@promptbook/node 0.61.0-28 → 0.61.0-29
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +35 -32
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/execution/PipelineExecutor.d.ts +16 -4
- package/esm/typings/src/execution/createPipelineExecutor.d.ts +10 -2
- package/esm/typings/src/types/execution-report/ExecutionReportJson.d.ts +1 -1
- package/package.json +2 -2
- package/umd/index.umd.js +35 -32
- package/umd/index.umd.js.map +1 -1
- package/umd/typings/src/execution/PipelineExecutor.d.ts +16 -4
- package/umd/typings/src/execution/createPipelineExecutor.d.ts +10 -2
- package/umd/typings/src/types/execution-report/ExecutionReportJson.d.ts +1 -1
package/esm/index.es.js
CHANGED
|
@@ -654,7 +654,7 @@ function forEachAsync(array, options, callbackfunction) {
|
|
|
654
654
|
});
|
|
655
655
|
}
|
|
656
656
|
|
|
657
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-
|
|
657
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-28",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",dependentParameterNames:["knowledgeContent"],resultingParameterName:"knowledgePieces"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-28",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-28",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-28",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-28",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-28",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-28",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-28",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
|
|
658
658
|
|
|
659
659
|
/**
|
|
660
660
|
* This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
|
|
@@ -2268,7 +2268,7 @@ function union() {
|
|
|
2268
2268
|
/**
|
|
2269
2269
|
* The version of the Promptbook library
|
|
2270
2270
|
*/
|
|
2271
|
-
var PROMPTBOOK_VERSION = '0.61.0-
|
|
2271
|
+
var PROMPTBOOK_VERSION = '0.61.0-28';
|
|
2272
2272
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
2273
2273
|
|
|
2274
2274
|
/**
|
|
@@ -2389,17 +2389,17 @@ function checkExpectations(expectations, value) {
|
|
|
2389
2389
|
*/
|
|
2390
2390
|
function createPipelineExecutor(options) {
|
|
2391
2391
|
var _this = this;
|
|
2392
|
-
var
|
|
2393
|
-
var _b = settings.maxExecutionAttempts, maxExecutionAttempts = _b === void 0 ? MAX_EXECUTION_ATTEMPTS : _b, _c = settings.maxParallelCount, maxParallelCount = _c === void 0 ? MAX_PARALLEL_COUNT : _c, _d = settings.isVerbose, isVerbose = _d === void 0 ? false : _d;
|
|
2394
|
-
validatePipeline(
|
|
2392
|
+
var pipeline = options.pipeline, tools = options.tools, _a = options.settings, settings = _a === void 0 ? {} : _a;
|
|
2393
|
+
var _b = settings.maxExecutionAttempts, maxExecutionAttempts = _b === void 0 ? MAX_EXECUTION_ATTEMPTS : _b, _c = settings.maxParallelCount, maxParallelCount = _c === void 0 ? MAX_PARALLEL_COUNT : _c, _d = settings.isVerbose, isVerbose = _d === void 0 ? false : _d, _e = settings.isNotPreparedWarningSupressed, isNotPreparedWarningSupressed = _e === void 0 ? false : _e;
|
|
2394
|
+
validatePipeline(pipeline);
|
|
2395
2395
|
var llmTools = joinLlmExecutionTools.apply(void 0, __spreadArray([], __read(arrayableToArray(tools.llm)), false));
|
|
2396
|
-
var
|
|
2397
|
-
if (isPipelinePrepared(
|
|
2398
|
-
|
|
2396
|
+
var preparedPipeline;
|
|
2397
|
+
if (isPipelinePrepared(pipeline)) {
|
|
2398
|
+
preparedPipeline = pipeline;
|
|
2399
2399
|
}
|
|
2400
|
-
else {
|
|
2401
|
-
// TODO: !!!!!
|
|
2402
|
-
console.warn(spaceTrim$1("\n Pipeline ".concat(
|
|
2400
|
+
else if (isNotPreparedWarningSupressed !== true) {
|
|
2401
|
+
// TODO: !!!!! Test that this work as intended together with prepared pipeline
|
|
2402
|
+
console.warn(spaceTrim$1("\n Pipeline ".concat(pipeline.pipelineUrl || pipeline.sourceFile || pipeline.title, " is not prepared\n\n ").concat(pipeline.sourceFile, "\n\n It will be prepared ad-hoc before the first execution and **returned as `preparedPipeline` in `PipelineExecutorResult`**\n But it is recommended to prepare the pipeline during collection preparation\n\n @see more at https://ptbk.io/prepare-pipeline\n ")));
|
|
2403
2403
|
}
|
|
2404
2404
|
var pipelineExecutor = function (inputParameters, onProgress) { return __awaiter(_this, void 0, void 0, function () {
|
|
2405
2405
|
// TODO: !!! Extract to separate functions and files - ALL FUNCTIONS BELOW
|
|
@@ -2416,9 +2416,9 @@ function createPipelineExecutor(options) {
|
|
|
2416
2416
|
template) {
|
|
2417
2417
|
return __awaiter(this, void 0, void 0, function () {
|
|
2418
2418
|
return __generator(this, function (_a) {
|
|
2419
|
-
// TODO: [♨] Implement Better - use real index and keyword search
|
|
2419
|
+
// TODO: [♨] Implement Better - use real index and keyword search from `template` and {samples}
|
|
2420
2420
|
TODO_USE(template);
|
|
2421
|
-
return [2 /*return*/,
|
|
2421
|
+
return [2 /*return*/, preparedPipeline.knowledgePieces.map(function (_a) {
|
|
2422
2422
|
var content = _a.content;
|
|
2423
2423
|
return "- ".concat(content);
|
|
2424
2424
|
}).join('\n')];
|
|
@@ -2491,7 +2491,7 @@ function createPipelineExecutor(options) {
|
|
|
2491
2491
|
case 0:
|
|
2492
2492
|
name = "pipeline-executor-frame-".concat(currentTemplate.name);
|
|
2493
2493
|
title = currentTemplate.title;
|
|
2494
|
-
priority =
|
|
2494
|
+
priority = preparedPipeline.promptTemplates.length - preparedPipeline.promptTemplates.indexOf(currentTemplate);
|
|
2495
2495
|
if (!onProgress /* <- [3] */) return [3 /*break*/, 2]; /* <- [3] */
|
|
2496
2496
|
return [4 /*yield*/, onProgress({
|
|
2497
2497
|
name: name,
|
|
@@ -2595,13 +2595,13 @@ function createPipelineExecutor(options) {
|
|
|
2595
2595
|
case 7:
|
|
2596
2596
|
prompt = {
|
|
2597
2597
|
title: currentTemplate.title,
|
|
2598
|
-
pipelineUrl: "".concat(
|
|
2599
|
-
?
|
|
2598
|
+
pipelineUrl: "".concat(preparedPipeline.pipelineUrl
|
|
2599
|
+
? preparedPipeline.pipelineUrl
|
|
2600
2600
|
: 'anonymous' /* <- TODO: [🧠] How to deal with anonymous pipelines, do here some auto-url like SHA-256 based ad-hoc identifier? */, "#").concat(currentTemplate.name),
|
|
2601
2601
|
parameters: parameters,
|
|
2602
2602
|
content: preparedContent,
|
|
2603
2603
|
modelRequirements: currentTemplate.modelRequirements,
|
|
2604
|
-
expectations: __assign(__assign({}, (
|
|
2604
|
+
expectations: __assign(__assign({}, (preparedPipeline.personas.find(function (_a) {
|
|
2605
2605
|
var name = _a.name;
|
|
2606
2606
|
return name === currentTemplate.personaName;
|
|
2607
2607
|
}) || {})), currentTemplate.expectations),
|
|
@@ -2893,7 +2893,7 @@ function createPipelineExecutor(options) {
|
|
|
2893
2893
|
) {
|
|
2894
2894
|
// TODO: [🧠] Maybe put other blockTypes into report
|
|
2895
2895
|
executionReport.promptExecutions.push({
|
|
2896
|
-
prompt: __assign(
|
|
2896
|
+
prompt: __assign({}, prompt),
|
|
2897
2897
|
result: result || undefined,
|
|
2898
2898
|
error: expectError || undefined,
|
|
2899
2899
|
});
|
|
@@ -2934,7 +2934,7 @@ function createPipelineExecutor(options) {
|
|
|
2934
2934
|
var outputParameters = {};
|
|
2935
2935
|
try {
|
|
2936
2936
|
// Note: Filter ONLY output parameters
|
|
2937
|
-
for (var _b = __values(
|
|
2937
|
+
for (var _b = __values(preparedPipeline.parameters.filter(function (_a) {
|
|
2938
2938
|
var isOutput = _a.isOutput;
|
|
2939
2939
|
return isOutput;
|
|
2940
2940
|
})), _c = _b.next(); !_c.done; _c = _b.next()) {
|
|
@@ -2961,29 +2961,29 @@ function createPipelineExecutor(options) {
|
|
|
2961
2961
|
return __generator(this, function (_g) {
|
|
2962
2962
|
switch (_g.label) {
|
|
2963
2963
|
case 0:
|
|
2964
|
-
if (!(
|
|
2965
|
-
return [4 /*yield*/, preparePipeline(
|
|
2964
|
+
if (!(preparedPipeline === undefined)) return [3 /*break*/, 2];
|
|
2965
|
+
return [4 /*yield*/, preparePipeline(pipeline, {
|
|
2966
2966
|
llmTools: llmTools,
|
|
2967
2967
|
isVerbose: isVerbose,
|
|
2968
2968
|
maxParallelCount: maxParallelCount,
|
|
2969
2969
|
})];
|
|
2970
2970
|
case 1:
|
|
2971
|
-
|
|
2971
|
+
preparedPipeline = _g.sent();
|
|
2972
2972
|
_g.label = 2;
|
|
2973
2973
|
case 2:
|
|
2974
2974
|
errors = [];
|
|
2975
2975
|
warnings = [];
|
|
2976
2976
|
executionReport = {
|
|
2977
|
-
pipelineUrl:
|
|
2978
|
-
title:
|
|
2977
|
+
pipelineUrl: preparedPipeline.pipelineUrl,
|
|
2978
|
+
title: preparedPipeline.title,
|
|
2979
2979
|
promptbookUsedVersion: PROMPTBOOK_VERSION,
|
|
2980
|
-
promptbookRequestedVersion:
|
|
2981
|
-
description:
|
|
2980
|
+
promptbookRequestedVersion: preparedPipeline.promptbookVersion,
|
|
2981
|
+
description: preparedPipeline.description,
|
|
2982
2982
|
promptExecutions: [],
|
|
2983
2983
|
};
|
|
2984
2984
|
try {
|
|
2985
2985
|
// Note: Check that all input input parameters are defined
|
|
2986
|
-
for (_a = __values(
|
|
2986
|
+
for (_a = __values(preparedPipeline.parameters.filter(function (_a) {
|
|
2987
2987
|
var isInput = _a.isInput;
|
|
2988
2988
|
return isInput;
|
|
2989
2989
|
})), _b = _a.next(); !_b.done; _b = _a.next()) {
|
|
@@ -2998,6 +2998,7 @@ function createPipelineExecutor(options) {
|
|
|
2998
2998
|
executionReport: executionReport,
|
|
2999
2999
|
outputParameters: {},
|
|
3000
3000
|
usage: ZERO_USAGE,
|
|
3001
|
+
preparedPipeline: preparedPipeline,
|
|
3001
3002
|
})];
|
|
3002
3003
|
}
|
|
3003
3004
|
}
|
|
@@ -3010,7 +3011,7 @@ function createPipelineExecutor(options) {
|
|
|
3010
3011
|
finally { if (e_1) throw e_1.error; }
|
|
3011
3012
|
}
|
|
3012
3013
|
_loop_1 = function (parameterName) {
|
|
3013
|
-
var parameter =
|
|
3014
|
+
var parameter = preparedPipeline.parameters.find(function (_a) {
|
|
3014
3015
|
var name = _a.name;
|
|
3015
3016
|
return name === parameterName;
|
|
3016
3017
|
});
|
|
@@ -3027,6 +3028,7 @@ function createPipelineExecutor(options) {
|
|
|
3027
3028
|
executionReport: executionReport,
|
|
3028
3029
|
outputParameters: {},
|
|
3029
3030
|
usage: ZERO_USAGE,
|
|
3031
|
+
preparedPipeline: preparedPipeline,
|
|
3030
3032
|
}) };
|
|
3031
3033
|
}
|
|
3032
3034
|
};
|
|
@@ -3050,7 +3052,7 @@ function createPipelineExecutor(options) {
|
|
|
3050
3052
|
_g.label = 3;
|
|
3051
3053
|
case 3:
|
|
3052
3054
|
_g.trys.push([3, 8, , 9]);
|
|
3053
|
-
resovedParameterNames_1 =
|
|
3055
|
+
resovedParameterNames_1 = preparedPipeline.parameters
|
|
3054
3056
|
.filter(function (_a) {
|
|
3055
3057
|
var isInput = _a.isInput;
|
|
3056
3058
|
return isInput;
|
|
@@ -3059,7 +3061,7 @@ function createPipelineExecutor(options) {
|
|
|
3059
3061
|
var name = _a.name;
|
|
3060
3062
|
return name;
|
|
3061
3063
|
});
|
|
3062
|
-
unresovedTemplates_1 = __spreadArray([], __read(
|
|
3064
|
+
unresovedTemplates_1 = __spreadArray([], __read(preparedPipeline.promptTemplates), false);
|
|
3063
3065
|
resolving_1 = [];
|
|
3064
3066
|
loopLimit = LOOP_LIMIT;
|
|
3065
3067
|
_loop_2 = function () {
|
|
@@ -3136,6 +3138,7 @@ function createPipelineExecutor(options) {
|
|
|
3136
3138
|
usage: usage_1,
|
|
3137
3139
|
executionReport: executionReport,
|
|
3138
3140
|
outputParameters: outputParameters_1,
|
|
3141
|
+
preparedPipeline: preparedPipeline,
|
|
3139
3142
|
})];
|
|
3140
3143
|
case 9:
|
|
3141
3144
|
usage = addUsage.apply(void 0, __spreadArray([], __read(executionReport.promptExecutions.map(function (_a) {
|
|
@@ -3150,6 +3153,7 @@ function createPipelineExecutor(options) {
|
|
|
3150
3153
|
usage: usage,
|
|
3151
3154
|
executionReport: executionReport,
|
|
3152
3155
|
outputParameters: outputParameters,
|
|
3156
|
+
preparedPipeline: preparedPipeline,
|
|
3153
3157
|
})];
|
|
3154
3158
|
}
|
|
3155
3159
|
});
|
|
@@ -3157,8 +3161,6 @@ function createPipelineExecutor(options) {
|
|
|
3157
3161
|
return pipelineExecutor;
|
|
3158
3162
|
}
|
|
3159
3163
|
/**
|
|
3160
|
-
* TODO: !!!!! return `preparedPipeline` from execution
|
|
3161
|
-
* TODO: !!!!! `isNotPreparedWarningSupressed`
|
|
3162
3164
|
* TODO: Use isVerbose here (not only pass to `preparePipeline`)
|
|
3163
3165
|
* TODO: [🪂] Use maxParallelCount here (not only pass to `preparePipeline`)
|
|
3164
3166
|
* TODO: [♈] Probbably move expectations from templates to parameters
|
|
@@ -3218,6 +3220,7 @@ function prepareKnowledgeFromMarkdown(knowledgeContent /* <- TODO: [🖖] (?mayb
|
|
|
3218
3220
|
outputParameters = result.outputParameters;
|
|
3219
3221
|
knowledgePiecesRaw = outputParameters.knowledgePieces;
|
|
3220
3222
|
knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
|
|
3223
|
+
// <- TODO: !!!!! Smarter split and filter out empty pieces
|
|
3221
3224
|
if (isVerbose) {
|
|
3222
3225
|
console.info('knowledgeTextPieces:', knowledgeTextPieces);
|
|
3223
3226
|
}
|