@promptbook/node 0.67.7 → 0.67.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/esm/index.es.js CHANGED
@@ -13,7 +13,7 @@ import * as dotenv from 'dotenv';
13
13
  /**
14
14
  * The version of the Promptbook library
15
15
  */
16
- var PROMPTBOOK_VERSION = '0.67.6';
16
+ var PROMPTBOOK_VERSION = '0.67.7';
17
17
  // TODO: !!!! List here all the versions and annotate + put into script
18
18
 
19
19
  /*! *****************************************************************************
@@ -867,7 +867,7 @@ function forEachAsync(array, options, callbackfunction) {
867
867
  });
868
868
  }
869
869
 
870
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.67.6",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",dependentParameterNames:["knowledgeContent"],resultingParameterName:"knowledgePieces"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.67.6",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.67.6",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.67.6",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
870
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.67.7",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",dependentParameterNames:["knowledgeContent"],resultingParameterName:"knowledgePieces"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.67.7",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.67.7",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.67.7",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
871
871
 
872
872
  /**
873
873
  * This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
@@ -3052,7 +3052,7 @@ function createPipelineExecutor(options) {
3052
3052
  }
3053
3053
  function executeSingleTemplate(currentTemplate) {
3054
3054
  return __awaiter(this, void 0, void 0, function () {
3055
- var name, title, priority, usedParameterNames, dependentParameterNames, definedParameters, _a, _b, _c, definedParameterNames, parameters, _loop_4, _d, _e, parameterName, prompt, chatResult, completionResult, embeddingResult, result, resultString, expectError, scriptPipelineExecutionErrors, maxAttempts, jokerParameterNames, preparedContent, _loop_5, attempt, state_2;
3055
+ var name, title, priority, progress_1, usedParameterNames, dependentParameterNames, definedParameters, _a, _b, _c, definedParameterNames, parameters, _loop_4, _d, _e, parameterName, prompt, chatResult, completionResult, embeddingResult, result, resultString, expectError, scriptPipelineExecutionErrors, maxAttempts, jokerParameterNames, preparedContent, _loop_5, attempt, state_2, progress_2;
3056
3056
  var e_4, _f, _g;
3057
3057
  return __generator(this, function (_h) {
3058
3058
  switch (_h.label) {
@@ -3061,16 +3061,23 @@ function createPipelineExecutor(options) {
3061
3061
  title = currentTemplate.title;
3062
3062
  priority = preparedPipeline.promptTemplates.length - preparedPipeline.promptTemplates.indexOf(currentTemplate);
3063
3063
  if (!onProgress /* <- [3] */) return [3 /*break*/, 2]; /* <- [3] */
3064
- return [4 /*yield*/, onProgress({
3065
- name: name,
3066
- title: title,
3067
- isStarted: false,
3068
- isDone: false,
3069
- blockType: currentTemplate.blockType,
3070
- parameterName: currentTemplate.resultingParameterName,
3071
- parameterValue: null,
3072
- // <- [3]
3073
- })];
3064
+ progress_1 = {
3065
+ name: name,
3066
+ title: title,
3067
+ isStarted: false,
3068
+ isDone: false,
3069
+ blockType: currentTemplate.blockType,
3070
+ parameterName: currentTemplate.resultingParameterName,
3071
+ parameterValue: null,
3072
+ // <- [3]
3073
+ };
3074
+ if (isReturned) {
3075
+ throw new UnexpectedError(spaceTrim(function (block) { return "\n Can not call `onProgress` after pipeline execution is finished \uD83C\uDF4F\n\n ".concat(block(pipelineIdentification), "\n\n ").concat(block(JSON.stringify(progress_1, null, 4)
3076
+ .split('\n')
3077
+ .map(function (line) { return "> ".concat(line); })
3078
+ .join('\n')), "\n "); }));
3079
+ }
3080
+ return [4 /*yield*/, onProgress(progress_1)];
3074
3081
  case 1:
3075
3082
  _h.sent();
3076
3083
  _h.label = 2;
@@ -3456,18 +3463,28 @@ function createPipelineExecutor(options) {
3456
3463
  if (resultString === null) {
3457
3464
  throw new UnexpectedError(spaceTrim(function (block) { return "\n Something went wrong and prompt result is null\n\n ".concat(block(pipelineIdentification), "\n "); }));
3458
3465
  }
3459
- if (onProgress /* <- [3] */) {
3460
- onProgress({
3461
- name: name,
3462
- title: title,
3463
- isStarted: true,
3464
- isDone: true,
3465
- blockType: currentTemplate.blockType,
3466
- parameterName: currentTemplate.resultingParameterName,
3467
- parameterValue: resultString,
3468
- // <- [3]
3469
- });
3466
+ if (!onProgress /* <- [3] */) return [3 /*break*/, 9]; /* <- [3] */
3467
+ progress_2 = {
3468
+ name: name,
3469
+ title: title,
3470
+ isStarted: true,
3471
+ isDone: true,
3472
+ blockType: currentTemplate.blockType,
3473
+ parameterName: currentTemplate.resultingParameterName,
3474
+ parameterValue: resultString,
3475
+ // <- [3]
3476
+ };
3477
+ if (isReturned) {
3478
+ throw new UnexpectedError(spaceTrim(function (block) { return "\n Can not call `onProgress` after pipeline execution is finished \uD83C\uDF4E\n\n ".concat(block(pipelineIdentification), "\n\n ").concat(block(JSON.stringify(progress_2, null, 4)
3479
+ .split('\n')
3480
+ .map(function (line) { return "> ".concat(line); })
3481
+ .join('\n')), "\n\n "); }));
3470
3482
  }
3483
+ return [4 /*yield*/, onProgress(progress_2)];
3484
+ case 8:
3485
+ _h.sent();
3486
+ _h.label = 9;
3487
+ case 9:
3471
3488
  parametersToPass = Object.freeze(__assign(__assign({}, parametersToPass), (_g = {}, _g[currentTemplate.resultingParameterName] = resultString /* <- Note: Not need to detect parameter collision here because pipeline checks logic consistency during construction */, _g)));
3472
3489
  return [2 /*return*/];
3473
3490
  }
@@ -3504,7 +3521,7 @@ function createPipelineExecutor(options) {
3504
3521
  }
3505
3522
  return outputParameters;
3506
3523
  }
3507
- var errors, warnings, executionReport, _a, _b, parameter, _loop_1, _c, _d, parameterName, state_1, parametersToPass, resovedParameterNames_1, unresovedTemplates_1, resolving_1, loopLimit, _loop_2, error_1, usage_1, outputParameters_1, usage, outputParameters;
3524
+ var errors, warnings, executionReport, isReturned, _a, _b, parameter, _loop_1, _c, _d, parameterName, state_1, parametersToPass, resovedParameterNames_1, unresovedTemplates_1, resolving_1, loopLimit, _loop_2, error_1, usage_1, outputParameters_1, usage, outputParameters;
3508
3525
  var e_1, _e, e_2, _f;
3509
3526
  return __generator(this, function (_g) {
3510
3527
  switch (_g.label) {
@@ -3529,6 +3546,7 @@ function createPipelineExecutor(options) {
3529
3546
  description: preparedPipeline.description,
3530
3547
  promptExecutions: [],
3531
3548
  };
3549
+ isReturned = false;
3532
3550
  try {
3533
3551
  // Note: Check that all input input parameters are defined
3534
3552
  for (_a = __values(preparedPipeline.parameters.filter(function (_a) {
@@ -3537,6 +3555,7 @@ function createPipelineExecutor(options) {
3537
3555
  })), _b = _a.next(); !_b.done; _b = _a.next()) {
3538
3556
  parameter = _b.value;
3539
3557
  if (inputParameters[parameter.name] === undefined) {
3558
+ isReturned = true;
3540
3559
  return [2 /*return*/, $asDeeplyFrozenSerializableJson("Unuccessful PipelineExecutorResult (with missing parameter {".concat(parameter.name, "}) PipelineExecutorResult"), {
3541
3560
  isSuccessful: false,
3542
3561
  errors: __spreadArray([
@@ -3567,6 +3586,7 @@ function createPipelineExecutor(options) {
3567
3586
  warnings.push(new PipelineExecutionError(spaceTrim(function (block) { return "\n Extra parameter {".concat(parameterName, "} is being passed which is not part of the pipeline.\n\n ").concat(block(pipelineIdentification), "\n "); })));
3568
3587
  }
3569
3588
  else if (parameter.isInput === false) {
3589
+ isReturned = true;
3570
3590
  return { value: $asDeeplyFrozenSerializableJson(spaceTrim(function (block) { return "\n Unuccessful PipelineExecutorResult (with extra parameter {".concat(parameter.name, "}) PipelineExecutorResult\n\n ").concat(block(pipelineIdentification), "\n "); }), {
3571
3591
  isSuccessful: false,
3572
3592
  errors: __spreadArray([
@@ -3679,6 +3699,7 @@ function createPipelineExecutor(options) {
3679
3699
  return (result === null || result === void 0 ? void 0 : result.usage) || ZERO_USAGE;
3680
3700
  })), false));
3681
3701
  outputParameters_1 = filterJustOutputParameters();
3702
+ isReturned = true;
3682
3703
  return [2 /*return*/, $asDeeplyFrozenSerializableJson('Unuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult', {
3683
3704
  isSuccessful: false,
3684
3705
  errors: __spreadArray([error_1], __read(errors), false).map(serializeError),
@@ -3694,6 +3715,7 @@ function createPipelineExecutor(options) {
3694
3715
  return (result === null || result === void 0 ? void 0 : result.usage) || ZERO_USAGE;
3695
3716
  })), false));
3696
3717
  outputParameters = filterJustOutputParameters();
3718
+ isReturned = true;
3697
3719
  return [2 /*return*/, $asDeeplyFrozenSerializableJson('Successful PipelineExecutorResult', {
3698
3720
  isSuccessful: true,
3699
3721
  errors: errors.map(serializeError),