller, cost-effective version of the O1 model with good performance on reasoning tasks while maintaining efficiency for everyday analytical use.',
1639
+ pricing: {
1640
+ prompt: computeUsage(`$3.00 / 1M tokens`),
1641
+ output: computeUsage(`$12.00 / 1M tokens`),
1642
+ },
1643
+ },
1644
+ /**/
1645
+ /**/
1646
+ {
1647
+ modelVariant: 'CHAT',
1648
+ modelTitle: 'o1',
1649
+ modelName: 'o1',
1650
+ modelDescription: "OpenAI's advanced reasoning model focused on logic and problem-solving. Designed for complex analytical tasks with rigorous step-by-step reasoning. 128K context window.",
1651
+ pricing: {
1652
+ prompt: computeUsage(`$15.00 / 1M tokens`),
1653
+ output: computeUsage(`$60.00 / 1M tokens`),
1654
+ },
1655
+ },
1656
+ /**/
1657
+ /**/
1658
+ {
1659
+ modelVariant: 'CHAT',
1660
+ modelTitle: 'o3-mini',
1661
+ modelName: 'o3-mini',
1662
+ modelDescription: 'Cost-effective reasoning model optimized for academic and scientific problem-solving. Efficient performance on STEM tasks with deep mathematical and scientific knowledge. 128K context window.',
1663
+ pricing: {
1664
+ prompt: computeUsage(`$3.00 / 1M tokens`),
1665
+ output: computeUsage(`$12.00 / 1M tokens`),
1666
+ // <- TODO: !! Unsure, check the pricing
1667
+ },
1668
+ },
1669
+ /**/
1670
+ /**/
1671
+ {
1672
+ modelVariant: 'CHAT',
1673
+ modelTitle: 'o1-mini-2024-09-12',
1674
+ modelName: 'o1-mini-2024-09-12',
1675
+ modelDescription: "September 2024 version of O1-mini with balanced reasoning capabilities and cost-efficiency. Good for analytical tasks that don't require the full O1 model.",
1676
+ pricing: {
1677
+ prompt: computeUsage(`$3.00 / 1M tokens`),
1678
+ output: computeUsage(`$12.00 / 1M tokens`),
1679
+ },
1680
+ },
1681
+ /**/
1682
+ /**/
1683
+ {
1684
+ modelVariant: 'CHAT',
1685
+ modelTitle: 'gpt-3.5-turbo-16k-0613',
1686
+ modelName: 'gpt-3.5-turbo-16k-0613',
1687
+ modelDescription: 'June 2023 version of GPT-3.5 Turbo with extended 16k token context window for processing longer conversations and documents.',
1688
+ pricing: {
1689
+ prompt: computeUsage(`$3.00 / 1M tokens`),
1690
+ output: computeUsage(`$4.00 / 1M tokens`),
1691
+ },
1692
+ },
1693
+ /**/
1694
+ // <- [🕕]
1695
+ ],
1696
+ });
1697
+ /**
1698
+ * Note: [🤖] Add models of new variant
1699
+ * TODO: [🧠] Some mechanism to propagate unsureness
1700
+ * TODO: [🎰] Some mechanism to auto-update available models
1701
+ * TODO: [🎰][👮‍♀️] Make this list dynamic - dynamically can be listed modelNames but not modelVariant, legacy status, context length and pricing
1702
+ * TODO: [🧠][👮‍♀️] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
1703
+ * @see https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
1704
+ * @see https://openai.com/api/pricing/
1705
+ * @see /other/playground/playground.ts
1706
+ * TODO: [🍓][💩] Make better
1707
+ * TODO: Change model titles to human eg: "gpt-4-turbo-2024-04-09" -> "GPT-4 Turbo (2024-04-09)"
1708
+ * TODO: [🚸] Not all models are compatible with JSON mode, add this information here and use it
1709
+ * Note: [💞] Ignore a discrepancy between file name and entity name
1710
+ */
1711
+
1712
+ /**
1713
+ * Computes the usage of the OpenAI API based on the response from OpenAI
1714
+ *
1715
+ * @param promptContent The content of the prompt
1716
+ * @param resultContent The content of the result (for embedding prompts or failed prompts pass empty string)
1717
+ * @param rawResponse The raw response from OpenAI API
1718
+ * @throws {PipelineExecutionError} If the usage is not defined in the response from OpenAI
1719
+ * @private internal utility of `OpenAiExecutionTools`
1720
+ */
1721
+ function computeOpenAiUsage(promptContent, // <- Note: Intentionally using [] to access type properties to bring jsdoc from Prompt/PromptResult to consumer
1722
+ resultContent, rawResponse) {
1723
+ var _a, _b;
1724
+ if (rawResponse.usage === undefined) {
1725
+ throw new PipelineExecutionError('The usage is not defined in the response from OpenAI');
1726
+ }
1727
+ if (((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.prompt_tokens) === undefined) {
1728
+ throw new PipelineExecutionError('In OpenAI response `usage.prompt_tokens` not defined');
1729
+ }
1730
+ const inputTokens = rawResponse.usage.prompt_tokens;
1731
+ const outputTokens = ((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completion_tokens) || 0;
1732
+ let isUncertain = false;
1733
+ let modelInfo = OPENAI_MODELS.find((model) => model.modelName === rawResponse.model);
1734
+ if (modelInfo === undefined) {
1735
+ // Note: Model is not in the list of known models, fallback to the family of the models and mark price as uncertain
1736
+ modelInfo = OPENAI_MODELS.find((model) => (rawResponse.model || SALT_NONCE).startsWith(model.modelName));
1737
+ if (modelInfo !== undefined) {
1738
+ isUncertain = true;
1739
+ }
1740
+ }
1741
+ let price;
1742
+ if (modelInfo === undefined || modelInfo.pricing === undefined) {
1743
+ price = uncertainNumber();
1744
+ }
1745
+ else {
1746
+ price = uncertainNumber(inputTokens * modelInfo.pricing.prompt + outputTokens * modelInfo.pricing.output, isUncertain);
1747
+ }
1748
+ return {
1749
+ price,
1750
+ input: {
1751
+ tokensCount: uncertainNumber(rawResponse.usage.prompt_tokens),
1752
+ ...computeUsageCounts(promptContent),
1753
+ },
1754
+ output: {
1755
+ tokensCount: uncertainNumber(outputTokens),
1756
+ ...computeUsageCounts(resultContent),
1757
+ },
1758
+ };
1759
+ }
1760
+ /**
1761
+ * TODO: [🤝] DRY Maybe some common abstraction between `computeOpenAiUsage` and `computeAnthropicClaudeUsage`
1762
+ */
1763
+
1764
+ /**
1765
+ * Execution Tools for calling OpenAI API
1766
+ *
1767
+ * @public exported from `@promptbook/openai`
1768
+ */
1769
+ class OpenAiExecutionTools {
1770
+ /**
1771
+ * Creates OpenAI Execution Tools.
1772
+ *
1773
+ * @param options which are relevant are directly passed to the OpenAI client
1774
+ */
1775
+ constructor(options) {
1776
+ this.options = options;
1777
+ /**
1778
+ * OpenAI API client.
1779
+ */
1780
+ this.client = null;
1781
+ // TODO: Allow configuring rate limits via options
1782
+ this.limiter = new Bottleneck({
1783
+ minTime: 60000 / (this.options.maxRequestsPerMinute || DEFAULT_MAX_REQUESTS_PER_MINUTE),
548
1784
  });
549
1785
  }
1786
+ get title() {
1787
+ return 'OpenAI';
1788
+ }
1789
+ get description() {
1790
+ return 'Use all models provided by OpenAI';
1791
+ }
1792
+ async getClient() {
1793
+ if (this.client === null) {
1794
+ // Note: Passing only OpenAI relevant options to OpenAI constructor
1795
+ const openAiOptions = { ...this.options };
1796
+ delete openAiOptions.isVerbose;
1797
+ delete openAiOptions.userId;
1798
+ this.client = new OpenAI(openAiOptions);
1799
+ }
1800
+ return this.client;
1801
+ }
1802
+ /*
1803
+ Note: Commenting this out to avoid circular dependency
1804
+ /**
1805
+ * Create (sub)tools for calling OpenAI API Assistants
1806
+ *
1807
+ * @param assistantId Which assistant to use
1808
+ * @returns Tools for calling OpenAI API Assistants with same token
1809
+ * /
1810
+ public createAssistantSubtools(assistantId: string_token): OpenAiAssistantExecutionTools {
1811
+ return new OpenAiAssistantExecutionTools({ ...this.options, assistantId });
1812
+ }
1813
+ */
1814
+ /**
1815
+ * Check the `options` passed to `constructor`
1816
+ */
1817
+ async checkConfiguration() {
1818
+ await this.getClient();
1819
+ // TODO: [🎍] Do here a real check that API is online, working and API key is correct
1820
+ }
1821
+ /**
1822
+ * List all available OpenAI models that can be used
1823
+ */
1824
+ async listModels() {
1825
+ /*
1826
+ Note: Dynamic lising of the models
1827
+ const models = await this.openai.models.list({});
1828
+
1829
+ console.log({ models });
1830
+ console.log(models.data);
1831
+ */
1832
+ const client = await this.getClient();
1833
+ const rawModelsList = await client.models.list();
1834
+ const availableModels = rawModelsList.data
1835
+ .sort((a, b) => (a.created > b.created ? 1 : -1))
1836
+ .map((modelFromApi) => {
1837
+ // TODO: !!!! What about other model compatibilities?
1838
+ const modelFromList = OPENAI_MODELS.find(({ modelName }) => modelName === modelFromApi.id ||
1839
+ modelName.startsWith(modelFromApi.id) ||
1840
+ modelFromApi.id.startsWith(modelName));
1841
+ if (modelFromList !== undefined) {
1842
+ return modelFromList;
1843
+ }
1844
+ return {
1845
+ modelVariant: 'CHAT',
1846
+ modelTitle: modelFromApi.id,
1847
+ modelName: modelFromApi.id,
1848
+ modelDescription: '',
1849
+ };
1850
+ });
1851
+ return availableModels;
1852
+ }
1853
+ /**
1854
+ * Calls OpenAI API to use a chat model.
1855
+ */
1856
+ async callChatModel(prompt) {
1857
+ var _a;
1858
+ if (this.options.isVerbose) {
1859
+ console.info('💬 OpenAI callChatModel call', { prompt });
1860
+ }
1861
+ const { content, parameters, modelRequirements, format } = prompt;
1862
+ const client = await this.getClient();
1863
+ // TODO: [☂] Use here more modelRequirements
1864
+ if (modelRequirements.modelVariant !== 'CHAT') {
1865
+ throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
1866
+ }
1867
+ const modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
1868
+ const modelSettings = {
1869
+ model: modelName,
1870
+ max_tokens: modelRequirements.maxTokens,
1871
+ // <- TODO: [🌾] Make some global max cap for maxTokens
1872
+ temperature: modelRequirements.temperature,
1873
+ // <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
1874
+ // <- Note: [🧆]
1875
+ }; // <- TODO: [💩] Guard here types better
1876
+ if (format === 'JSON') {
1877
+ modelSettings.response_format = {
1878
+ type: 'json_object',
1879
+ };
1880
+ }
1881
+ // <- TODO: [🚸] Not all models are compatible with JSON mode
1882
+ // > 'response_format' of type 'json_object' is not supported with this model.
1883
+ const rawPromptContent = templateParameters(content, { ...parameters, modelName });
1884
+ const rawRequest = {
1885
+ ...modelSettings,
1886
+ messages: [
1887
+ ...(modelRequirements.systemMessage === undefined
1888
+ ? []
1889
+ : [
1890
+ {
1891
+ role: 'system',
1892
+ content: modelRequirements.systemMessage,
1893
+ },
1894
+ ]),
1895
+ {
1896
+ role: 'user',
1897
+ content: rawPromptContent,
1898
+ },
1899
+ ],
1900
+ user: (_a = this.options.userId) === null || _a === void 0 ? void 0 : _a.toString(),
1901
+ };
1902
+ const start = $getCurrentDate();
1903
+ if (this.options.isVerbose) {
1904
+ console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
1905
+ }
1906
+ const rawResponse = await this.limiter
1907
+ .schedule(() => client.chat.completions.create(rawRequest))
1908
+ .catch((error) => {
1909
+ assertsError(error);
1910
+ if (this.options.isVerbose) {
1911
+ console.info(colors.bgRed('error'), error);
1912
+ }
1913
+ throw error;
1914
+ });
1915
+ if (this.options.isVerbose) {
1916
+ console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
1917
+ }
1918
+ const complete = $getCurrentDate();
1919
+ if (!rawResponse.choices[0]) {
1920
+ throw new PipelineExecutionError('No choises from OpenAI');
1921
+ }
1922
+ if (rawResponse.choices.length > 1) {
1923
+ // TODO: This should be maybe only warning
1924
+ throw new PipelineExecutionError('More than one choise from OpenAI');
1925
+ }
1926
+ const resultContent = rawResponse.choices[0].message.content;
1927
+ const usage = computeOpenAiUsage(content || '', resultContent || '', rawResponse);
1928
+ if (resultContent === null) {
1929
+ throw new PipelineExecutionError('No response message from OpenAI');
1930
+ }
1931
+ return exportJson({
1932
+ name: 'promptResult',
1933
+ message: `Result of \`OpenAiExecutionTools.callChatModel\``,
1934
+ order: [],
1935
+ value: {
1936
+ content: resultContent,
1937
+ modelName: rawResponse.model || modelName,
1938
+ timing: {
1939
+ start,
1940
+ complete,
1941
+ },
1942
+ usage,
1943
+ rawPromptContent,
1944
+ rawRequest,
1945
+ rawResponse,
1946
+ // <- [🗯]
1947
+ },
1948
+ });
1949
+ }
1950
+ /**
1951
+ * Calls OpenAI API to use a complete model.
1952
+ */
1953
+ async callCompletionModel(prompt) {
1954
+ var _a;
1955
+ if (this.options.isVerbose) {
1956
+ console.info('🖋 OpenAI callCompletionModel call', { prompt });
1957
+ }
1958
+ const { content, parameters, modelRequirements } = prompt;
1959
+ const client = await this.getClient();
1960
+ // TODO: [☂] Use here more modelRequirements
1961
+ if (modelRequirements.modelVariant !== 'COMPLETION') {
1962
+ throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
1963
+ }
1964
+ const modelName = modelRequirements.modelName || this.getDefaultCompletionModel().modelName;
1965
+ const modelSettings = {
1966
+ model: modelName,
1967
+ max_tokens: modelRequirements.maxTokens || 2000,
1968
+ // <- TODO: [🌾] Make some global max cap for maxTokens
1969
+ temperature: modelRequirements.temperature,
1970
+ // <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
1971
+ // <- Note: [🧆]
1972
+ };
1973
+ const rawPromptContent = templateParameters(content, { ...parameters, modelName });
1974
+ const rawRequest = {
1975
+ ...modelSettings,
1976
+ prompt: rawPromptContent,
1977
+ user: (_a = this.options.userId) === null || _a === void 0 ? void 0 : _a.toString(),
1978
+ };
1979
+ const start = $getCurrentDate();
1980
+ if (this.options.isVerbose) {
1981
+ console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
1982
+ }
1983
+ const rawResponse = await this.limiter
1984
+ .schedule(() => client.completions.create(rawRequest))
1985
+ .catch((error) => {
1986
+ assertsError(error);
1987
+ if (this.options.isVerbose) {
1988
+ console.info(colors.bgRed('error'), error);
1989
+ }
1990
+ throw error;
1991
+ });
1992
+ if (this.options.isVerbose) {
1993
+ console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
1994
+ }
1995
+ const complete = $getCurrentDate();
1996
+ if (!rawResponse.choices[0]) {
1997
+ throw new PipelineExecutionError('No choises from OpenAI');
1998
+ }
1999
+ if (rawResponse.choices.length > 1) {
2000
+ // TODO: This should be maybe only warning
2001
+ throw new PipelineExecutionError('More than one choise from OpenAI');
2002
+ }
2003
+ const resultContent = rawResponse.choices[0].text;
2004
+ const usage = computeOpenAiUsage(content || '', resultContent || '', rawResponse);
2005
+ return exportJson({
2006
+ name: 'promptResult',
2007
+ message: `Result of \`OpenAiExecutionTools.callCompletionModel\``,
2008
+ order: [],
2009
+ value: {
2010
+ content: resultContent,
2011
+ modelName: rawResponse.model || modelName,
2012
+ timing: {
2013
+ start,
2014
+ complete,
2015
+ },
2016
+ usage,
2017
+ rawPromptContent,
2018
+ rawRequest,
2019
+ rawResponse,
2020
+ // <- [🗯]
2021
+ },
2022
+ });
2023
+ }
2024
+ /**
2025
+ * Calls OpenAI API to use a embedding model
2026
+ */
2027
+ async callEmbeddingModel(prompt) {
2028
+ if (this.options.isVerbose) {
2029
+ console.info('🖋 OpenAI embedding call', { prompt });
2030
+ }
2031
+ const { content, parameters, modelRequirements } = prompt;
2032
+ const client = await this.getClient();
2033
+ // TODO: [☂] Use here more modelRequirements
2034
+ if (modelRequirements.modelVariant !== 'EMBEDDING') {
2035
+ throw new PipelineExecutionError('Use embed only for EMBEDDING variant');
2036
+ }
2037
+ const modelName = modelRequirements.modelName || this.getDefaultEmbeddingModel().modelName;
2038
+ const rawPromptContent = templateParameters(content, { ...parameters, modelName });
2039
+ const rawRequest = {
2040
+ input: rawPromptContent,
2041
+ model: modelName,
2042
+ };
2043
+ const start = $getCurrentDate();
2044
+ if (this.options.isVerbose) {
2045
+ console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
2046
+ }
2047
+ const rawResponse = await this.limiter
2048
+ .schedule(() => client.embeddings.create(rawRequest))
2049
+ .catch((error) => {
2050
+ assertsError(error);
2051
+ if (this.options.isVerbose) {
2052
+ console.info(colors.bgRed('error'), error);
2053
+ }
2054
+ throw error;
2055
+ });
2056
+ if (this.options.isVerbose) {
2057
+ console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
2058
+ }
2059
+ const complete = $getCurrentDate();
2060
+ if (rawResponse.data.length !== 1) {
2061
+ throw new PipelineExecutionError(`Expected exactly 1 data item in response, got ${rawResponse.data.length}`);
2062
+ }
2063
+ const resultContent = rawResponse.data[0].embedding;
2064
+ const usage = computeOpenAiUsage(content || '', '',
2065
+ // <- Note: Embedding does not have result content
2066
+ rawResponse);
2067
+ return exportJson({
2068
+ name: 'promptResult',
2069
+ message: `Result of \`OpenAiExecutionTools.callEmbeddingModel\``,
2070
+ order: [],
2071
+ value: {
2072
+ content: resultContent,
2073
+ modelName: rawResponse.model || modelName,
2074
+ timing: {
2075
+ start,
2076
+ complete,
2077
+ },
2078
+ usage,
2079
+ rawPromptContent,
2080
+ rawRequest,
2081
+ rawResponse,
2082
+ // <- [🗯]
2083
+ },
2084
+ });
2085
+ }
2086
+ // <- Note: [🤖] callXxxModel
2087
+ /**
2088
+ * Get the model that should be used as default
2089
+ */
2090
+ getDefaultModel(defaultModelName) {
2091
+ // Note: Match exact or prefix for model families
2092
+ const model = OPENAI_MODELS.find(({ modelName }) => modelName === defaultModelName || modelName.startsWith(defaultModelName));
2093
+ if (model === undefined) {
2094
+ throw new UnexpectedError(spaceTrim((block) => `
2095
+ Cannot find model in OpenAI models with name "${defaultModelName}" which should be used as default.
2096
+
2097
+ Available models:
2098
+ ${block(OPENAI_MODELS.map(({ modelName }) => `- "${modelName}"`).join('\n'))}
2099
+
2100
+ `));
2101
+ }
2102
+ return model;
2103
+ }
2104
+ /**
2105
+ * Default model for chat variant.
2106
+ */
2107
+ getDefaultChatModel() {
2108
+ return this.getDefaultModel('gpt-4o');
2109
+ }
2110
+ /**
2111
+ * Default model for completion variant.
2112
+ */
2113
+ getDefaultCompletionModel() {
2114
+ return this.getDefaultModel('gpt-3.5-turbo-instruct');
2115
+ }
2116
+ /**
2117
+ * Default model for completion variant.
2118
+ */
2119
+ getDefaultEmbeddingModel() {
2120
+ return this.getDefaultModel('text-embedding-3-large');
2121
+ }
550
2122
  }
2123
+ /**
2124
+ * TODO: [🧠][🧙‍♂️] Maybe there can be some wizzard for thoose who want to use just OpenAI
2125
+ * TODO: Maybe Create some common util for callChatModel and callCompletionModel
2126
+ * TODO: Maybe make custom OpenAiError
2127
+ * TODO: [🧠][🈁] Maybe use `isDeterministic` from options
2128
+ * TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
2129
+ */
2130
+
2131
+ /**
2132
+ * Execution Tools for calling OpenAI API
2133
+ *
2134
+ * Note: This can be also used for other OpenAI compatible APIs, like Ollama
2135
+ *
2136
+ * @public exported from `@promptbook/openai`
2137
+ */
2138
+ const createOpenAiExecutionTools = Object.assign((options) => {
2139
+ // TODO: [🧠][main] !!4 If browser, auto add `dangerouslyAllowBrowser`
2140
+ if (($isRunningInBrowser() || $isRunningInWebWorker()) && !options.dangerouslyAllowBrowser) {
2141
+ options = { ...options, dangerouslyAllowBrowser: true };
2142
+ }
2143
+ return new OpenAiExecutionTools(options);
2144
+ }, {
2145
+ packageName: '@promptbook/openai',
2146
+ className: 'OpenAiExecutionTools',
2147
+ });
2148
+ /**
2149
+ * TODO: [🦺] Is there some way how to put `packageName` and `className` on top and function definition on bottom?
2150
+ * TODO: [🎶] Naming "constructor" vs "creator" vs "factory"
2151
+ */
2152
+
2153
+ /**
2154
+ * Default base URL for Ollama API
2155
+ *
2156
+ * @public exported from `@promptbook/ollama`
2157
+ */
2158
+ const DEFAULT_OLLAMA_BASE_URL = 'http://localhost:11434'; // <- TODO: !!!! What is the correct base URL? /v1?
551
2159
 
552
2160
  /**
553
2161
  * Execution Tools for calling Ollama API
554
2162
  *
555
2163
  * @public exported from `@promptbook/ollama`
556
2164
  */
557
- const createOllamaExecutionTools = Object.assign((options) => new OllamaExecutionTools(options), {
2165
+ const createOllamaExecutionTools = Object.assign((ollamaOptions) => {
2166
+ const openAiCompatibleOptions = {
2167
+ baseURL: DEFAULT_OLLAMA_BASE_URL,
2168
+ ...ollamaOptions,
2169
+ userId: 'ollama',
2170
+ };
2171
+ // TODO: !!!! Listing the models - do it dynamically in OpenAiExecutionTools
2172
+ // TODO: !!!! Do not allow to create Assistant from OpenAi compatible tools
2173
+ return createOpenAiExecutionTools(openAiCompatibleOptions);
2174
+ }, {
558
2175
  packageName: '@promptbook/ollama',
559
2176
  className: 'OllamaExecutionTools',
560
2177
  });
@@ -737,5 +2354,5 @@ const _OllamaRegistration = $llmToolsRegister.register(createOllamaExecutionTool
737
2354
  * Note: [💞] Ignore a discrepancy between file name and entity name
738
2355
  */
739
2356
 
740
- export { BOOK_LANGUAGE_VERSION, OllamaExecutionTools, PROMPTBOOK_ENGINE_VERSION, _OllamaRegistration, createOllamaExecutionTools };
2357
+ export { BOOK_LANGUAGE_VERSION, DEFAULT_OLLAMA_BASE_URL, PROMPTBOOK_ENGINE_VERSION, _OllamaRegistration, createOllamaExecutionTools };
741
2358
  //# sourceMappingURL=index.es.js.map