@promptbook/node 0.69.0-14 → 0.69.0-16

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. package/README.md +4 -0
  2. package/esm/index.es.js +37 -41
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/promptbook-collection/index.d.ts +0 -3
  5. package/esm/typings/src/cli/cli-commands/make.d.ts +1 -1
  6. package/esm/typings/src/collection/constructors/createCollectionFromUrl.d.ts +1 -1
  7. package/esm/typings/src/commands/FOREACH/ForeachCommand.d.ts +1 -1
  8. package/esm/typings/src/commands/FOREACH/foreachCommandParser.d.ts +0 -1
  9. package/esm/typings/src/config.d.ts +2 -2
  10. package/esm/typings/src/conversion/pipelineStringToJsonSync.d.ts +1 -1
  11. package/esm/typings/src/conversion/validation/validatePipeline.d.ts +6 -6
  12. package/esm/typings/src/knowledge/prepare-knowledge/markdown/prepareKnowledgeFromMarkdown.d.ts +1 -1
  13. package/esm/typings/src/knowledge/prepare-knowledge/pdf/prepareKnowledgeFromPdf.d.ts +1 -1
  14. package/esm/typings/src/llm-providers/_common/utils/cache/CacheItem.d.ts +1 -1
  15. package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
  16. package/esm/typings/src/llm-providers/anthropic-claude/createAnthropicClaudeExecutionTools.d.ts +2 -2
  17. package/esm/typings/src/llm-providers/anthropic-claude/playground/playground.d.ts +2 -2
  18. package/esm/typings/src/llm-providers/openai/playground/playground.d.ts +1 -1
  19. package/esm/typings/src/personas/preparePersona.d.ts +1 -1
  20. package/esm/typings/src/prepare/isPipelinePrepared.d.ts +1 -1
  21. package/esm/typings/src/prepare/prepareTemplates.d.ts +1 -1
  22. package/esm/typings/src/types/PipelineJson/PipelineJson.d.ts +1 -1
  23. package/esm/typings/src/types/typeAliases.d.ts +1 -1
  24. package/esm/typings/src/utils/serialization/checkSerializableAsJson.d.ts +1 -1
  25. package/esm/typings/src/utils/serialization/isSerializableAsJson.d.ts +1 -1
  26. package/package.json +2 -2
  27. package/umd/index.umd.js +37 -41
  28. package/umd/index.umd.js.map +1 -1
  29. /package/esm/typings/src/{personas/preparePersona.test.d.ts → collection/constructors/createCollectionFromDirectory.test.d.ts} +0 -0
package/README.md CHANGED
@@ -42,6 +42,10 @@ Core of the library for Node.js runtime, it contains the main logic for promptbo
42
42
 
43
43
  Rest of the documentation is common for **entire promptbook ecosystem**:
44
44
 
45
+ # ✨ New Features
46
+
47
+ - ✨ **Support [OpenAI o1 model](https://openai.com/o1/)**
48
+
45
49
  ## 🤍 The Promptbook Whitepaper
46
50
 
47
51
 
package/esm/index.es.js CHANGED
@@ -15,8 +15,8 @@ import * as dotenv from 'dotenv';
15
15
  /**
16
16
  * The version of the Promptbook library
17
17
  */
18
- var PROMPTBOOK_VERSION = '0.69.0-13';
19
- // TODO: !!!! List here all the versions and annotate + put into script
18
+ var PROMPTBOOK_VERSION = '0.69.0-15';
19
+ // TODO:[main] !!!! List here all the versions and annotate + put into script
20
20
 
21
21
  /*! *****************************************************************************
22
22
  Copyright (c) Microsoft Corporation.
@@ -326,7 +326,7 @@ function checkSerializableAsJson(name, value) {
326
326
  }
327
327
  /**
328
328
  * TODO: [🧠][🛣] More elegant way to tracking than passing `name`
329
- * TODO: [🧠] !!! In-memory cache of same values to prevent multiple checks
329
+ * TODO: [🧠][main] !!! In-memory cache of same values to prevent multiple checks
330
330
  * Note: [🐠] This is how `checkSerializableAsJson` + `isSerializableAsJson` together can just retun true/false or rich error message
331
331
  */
332
332
 
@@ -516,7 +516,7 @@ function pipelineJsonToString(pipelineJson) {
516
516
  commands.push("PIPELINE URL ".concat(pipelineUrl));
517
517
  }
518
518
  commands.push("PROMPTBOOK VERSION ".concat(promptbookVersion));
519
- // TODO: !!! This increase size of the bundle and is probbably not necessary
519
+ // TODO:[main] !!! This increase size of the bundle and is probbably not necessary
520
520
  pipelineString = prettifyMarkdown(pipelineString);
521
521
  try {
522
522
  for (var _g = __values(parameters.filter(function (_a) {
@@ -664,12 +664,12 @@ function pipelineJsonToString(pipelineJson) {
664
664
  pipelineString += '```' + contentLanguage;
665
665
  pipelineString += '\n';
666
666
  pipelineString += spaceTrim$1(content);
667
- // <- TODO: !!! Escape
667
+ // <- TODO:[main] !!! Escape
668
668
  // <- TODO: [🧠] Some clear strategy how to spaceTrim the blocks
669
669
  pipelineString += '\n';
670
670
  pipelineString += '```';
671
671
  pipelineString += '\n\n';
672
- pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: !!! If the parameter here has description, add it and use templateParameterJsonToString
672
+ pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO:[main] !!! If the parameter here has description, add it and use templateParameterJsonToString
673
673
  }
674
674
  }
675
675
  catch (e_3_1) { e_3 = { error: e_3_1 }; }
@@ -896,7 +896,7 @@ function forEachAsync(array, options, callbackfunction) {
896
896
  });
897
897
  }
898
898
 
899
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.69.0-13",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.69.0-13",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.69.0-13",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.69.0-13",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
899
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
900
900
 
901
901
  /**
902
902
  * This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
@@ -971,7 +971,7 @@ function isValidPromptbookVersion(version) {
971
971
  if ( /* version === '1.0.0' || */version === '2.0.0' || version === '3.0.0') {
972
972
  return false;
973
973
  }
974
- // <- TODO: !!! Check isValidPromptbookVersion against PROMPTBOOK_VERSIONS
974
+ // <- TODO:[main] !!! Check isValidPromptbookVersion against PROMPTBOOK_VERSIONS
975
975
  return true;
976
976
  }
977
977
 
@@ -1140,7 +1140,7 @@ function validatePipelineCore(pipeline) {
1140
1140
  // <- Note: [🚲]
1141
1141
  throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid promptbook URL \"".concat(pipeline.pipelineUrl, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1142
1142
  }
1143
- if (!isValidPromptbookVersion(pipeline.promptbookVersion)) {
1143
+ if (pipeline.promptbookVersion !== undefined && !isValidPromptbookVersion(pipeline.promptbookVersion)) {
1144
1144
  // <- Note: [🚲]
1145
1145
  throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.promptbookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1146
1146
  }
@@ -1323,7 +1323,7 @@ function validatePipelineCore(pipeline) {
1323
1323
  }
1324
1324
  }
1325
1325
  /**
1326
- * TODO: !!!!!! [🧞‍♀️] Do not allow joker + foreach
1326
+ * TODO: !!!!! [🧞‍♀️] Do not allow joker + foreach
1327
1327
  * TODO: [🧠] Work with promptbookVersion
1328
1328
  * TODO: Use here some json-schema, Zod or something similar and change it to:
1329
1329
  * > /**
@@ -1335,11 +1335,11 @@ function validatePipelineCore(pipeline) {
1335
1335
  * > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
1336
1336
  */
1337
1337
  /**
1338
- * TODO: [🐣] !!!! Validate that all samples match expectations
1339
- * TODO: [🐣][🐝] !!!! Validate that knowledge is valid (non-void)
1340
- * TODO: [🐣] !!!! Validate that persona can be used only with CHAT variant
1341
- * TODO: [🐣] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
1342
- * TODO: [🐣] !!!! Validate that reserved parameter is not used as joker
1338
+ * TODO: [🐣][main] !!!! Validate that all samples match expectations
1339
+ * TODO: [🐣][🐝][main] !!!! Validate that knowledge is valid (non-void)
1340
+ * TODO: [🐣][main] !!!! Validate that persona can be used only with CHAT variant
1341
+ * TODO: [🐣][main] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
1342
+ * TODO: [🐣][main] !!!! Validate that reserved parameter is not used as joker
1343
1343
  * TODO: [🧠] Validation not only logic itself but imports around - files and websites and rerefenced pipelines exists
1344
1344
  * TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
1345
1345
  */
@@ -2083,7 +2083,7 @@ function isPipelinePrepared(pipeline) {
2083
2083
  return true;
2084
2084
  }
2085
2085
  /**
2086
- * TODO: [🔃] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
2086
+ * TODO: [🔃][main] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
2087
2087
  * TODO: [🐠] Maybe base this on `makeValidator`
2088
2088
  * TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
2089
2089
  * TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
@@ -2135,9 +2135,10 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
2135
2135
  });
2136
2136
  Object.defineProperty(MultipleLlmExecutionTools.prototype, "description", {
2137
2137
  get: function () {
2138
- return this.llmExecutionTools
2139
- .map(function (tools, index) { return "".concat(index + 1, ") ").concat(tools.title, " ").concat(tools.description || ''); })
2140
- .join('\n');
2138
+ return this.llmExecutionTools.map(function (_a, index) {
2139
+ var title = _a.title;
2140
+ return "".concat(index + 1, ") `").concat(title, "`");
2141
+ }).join('\n');
2141
2142
  },
2142
2143
  enumerable: false,
2143
2144
  configurable: true
@@ -2335,7 +2336,7 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
2335
2336
  throw new PipelineExecutionError("You have not provided any `LlmExecutionTools`");
2336
2337
  }
2337
2338
  else {
2338
- throw new PipelineExecutionError(spaceTrim$1(function (block) { return "\n You have not provided any `LlmExecutionTools` that support model variant \"".concat(prompt.modelRequirements.modelVariant, "\"\n\n Available `LlmExecutionTools`:\n ").concat(block(_this.llmExecutionTools.map(function (tools) { return "- ".concat(tools.title); }).join('\n')), "\n\n "); }));
2339
+ throw new PipelineExecutionError(spaceTrim$1(function (block) { return "\n You have not provided any `LlmExecutionTools` that support model variant \"".concat(prompt.modelRequirements.modelVariant, "\"\n\n Available `LlmExecutionTools`:\n ").concat(block(_this.description), "\n\n "); }));
2339
2340
  }
2340
2341
  }
2341
2342
  });
@@ -4493,7 +4494,7 @@ function prepareKnowledgeFromMarkdown(knowledgeContent /* <- TODO: [🖖] (?mayb
4493
4494
  outputParameters = result.outputParameters;
4494
4495
  knowledgePiecesRaw = outputParameters.knowledgePieces;
4495
4496
  knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
4496
- // <- TODO: !!!!! Smarter split and filter out empty pieces
4497
+ // <- TODO:[main] !!!!! Smarter split and filter out empty pieces
4497
4498
  if (isVerbose) {
4498
4499
  console.info('knowledgeTextPieces:', knowledgeTextPieces);
4499
4500
  }
@@ -4578,7 +4579,7 @@ function prepareKnowledgeFromMarkdown(knowledgeContent /* <- TODO: [🖖] (?mayb
4578
4579
  });
4579
4580
  }
4580
4581
  /**
4581
- * TODO: [🐝][🔼] !!! Export via `@promptbook/markdown`
4582
+ * TODO: [🐝][🔼][main] !!! Export via `@promptbook/markdown`
4582
4583
  * TODO: [🪂] Do it in parallel 11:11
4583
4584
  * Note: No need to aggregate usage here, it is done by intercepting the llmTools
4584
4585
  */
@@ -4602,7 +4603,7 @@ function prepareKnowledgePieces(knowledgeSources, options) {
4602
4603
  var partialPieces, pieces;
4603
4604
  return __generator(this, function (_a) {
4604
4605
  switch (_a.label) {
4605
- case 0: return [4 /*yield*/, prepareKnowledgeFromMarkdown(knowledgeSource.sourceContent, // <- TODO: [🐝] !!! Unhardcode markdown, detect which type it is - BE AWARE of big package size
4606
+ case 0: return [4 /*yield*/, prepareKnowledgeFromMarkdown(knowledgeSource.sourceContent, // <- TODO: [🐝][main] !!! Unhardcode markdown, detect which type it is - BE AWARE of big package size
4606
4607
  options)];
4607
4608
  case 1:
4608
4609
  partialPieces = _a.sent();
@@ -4794,7 +4795,7 @@ function preparePersona(personaDescription, options) {
4794
4795
  });
4795
4796
  }
4796
4797
  /**
4797
- * TODO: [🔃] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
4798
+ * TODO: [🔃][main] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
4798
4799
  * TODO: [🏢] !! Check validity of `modelName` in pipeline
4799
4800
  * TODO: [🏢] !! Check validity of `systemMessage` in pipeline
4800
4801
  * TODO: [🏢] !! Check validity of `temperature` in pipeline
@@ -4843,7 +4844,7 @@ function prepareTemplates(pipeline, options) {
4843
4844
  case 0:
4844
4845
  _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? MAX_PARALLEL_COUNT : _a;
4845
4846
  templates = pipeline.templates, parameters = pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
4846
- // TODO: !!!!! Apply samples to each template (if missing and is for the template defined)
4847
+ // TODO:[main] !!!!! Apply samples to each template (if missing and is for the template defined)
4847
4848
  TODO_USE(parameters);
4848
4849
  templatesPrepared = new Array(
4849
4850
  // <- TODO: [🧱] Implement in a functional (not new Class) way
@@ -4875,7 +4876,7 @@ function prepareTemplates(pipeline, options) {
4875
4876
  /**
4876
4877
  * TODO: [🧠] Add context to each template (if missing)
4877
4878
  * TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
4878
- * TODO: [♨] !!! Prepare index the samples and maybe templates
4879
+ * TODO: [♨][main] !!! Prepare index the samples and maybe templates
4879
4880
  * TODO: Write tests for `preparePipeline`
4880
4881
  * TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
4881
4882
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
@@ -5047,7 +5048,7 @@ var knowledgeCommandParser = {
5047
5048
  if (sourceContent === '') {
5048
5049
  throw new ParseError("Source is not defined");
5049
5050
  }
5050
- // TODO: !!!! Following checks should be applied every link in the `sourceContent`
5051
+ // TODO:[main] !!!! Following checks should be applied every link in the `sourceContent`
5051
5052
  if (sourceContent.startsWith('http://')) {
5052
5053
  throw new ParseError("Source is not secure");
5053
5054
  }
@@ -5250,7 +5251,7 @@ var templateCommandParser = {
5250
5251
  if (command.templateType === 'KNOWLEDGE') {
5251
5252
  knowledgeCommandParser.$applyToPipelineJson({
5252
5253
  type: 'KNOWLEDGE',
5253
- sourceContent: $templateJson.content, // <- TODO: [🐝] !!! Work with KNOWLEDGE which not referring to the source file or website, but its content itself
5254
+ sourceContent: $templateJson.content, // <- TODO: [🐝][main] !!! Work with KNOWLEDGE which not referring to the source file or website, but its content itself
5254
5255
  }, $pipelineJson);
5255
5256
  $templateJson.isTemplate = false;
5256
5257
  return;
@@ -5768,7 +5769,7 @@ var foreachCommandParser = {
5768
5769
  /**
5769
5770
  * Link to discussion
5770
5771
  */
5771
- documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
5772
+ documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/148',
5772
5773
  /**
5773
5774
  * Example usages of the FOREACH command
5774
5775
  */
@@ -5776,7 +5777,6 @@ var foreachCommandParser = {
5776
5777
  'FOREACH Text Line `{customers}` -> `{customer}`',
5777
5778
  'FOR Csv Row `{customers}` -> `{firstName}`, `{lastName}`',
5778
5779
  'EACH Csv Cell `{customers}` -> `{cell}`',
5779
- // <- TODO: [🍭] !!!!!! More
5780
5780
  ],
5781
5781
  /**
5782
5782
  * Parses the FOREACH command
@@ -5791,7 +5791,6 @@ var foreachCommandParser = {
5791
5791
  return __spreadArray([formatDefinition.formatName], __read((formatDefinition.aliases || [])), false).includes(formatName);
5792
5792
  });
5793
5793
  if (formatDefinition === undefined) {
5794
- console.info({ args: args, formatName: formatName });
5795
5794
  throw new ParseError(spaceTrim$1(function (block) { return "\n Unsupported format \"".concat(formatName, "\"\n\n Available formats:\n ").concat(block(FORMAT_DEFINITIONS.map(function (formatDefinition) { return formatDefinition.formatName; })
5796
5795
  .map(function (formatName) { return "- ".concat(formatName); })
5797
5796
  .join('\n')), "\n "); }));
@@ -5801,7 +5800,6 @@ var foreachCommandParser = {
5801
5800
  return __spreadArray([subvalueDefinition.subvalueName], __read((subvalueDefinition.aliases || [])), false).includes(cellName);
5802
5801
  });
5803
5802
  if (subvalueDefinition === undefined) {
5804
- console.info({ args: args, cellName: cellName });
5805
5803
  throw new ParseError(spaceTrim$1(function (block) { return "\n Unsupported cell name \"".concat(cellName, "\" for format \"").concat(formatName, "\"\n\n Available cell names for format \"").concat(formatDefinition.formatName, "\":\n ").concat(block(formatDefinition.subvalueDefinitions
5806
5804
  .map(function (subvalueDefinition) { return subvalueDefinition.subvalueName; })
5807
5805
  .map(function (subvalueName) { return "- ".concat(subvalueName); })
@@ -5809,14 +5807,12 @@ var foreachCommandParser = {
5809
5807
  // <- TODO: [🏢] List all supported cell names for the format
5810
5808
  }
5811
5809
  if (assignSign !== '->') {
5812
- console.info({ args: args, assignSign: assignSign });
5813
5810
  throw new ParseError("FOREACH command must have '->' to assign the value to the parameter");
5814
5811
  }
5815
- // TODO: !!!!!! Replace with propper parameter name validation `validateParameterName`
5812
+ // TODO: !!! Replace with propper parameter name validation `validateParameterName`
5816
5813
  if ((parameterNameWrapped === null || parameterNameWrapped === void 0 ? void 0 : parameterNameWrapped.substring(0, 1)) !== '{' ||
5817
5814
  (parameterNameWrapped === null || parameterNameWrapped === void 0 ? void 0 : parameterNameWrapped.substring(parameterNameWrapped.length - 1, parameterNameWrapped.length)) !== '}') {
5818
- console.info({ args: args, parameterNameWrapped: parameterNameWrapped }, parameterNameWrapped === null || parameterNameWrapped === void 0 ? void 0 : parameterNameWrapped.substring(0, 1), parameterNameWrapped === null || parameterNameWrapped === void 0 ? void 0 : parameterNameWrapped.substring(parameterNameWrapped.length - 1, parameterNameWrapped.length));
5819
- throw new ParseError("!!!!!! 1 Here will be error (with rules and precise error) from validateParameterName");
5815
+ throw new ParseError("Invalid parameter name \"".concat(parameterNameWrapped, "\" - must be wrapped in curly brackets: {parameterName}"));
5820
5816
  }
5821
5817
  var parameterName = parameterNameWrapped.substring(1, parameterNameWrapped.length - 1);
5822
5818
  var subparameterNames = args
@@ -5845,7 +5841,7 @@ var foreachCommandParser = {
5845
5841
  // TODO: !!!!!! Detect double use
5846
5842
  // TODO: !!!!!! Detect usage with JOKER and don't allow it
5847
5843
  $templateJson.foreach = { formatName: formatName, cellName: cellName, parameterName: parameterName, subparameterNames: subparameterNames };
5848
- keepUnused($pipelineJson); // <- TODO: !!!!!! BUT Maybe register subparameter from foreach into parameters of the pipeline
5844
+ keepUnused($pipelineJson); // <- TODO: [🧠] Maybe register subparameter from foreach into parameters of the pipeline
5849
5845
  // Note: [🍭] FOREACH apply has some sideeffects on different places in codebase
5850
5846
  },
5851
5847
  /**
@@ -5868,7 +5864,6 @@ var foreachCommandParser = {
5868
5864
  },
5869
5865
  };
5870
5866
  /**
5871
- * TODO: !!!!!! Remove console logs
5872
5867
  * TODO: [🧠][🦥] Better (less confusing) name for "cell" / "subvalue" / "subparameter"
5873
5868
  * TODO: [🍭] !!!!!! Make .ptbk.md file with examples of the FOREACH command and also with wrong parsing and logic
5874
5869
  */
@@ -6553,6 +6548,7 @@ var promptbookVersionCommandParser = {
6553
6548
  * Note: `$` is used to indicate that this function mutates given `pipelineJson`
6554
6549
  */
6555
6550
  $applyToPipelineJson: function (command, $pipelineJson) {
6551
+ // TODO: Warn if the version is overridden
6556
6552
  $pipelineJson.promptbookVersion = command.promptbookVersion;
6557
6553
  },
6558
6554
  /**
@@ -7373,7 +7369,7 @@ function pipelineStringToJsonSync(pipelineString) {
7373
7369
  var $pipelineJson = {
7374
7370
  title: undefined /* <- Note: [🍙] Putting here placeholder to keep `title` on top at final JSON */,
7375
7371
  pipelineUrl: undefined /* <- Note: Putting here placeholder to keep `pipelineUrl` on top at final JSON */,
7376
- promptbookVersion: PROMPTBOOK_VERSION,
7372
+ promptbookVersion: undefined /* <- Note: By default no explicit version */,
7377
7373
  description: undefined /* <- Note: [🍙] Putting here placeholder to keep `description` on top at final JSON */,
7378
7374
  parameters: [],
7379
7375
  templates: [],
@@ -7664,7 +7660,7 @@ function pipelineStringToJsonSync(pipelineString) {
7664
7660
  return $asDeeplyFrozenSerializableJson('pipelineJson', $pipelineJson);
7665
7661
  }
7666
7662
  /**
7667
- * TODO: !!!! Warn if used only sync version
7663
+ * TODO:[main] !!!! Warn if used only sync version
7668
7664
  * TODO: [🚞] Report here line/column of error
7669
7665
  * TODO: Use spaceTrim more effectively
7670
7666
  * TODO: [🧠] Parameter flags - isInput, isOutput, isInternal
@@ -8447,7 +8443,7 @@ function isSerializableAsJson(value) {
8447
8443
  }
8448
8444
  }
8449
8445
  /**
8450
- * TODO: [🧠] !!! In-memory cache of same values to prevent multiple checks
8446
+ * TODO: [🧠][main] !!! In-memory cache of same values to prevent multiple checks
8451
8447
  * TODO: [🧠][💺] Can be done this on type-level?
8452
8448
  */
8453
8449