@promptbook/node 0.61.0-27 โ†’ 0.61.0-28

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/esm/index.es.js CHANGED
@@ -654,7 +654,7 @@ function forEachAsync(array, options, callbackfunction) {
654
654
  });
655
655
  }
656
656
 
657
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-26",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",dependentParameterNames:["knowledgeContent"],resultingParameterName:"knowledgePieces"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-26",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-26",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-26",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-26",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-26",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-26",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-26",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
657
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-27",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",dependentParameterNames:["knowledgeContent"],resultingParameterName:"knowledgePieces"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-27",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-27",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-27",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-27",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-27",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-27",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-27",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
658
658
 
659
659
  /**
660
660
  * This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
@@ -2268,7 +2268,7 @@ function union() {
2268
2268
  /**
2269
2269
  * The version of the Promptbook library
2270
2270
  */
2271
- var PROMPTBOOK_VERSION = '0.61.0-26';
2271
+ var PROMPTBOOK_VERSION = '0.61.0-27';
2272
2272
  // TODO: !!!! List here all the versions and annotate + put into script
2273
2273
 
2274
2274
  /**
@@ -3443,7 +3443,7 @@ function prepareTemplates(pipeline, options) {
3443
3443
  case 0:
3444
3444
  _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? MAX_PARALLEL_COUNT : _a;
3445
3445
  promptTemplates = pipeline.promptTemplates, parameters = pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
3446
- // TODO: !!!!!! Apply samples to each template (if missing and is for the template defined)
3446
+ // TODO: !!!!! Apply samples to each template (if missing and is for the template defined)
3447
3447
  TODO_USE(parameters);
3448
3448
  promptTemplatesPrepared = new Array(promptTemplates.length);
3449
3449
  return [4 /*yield*/, forEachAsync(promptTemplates, { maxParallelCount: maxParallelCount /* <- TODO: [๐Ÿช‚] When there are subtasks, this maximul limit can be broken */ }, function (template, index) { return __awaiter(_this, void 0, void 0, function () {
@@ -3552,7 +3552,7 @@ function preparePipeline(pipeline, options) {
3552
3552
  * TODO: Write tests for `preparePipeline`
3553
3553
  * TODO: [๐Ÿ] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
3554
3554
  * TODO: [๐ŸงŠ] In future one preparation can take data from previous preparation and save tokens and time
3555
- * TODO: [๐ŸŽ] !!!!!! Use here countTotalUsage
3555
+ * TODO: [๐ŸŽ] !!!!! Use here countTotalUsage
3556
3556
  * TODO: [๐Ÿ› ] Actions, instruments (and maybe knowledge) => Functions and tools
3557
3557
  */
3558
3558
 
@@ -6058,7 +6058,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
6058
6058
  */
6059
6059
  AnthropicClaudeExecutionTools.prototype.callChatModel = function (prompt) {
6060
6060
  return __awaiter(this, void 0, void 0, function () {
6061
- var content, parameters, modelRequirements, modelName, rawRequest, start, complete, rawResponse, resultContent, usage;
6061
+ var content, parameters, modelRequirements, modelName, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
6062
6062
  return __generator(this, function (_a) {
6063
6063
  switch (_a.label) {
6064
6064
  case 0:
@@ -6071,6 +6071,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
6071
6071
  throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
6072
6072
  }
6073
6073
  modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
6074
+ rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
6074
6075
  rawRequest = {
6075
6076
  model: modelRequirements.modelName || this.getDefaultChatModel().modelName,
6076
6077
  max_tokens: modelRequirements.maxTokens || 4096,
@@ -6082,7 +6083,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
6082
6083
  messages: [
6083
6084
  {
6084
6085
  role: 'user',
6085
- content: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })),
6086
+ content: rawPromptContent,
6086
6087
  },
6087
6088
  ],
6088
6089
  // TODO: Is here some equivalent of user identification?> user: this.options.user,
@@ -6119,8 +6120,10 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
6119
6120
  complete: complete,
6120
6121
  },
6121
6122
  usage: usage,
6123
+ rawPromptContent: rawPromptContent,
6124
+ rawRequest: rawRequest,
6122
6125
  rawResponse: rawResponse,
6123
- // <- [๐Ÿคนโ€โ™‚๏ธ]
6126
+ // <- [๐Ÿ—ฏ]
6124
6127
  }];
6125
6128
  }
6126
6129
  });
@@ -6153,7 +6156,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
6153
6156
 
6154
6157
  const rawRequest: xxxx.Completions.CompletionCreateParamsNonStreaming = {
6155
6158
  ...modelSettings,
6156
- prompt: replaceParameters(content, { ...parameters, modelName }),
6159
+ prompt: rawPromptContent,
6157
6160
  user: this.options.user,
6158
6161
  };
6159
6162
  const start: string_date_iso8601 = getCurrentIsoDate();
@@ -6192,7 +6195,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
6192
6195
  },
6193
6196
  usage,
6194
6197
  rawResponse,
6195
- // <- [๐Ÿคนโ€โ™‚๏ธ]
6198
+ // <- [๐Ÿ—ฏ]
6196
6199
  };
6197
6200
  }
6198
6201
  */
@@ -6660,7 +6663,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
6660
6663
  */
6661
6664
  OpenAiExecutionTools.prototype.callChatModel = function (prompt) {
6662
6665
  return __awaiter(this, void 0, void 0, function () {
6663
- var content, parameters, modelRequirements, expectFormat, modelName, modelSettings, rawRequest, start, complete, rawResponse, resultContent, usage;
6666
+ var content, parameters, modelRequirements, expectFormat, modelName, modelSettings, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
6664
6667
  return __generator(this, function (_a) {
6665
6668
  switch (_a.label) {
6666
6669
  case 0:
@@ -6686,6 +6689,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
6686
6689
  type: 'json_object',
6687
6690
  };
6688
6691
  }
6692
+ rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
6689
6693
  rawRequest = __assign(__assign({}, modelSettings), { messages: __spreadArray(__spreadArray([], __read((modelRequirements.systemMessage === undefined
6690
6694
  ? []
6691
6695
  : [
@@ -6696,7 +6700,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
6696
6700
  ])), false), [
6697
6701
  {
6698
6702
  role: 'user',
6699
- content: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })),
6703
+ content: rawPromptContent,
6700
6704
  },
6701
6705
  ], false), user: this.options.user });
6702
6706
  start = getCurrentIsoDate();
@@ -6731,8 +6735,10 @@ var OpenAiExecutionTools = /** @class */ (function () {
6731
6735
  complete: complete,
6732
6736
  },
6733
6737
  usage: usage,
6738
+ rawPromptContent: rawPromptContent,
6739
+ rawRequest: rawRequest,
6734
6740
  rawResponse: rawResponse,
6735
- // <- [๐Ÿคนโ€โ™‚๏ธ]
6741
+ // <- [๐Ÿ—ฏ]
6736
6742
  }];
6737
6743
  }
6738
6744
  });
@@ -6743,7 +6749,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
6743
6749
  */
6744
6750
  OpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
6745
6751
  return __awaiter(this, void 0, void 0, function () {
6746
- var content, parameters, modelRequirements, modelName, modelSettings, rawRequest, start, complete, rawResponse, resultContent, usage;
6752
+ var content, parameters, modelRequirements, modelName, modelSettings, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
6747
6753
  return __generator(this, function (_a) {
6748
6754
  switch (_a.label) {
6749
6755
  case 0:
@@ -6764,7 +6770,8 @@ var OpenAiExecutionTools = /** @class */ (function () {
6764
6770
  // <- TODO: [๐Ÿˆ] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
6765
6771
  // <- Note: [๐Ÿง†]
6766
6772
  };
6767
- rawRequest = __assign(__assign({}, modelSettings), { prompt: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })), user: this.options.user });
6773
+ rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
6774
+ rawRequest = __assign(__assign({}, modelSettings), { prompt: rawPromptContent, user: this.options.user });
6768
6775
  start = getCurrentIsoDate();
6769
6776
  if (this.options.isVerbose) {
6770
6777
  console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
@@ -6794,8 +6801,10 @@ var OpenAiExecutionTools = /** @class */ (function () {
6794
6801
  complete: complete,
6795
6802
  },
6796
6803
  usage: usage,
6804
+ rawPromptContent: rawPromptContent,
6805
+ rawRequest: rawRequest,
6797
6806
  rawResponse: rawResponse,
6798
- // <- [๐Ÿคนโ€โ™‚๏ธ]
6807
+ // <- [๐Ÿ—ฏ]
6799
6808
  }];
6800
6809
  }
6801
6810
  });
@@ -6806,7 +6815,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
6806
6815
  */
6807
6816
  OpenAiExecutionTools.prototype.callEmbeddingModel = function (prompt) {
6808
6817
  return __awaiter(this, void 0, void 0, function () {
6809
- var content, parameters, modelRequirements, modelName, rawRequest, start, complete, rawResponse, resultContent, usage;
6818
+ var content, parameters, modelRequirements, modelName, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
6810
6819
  return __generator(this, function (_a) {
6811
6820
  switch (_a.label) {
6812
6821
  case 0:
@@ -6819,8 +6828,9 @@ var OpenAiExecutionTools = /** @class */ (function () {
6819
6828
  throw new PipelineExecutionError('Use embed only for EMBEDDING variant');
6820
6829
  }
6821
6830
  modelName = modelRequirements.modelName || this.getDefaultEmbeddingModel().modelName;
6831
+ rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
6822
6832
  rawRequest = {
6823
- input: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })),
6833
+ input: rawPromptContent,
6824
6834
  model: modelName,
6825
6835
  };
6826
6836
  start = getCurrentIsoDate();
@@ -6848,8 +6858,10 @@ var OpenAiExecutionTools = /** @class */ (function () {
6848
6858
  complete: complete,
6849
6859
  },
6850
6860
  usage: usage,
6861
+ rawPromptContent: rawPromptContent,
6862
+ rawRequest: rawRequest,
6851
6863
  rawResponse: rawResponse,
6852
- // <- [๐Ÿคนโ€โ™‚๏ธ]
6864
+ // <- [๐Ÿ—ฏ]
6853
6865
  }];
6854
6866
  }
6855
6867
  });