@promptbook/node 0.61.0-23 → 0.61.0-24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +115 -51
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/conversion/pipelineStringToJsonSync.d.ts +1 -0
- package/esm/typings/src/conversion/utils/stringifyPipelineJson.d.ts +1 -0
- package/esm/typings/src/execution/PromptResultUsage.d.ts +3 -0
- package/esm/typings/src/prepare/preparePipeline.d.ts +0 -1
- package/esm/typings/src/prepare/prepareTemplates.d.ts +31 -0
- package/esm/typings/src/prepare/unpreparePipeline.d.ts +1 -0
- package/esm/typings/src/types/PipelineJson/KnowledgePieceJson.d.ts +3 -0
- package/esm/typings/src/types/PipelineJson/KnowledgeSourceJson.d.ts +3 -0
- package/esm/typings/src/types/PipelineJson/LlmTemplateJson.d.ts +1 -0
- package/esm/typings/src/types/PipelineJson/PersonaJson.d.ts +3 -0
- package/esm/typings/src/types/PipelineJson/PipelineJson.d.ts +1 -0
- package/esm/typings/src/types/PipelineJson/PreparationJson.d.ts +1 -0
- package/esm/typings/src/types/PipelineJson/PromptDialogJson.d.ts +4 -3
- package/esm/typings/src/types/PipelineJson/PromptTemplateJsonCommon.d.ts +10 -0
- package/esm/typings/src/types/PipelineJson/PromptTemplateParameterJson.d.ts +1 -0
- package/esm/typings/src/types/PipelineJson/ScriptJson.d.ts +5 -2
- package/esm/typings/src/types/PipelineJson/SimpleTemplateJson.d.ts +5 -2
- package/package.json +2 -2
- package/umd/index.umd.js +115 -51
- package/umd/index.umd.js.map +1 -1
- package/umd/typings/src/conversion/pipelineStringToJsonSync.d.ts +1 -0
- package/umd/typings/src/conversion/utils/stringifyPipelineJson.d.ts +1 -0
- package/umd/typings/src/execution/PromptResultUsage.d.ts +3 -0
- package/umd/typings/src/prepare/preparePipeline.d.ts +0 -1
- package/umd/typings/src/prepare/prepareTemplates.d.ts +31 -0
- package/umd/typings/src/prepare/unpreparePipeline.d.ts +1 -0
- package/umd/typings/src/types/PipelineJson/KnowledgePieceJson.d.ts +3 -0
- package/umd/typings/src/types/PipelineJson/KnowledgeSourceJson.d.ts +3 -0
- package/umd/typings/src/types/PipelineJson/LlmTemplateJson.d.ts +1 -0
- package/umd/typings/src/types/PipelineJson/PersonaJson.d.ts +3 -0
- package/umd/typings/src/types/PipelineJson/PipelineJson.d.ts +1 -0
- package/umd/typings/src/types/PipelineJson/PreparationJson.d.ts +1 -0
- package/umd/typings/src/types/PipelineJson/PromptDialogJson.d.ts +4 -3
- package/umd/typings/src/types/PipelineJson/PromptTemplateJsonCommon.d.ts +10 -0
- package/umd/typings/src/types/PipelineJson/PromptTemplateParameterJson.d.ts +1 -0
- package/umd/typings/src/types/PipelineJson/ScriptJson.d.ts +5 -2
- package/umd/typings/src/types/PipelineJson/SimpleTemplateJson.d.ts +5 -2
package/esm/index.es.js
CHANGED
|
@@ -649,7 +649,7 @@ function forEachAsync(array, options, callbackfunction) {
|
|
|
649
649
|
});
|
|
650
650
|
}
|
|
651
651
|
|
|
652
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-
|
|
652
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-23",parameters:[{name:"content",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {content}",dependentParameterNames:["content"],resultingParameterName:"knowledgePieces"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-23",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-23",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {content}",dependentParameterNames:["content"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-23",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-23",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {content}",expectations:{words:{min:1,max:8}},dependentParameterNames:["content"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-23",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-23",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-23",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
|
|
653
653
|
|
|
654
654
|
/**
|
|
655
655
|
* This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
|
|
@@ -1087,15 +1087,17 @@ var ReferenceError$1 = /** @class */ (function (_super) {
|
|
|
1087
1087
|
* Unprepare just strips the preparation data of the pipeline
|
|
1088
1088
|
*/
|
|
1089
1089
|
function unpreparePipeline(pipeline) {
|
|
1090
|
-
var personas = pipeline.personas, knowledgeSources = pipeline.knowledgeSources;
|
|
1090
|
+
var personas = pipeline.personas, knowledgeSources = pipeline.knowledgeSources, promptTemplates = pipeline.promptTemplates;
|
|
1091
1091
|
personas = personas.map(function (persona) { return (__assign(__assign({}, persona), { modelRequirements: undefined, preparationIds: undefined })); });
|
|
1092
1092
|
knowledgeSources = knowledgeSources.map(function (knowledgeSource) { return (__assign(__assign({}, knowledgeSource), { preparationIds: undefined })); });
|
|
1093
|
-
return __assign(__assign({},
|
|
1093
|
+
promptTemplates = promptTemplates.map(function (promptTemplate) { return (__assign(__assign({}, promptTemplate), { preparedContent: undefined })); });
|
|
1094
|
+
return __assign(__assign({}, pipeline), { promptTemplates: promptTemplates, knowledgeSources: knowledgeSources, knowledgePieces: [], personas: personas, preparations: [] });
|
|
1094
1095
|
}
|
|
1095
1096
|
/**
|
|
1096
1097
|
* TODO: [🔼] !!! Export via `@promptbook/core`
|
|
1097
1098
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
1098
1099
|
* TODO: Write tests for `preparePipeline`
|
|
1100
|
+
* TODO: [🍙] Make some standart order of json properties
|
|
1099
1101
|
*/
|
|
1100
1102
|
|
|
1101
1103
|
/**
|
|
@@ -2002,6 +2004,12 @@ function isPipelinePrepared(pipeline) {
|
|
|
2002
2004
|
if (!pipeline.knowledgeSources.every(function (knowledgeSource) { return knowledgeSource.preparationIds !== undefined; })) {
|
|
2003
2005
|
return false;
|
|
2004
2006
|
}
|
|
2007
|
+
/*
|
|
2008
|
+
TODO: [🧠][🍫] `promptTemplates` can not be determined if they are fully prepared SO ignoring them
|
|
2009
|
+
> if (!pipeline.promptTemplates.every(({ preparedContent }) => preparedContent === undefined)) {
|
|
2010
|
+
> return false;
|
|
2011
|
+
> }
|
|
2012
|
+
*/
|
|
2005
2013
|
return true;
|
|
2006
2014
|
}
|
|
2007
2015
|
/**
|
|
@@ -2214,7 +2222,7 @@ function union() {
|
|
|
2214
2222
|
/**
|
|
2215
2223
|
* The version of the Promptbook library
|
|
2216
2224
|
*/
|
|
2217
|
-
var PROMPTBOOK_VERSION = '0.61.0-
|
|
2225
|
+
var PROMPTBOOK_VERSION = '0.61.0-23';
|
|
2218
2226
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
2219
2227
|
|
|
2220
2228
|
/**
|
|
@@ -2344,7 +2352,8 @@ function createPipelineExecutor(options) {
|
|
|
2344
2352
|
pipeline = rawPipeline;
|
|
2345
2353
|
}
|
|
2346
2354
|
else {
|
|
2347
|
-
|
|
2355
|
+
// TODO: !!!! This should be maybe warning in report
|
|
2356
|
+
console.warn(spaceTrim$1("\n Pipeline ".concat(rawPipeline.pipelineUrl || rawPipeline.sourceFile || rawPipeline.title, " is not prepared\n\n ").concat(rawPipeline.sourceFile, "\n\n It will be prepared ad-hoc before the first execution\n But it is recommended to prepare the pipeline during collection preparation\n\n @see more at https://ptbk.io/prepare-pipeline\n ")));
|
|
2348
2357
|
}
|
|
2349
2358
|
var pipelineExecutor = function (inputParameters, onProgress) { return __awaiter(_this, void 0, void 0, function () {
|
|
2350
2359
|
// TODO: !!!!! Extract to separate functions and files - ALL FUNCTIONS BELOW
|
|
@@ -2353,7 +2362,7 @@ function createPipelineExecutor(options) {
|
|
|
2353
2362
|
return __awaiter(this, void 0, void 0, function () {
|
|
2354
2363
|
return __generator(this, function (_a) {
|
|
2355
2364
|
TODO_USE(template);
|
|
2356
|
-
return [2 /*return*/,
|
|
2365
|
+
return [2 /*return*/, RESERVED_PARAMETER_MISSING_VALUE /* <- TODO: !!!! Implement */];
|
|
2357
2366
|
});
|
|
2358
2367
|
});
|
|
2359
2368
|
}
|
|
@@ -2376,7 +2385,7 @@ function createPipelineExecutor(options) {
|
|
|
2376
2385
|
return __generator(this, function (_a) {
|
|
2377
2386
|
// TODO: !!!! Implement Better - use real index and keyword search
|
|
2378
2387
|
TODO_USE(template);
|
|
2379
|
-
return [2 /*return*/,
|
|
2388
|
+
return [2 /*return*/, RESERVED_PARAMETER_MISSING_VALUE /* <- TODO: !!!! Implement */];
|
|
2380
2389
|
});
|
|
2381
2390
|
});
|
|
2382
2391
|
}
|
|
@@ -2427,7 +2436,7 @@ function createPipelineExecutor(options) {
|
|
|
2427
2436
|
}
|
|
2428
2437
|
function executeSingleTemplate(currentTemplate) {
|
|
2429
2438
|
return __awaiter(this, void 0, void 0, function () {
|
|
2430
|
-
var name, title, priority, usedParameterNames, dependentParameterNames, definedParameters, _a, _b, _c, definedParameterNames, parameters, _d, _e, parameterName, prompt, chatResult, completionResult, embeddingResult, result, resultString, expectError, scriptPipelineExecutionErrors, maxAttempts, jokerParameterNames, attempt, isJokerAttempt, jokerParameterName, _f, _g, _h, _j, scriptTools, error_2, e_4_1, _k, _l, functionName, postprocessingError, _m, _o, scriptTools, error_3, e_5_1, e_6_1, error_4;
|
|
2439
|
+
var name, title, priority, usedParameterNames, dependentParameterNames, definedParameters, _a, _b, _c, definedParameterNames, parameters, _d, _e, parameterName, prompt, chatResult, completionResult, embeddingResult, result, resultString, expectError, scriptPipelineExecutionErrors, maxAttempts, jokerParameterNames, preparedContent, attempt, isJokerAttempt, jokerParameterName, _f, _g, _h, _j, scriptTools, error_2, e_4_1, _k, _l, functionName, postprocessingError, _m, _o, scriptTools, error_3, e_5_1, e_6_1, error_4;
|
|
2431
2440
|
var e_7, _p, e_4, _q, e_6, _r, e_5, _s, _t;
|
|
2432
2441
|
var _this = this;
|
|
2433
2442
|
return __generator(this, function (_u) {
|
|
@@ -2497,6 +2506,9 @@ function createPipelineExecutor(options) {
|
|
|
2497
2506
|
expectError = null;
|
|
2498
2507
|
maxAttempts = currentTemplate.blockType === 'PROMPT_DIALOG' ? Infinity : maxExecutionAttempts;
|
|
2499
2508
|
jokerParameterNames = currentTemplate.jokerParameterNames || [];
|
|
2509
|
+
preparedContent = (currentTemplate.preparedContent || '{content}')
|
|
2510
|
+
.split('{content}')
|
|
2511
|
+
.join(currentTemplate.content);
|
|
2500
2512
|
attempt = -jokerParameterNames.length;
|
|
2501
2513
|
_u.label = 4;
|
|
2502
2514
|
case 4:
|
|
@@ -2531,7 +2543,7 @@ function createPipelineExecutor(options) {
|
|
|
2531
2543
|
}
|
|
2532
2544
|
return [3 /*break*/, 29];
|
|
2533
2545
|
case 6:
|
|
2534
|
-
resultString = replaceParameters(
|
|
2546
|
+
resultString = replaceParameters(preparedContent, parameters);
|
|
2535
2547
|
return [3 /*break*/, 30];
|
|
2536
2548
|
case 7:
|
|
2537
2549
|
prompt = {
|
|
@@ -2540,7 +2552,7 @@ function createPipelineExecutor(options) {
|
|
|
2540
2552
|
? pipeline.pipelineUrl
|
|
2541
2553
|
: 'anonymous' /* <- TODO: [🧠] How to deal with anonymous pipelines, do here some auto-url like SHA-256 based ad-hoc identifier? */, "#").concat(currentTemplate.name),
|
|
2542
2554
|
parameters: parameters,
|
|
2543
|
-
content:
|
|
2555
|
+
content: preparedContent,
|
|
2544
2556
|
modelRequirements: currentTemplate.modelRequirements,
|
|
2545
2557
|
expectations: __assign(__assign({}, (pipeline.personas.find(function (_a) {
|
|
2546
2558
|
var name = _a.name;
|
|
@@ -2662,7 +2674,7 @@ function createPipelineExecutor(options) {
|
|
|
2662
2674
|
_u.trys.push([19, 21, , 22]);
|
|
2663
2675
|
return [4 /*yield*/, scriptTools.execute(deepFreeze({
|
|
2664
2676
|
scriptLanguage: currentTemplate.contentLanguage,
|
|
2665
|
-
script:
|
|
2677
|
+
script: preparedContent,
|
|
2666
2678
|
parameters: parameters,
|
|
2667
2679
|
}))];
|
|
2668
2680
|
case 20:
|
|
@@ -2711,7 +2723,7 @@ function createPipelineExecutor(options) {
|
|
|
2711
2723
|
return [4 /*yield*/, tools.userInterface.promptDialog(deepFreeze({
|
|
2712
2724
|
promptTitle: currentTemplate.title,
|
|
2713
2725
|
promptMessage: replaceParameters(currentTemplate.description || '', parameters),
|
|
2714
|
-
defaultValue: replaceParameters(
|
|
2726
|
+
defaultValue: replaceParameters(preparedContent, parameters),
|
|
2715
2727
|
// TODO: [🧠] !! Figure out how to define placeholder in .ptbk.md file
|
|
2716
2728
|
placeholder: undefined,
|
|
2717
2729
|
priority: priority,
|
|
@@ -2889,7 +2901,7 @@ function createPipelineExecutor(options) {
|
|
|
2889
2901
|
var parameter = _c.value;
|
|
2890
2902
|
if (parametersToPass[parameter.name] === undefined) {
|
|
2891
2903
|
// [4]
|
|
2892
|
-
warnings.push(new PipelineExecutionError("Parameter {".concat(parameter.name, "} should be an output parameter, but it was not
|
|
2904
|
+
warnings.push(new PipelineExecutionError("Parameter {".concat(parameter.name, "} should be an output parameter, but it was not generated during pipeline execution")));
|
|
2893
2905
|
continue;
|
|
2894
2906
|
}
|
|
2895
2907
|
outputParameters[parameter.name] = parametersToPass[parameter.name] || '';
|
|
@@ -2904,7 +2916,7 @@ function createPipelineExecutor(options) {
|
|
|
2904
2916
|
}
|
|
2905
2917
|
return outputParameters;
|
|
2906
2918
|
}
|
|
2907
|
-
var executionReport, _a, _b, parameter,
|
|
2919
|
+
var errors, warnings, executionReport, _a, _b, parameter, _loop_1, _c, _d, parameterName, state_1, parametersToPass, resovedParameterNames_1, unresovedTemplates_1, resolving_1, loopLimit, _loop_2, error_1, usage_1, outputParameters_1, usage, outputParameters;
|
|
2908
2920
|
var e_1, _e, e_2, _f;
|
|
2909
2921
|
return __generator(this, function (_g) {
|
|
2910
2922
|
switch (_g.label) {
|
|
@@ -2919,6 +2931,8 @@ function createPipelineExecutor(options) {
|
|
|
2919
2931
|
pipeline = _g.sent();
|
|
2920
2932
|
_g.label = 2;
|
|
2921
2933
|
case 2:
|
|
2934
|
+
errors = [];
|
|
2935
|
+
warnings = [];
|
|
2922
2936
|
executionReport = {
|
|
2923
2937
|
pipelineUrl: pipeline.pipelineUrl,
|
|
2924
2938
|
title: pipeline.title,
|
|
@@ -2937,9 +2951,9 @@ function createPipelineExecutor(options) {
|
|
|
2937
2951
|
if (inputParameters[parameter.name] === undefined) {
|
|
2938
2952
|
return [2 /*return*/, deepFreezeWithSameType({
|
|
2939
2953
|
isSuccessful: false,
|
|
2940
|
-
errors: [
|
|
2941
|
-
new PipelineExecutionError("Parameter {".concat(parameter.name, "} is required as an input parameter"))
|
|
2942
|
-
],
|
|
2954
|
+
errors: __spreadArray([
|
|
2955
|
+
new PipelineExecutionError("Parameter {".concat(parameter.name, "} is required as an input parameter"))
|
|
2956
|
+
], __read(errors), false),
|
|
2943
2957
|
warnings: [],
|
|
2944
2958
|
executionReport: executionReport,
|
|
2945
2959
|
outputParameters: {},
|
|
@@ -2955,8 +2969,6 @@ function createPipelineExecutor(options) {
|
|
|
2955
2969
|
}
|
|
2956
2970
|
finally { if (e_1) throw e_1.error; }
|
|
2957
2971
|
}
|
|
2958
|
-
errors = [];
|
|
2959
|
-
warnings = [];
|
|
2960
2972
|
_loop_1 = function (parameterName) {
|
|
2961
2973
|
var parameter = pipeline.parameters.find(function (_a) {
|
|
2962
2974
|
var name = _a.name;
|
|
@@ -2968,9 +2980,9 @@ function createPipelineExecutor(options) {
|
|
|
2968
2980
|
else if (parameter.isInput === false) {
|
|
2969
2981
|
return { value: deepFreezeWithSameType({
|
|
2970
2982
|
isSuccessful: false,
|
|
2971
|
-
errors: [
|
|
2972
|
-
new PipelineExecutionError("Parameter {".concat(parameter.name, "} is passed as input parameter but it is not input"))
|
|
2973
|
-
],
|
|
2983
|
+
errors: __spreadArray([
|
|
2984
|
+
new PipelineExecutionError("Parameter {".concat(parameter.name, "} is passed as input parameter but it is not input"))
|
|
2985
|
+
], __read(errors), false),
|
|
2974
2986
|
warnings: warnings,
|
|
2975
2987
|
executionReport: executionReport,
|
|
2976
2988
|
outputParameters: {},
|
|
@@ -3377,6 +3389,53 @@ function preparePersona(personaDescription, options) {
|
|
|
3377
3389
|
* TODO: [🏢] !! Check validity of `temperature` in pipeline
|
|
3378
3390
|
*/
|
|
3379
3391
|
|
|
3392
|
+
/**
|
|
3393
|
+
* @@@
|
|
3394
|
+
*/
|
|
3395
|
+
function prepareTemplates(pipeline, options) {
|
|
3396
|
+
return __awaiter(this, void 0, void 0, function () {
|
|
3397
|
+
var _a, maxParallelCount, promptTemplates, parameters, knowledgePiecesCount, promptTemplatesPrepared;
|
|
3398
|
+
var _this = this;
|
|
3399
|
+
return __generator(this, function (_b) {
|
|
3400
|
+
switch (_b.label) {
|
|
3401
|
+
case 0:
|
|
3402
|
+
_a = options.maxParallelCount, maxParallelCount = _a === void 0 ? MAX_PARALLEL_COUNT : _a;
|
|
3403
|
+
promptTemplates = pipeline.promptTemplates, parameters = pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
|
|
3404
|
+
// TODO: !!!! Apply samples to each template (if missing and is for the template defined)
|
|
3405
|
+
TODO_USE(parameters);
|
|
3406
|
+
promptTemplatesPrepared = new Array(promptTemplates.length);
|
|
3407
|
+
return [4 /*yield*/, forEachAsync(promptTemplates, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (template, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3408
|
+
var preparedContent, preparedTemplate;
|
|
3409
|
+
return __generator(this, function (_a) {
|
|
3410
|
+
preparedContent = undefined;
|
|
3411
|
+
if (knowledgePiecesCount > 0) {
|
|
3412
|
+
preparedContent = spaceTrim$1("\n {content}\n\n ## Knowledge\n\n {knowledge}\n ");
|
|
3413
|
+
// <- TODO: [🧠][🧻] Cutomize shape/language/formatting of the addition to the prompt
|
|
3414
|
+
}
|
|
3415
|
+
preparedTemplate = __assign(__assign({}, template), { preparedContent: preparedContent });
|
|
3416
|
+
promptTemplatesPrepared[index] = preparedTemplate;
|
|
3417
|
+
return [2 /*return*/];
|
|
3418
|
+
});
|
|
3419
|
+
}); })];
|
|
3420
|
+
case 1:
|
|
3421
|
+
_b.sent();
|
|
3422
|
+
return [2 /*return*/, { promptTemplatesPrepared: promptTemplatesPrepared }];
|
|
3423
|
+
}
|
|
3424
|
+
});
|
|
3425
|
+
});
|
|
3426
|
+
}
|
|
3427
|
+
/**
|
|
3428
|
+
* TODO: [🧠] Add context to each template (if missing)
|
|
3429
|
+
* TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
|
|
3430
|
+
* TODO: !!!!! Index the samples and maybe templates
|
|
3431
|
+
* TODO: [🔼] !!! Export via `@promptbook/core`
|
|
3432
|
+
* TODO: Write tests for `preparePipeline`
|
|
3433
|
+
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
3434
|
+
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
3435
|
+
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
3436
|
+
* TODO: [🧠][🥜]
|
|
3437
|
+
*/
|
|
3438
|
+
|
|
3380
3439
|
/**
|
|
3381
3440
|
* Prepare pipeline from string (markdown) format to JSON format
|
|
3382
3441
|
*
|
|
@@ -3385,18 +3444,18 @@ function preparePersona(personaDescription, options) {
|
|
|
3385
3444
|
*/
|
|
3386
3445
|
function preparePipeline(pipeline, options) {
|
|
3387
3446
|
return __awaiter(this, void 0, void 0, function () {
|
|
3388
|
-
var _a, maxParallelCount,
|
|
3447
|
+
var _a, maxParallelCount, parameters, promptTemplates,
|
|
3389
3448
|
/*
|
|
3390
3449
|
<- TODO: [🧠][0] `promptbookVersion` */
|
|
3391
3450
|
knowledgeSources /*
|
|
3392
3451
|
<- TODO: [🧊] `knowledgePieces` */, personas /*
|
|
3393
|
-
<- TODO: [🧊] `preparations` */, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared
|
|
3452
|
+
<- TODO: [🧊] `preparations` */, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, promptTemplatesPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3394
3453
|
var _this = this;
|
|
3395
3454
|
return __generator(this, function (_b) {
|
|
3396
3455
|
switch (_b.label) {
|
|
3397
3456
|
case 0:
|
|
3398
3457
|
_a = options.maxParallelCount, maxParallelCount = _a === void 0 ? MAX_PARALLEL_COUNT : _a;
|
|
3399
|
-
knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
|
|
3458
|
+
parameters = pipeline.parameters, promptTemplates = pipeline.promptTemplates, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
|
|
3400
3459
|
currentPreparation = {
|
|
3401
3460
|
id: 1,
|
|
3402
3461
|
// TODO: [🍥]> date: $currentDate(),
|
|
@@ -3429,17 +3488,20 @@ function preparePipeline(pipeline, options) {
|
|
|
3429
3488
|
case 2:
|
|
3430
3489
|
partialknowledgePiecesPrepared = _b.sent();
|
|
3431
3490
|
knowledgePiecesPrepared = partialknowledgePiecesPrepared.map(function (piece) { return (__assign(__assign({}, piece), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3432
|
-
|
|
3433
|
-
|
|
3434
|
-
|
|
3435
|
-
|
|
3436
|
-
|
|
3491
|
+
return [4 /*yield*/, prepareTemplates({
|
|
3492
|
+
parameters: parameters,
|
|
3493
|
+
promptTemplates: promptTemplates,
|
|
3494
|
+
knowledgePiecesCount: knowledgePiecesPrepared.length,
|
|
3495
|
+
}, options)];
|
|
3496
|
+
case 3:
|
|
3497
|
+
promptTemplatesPrepared = (_b.sent()).promptTemplatesPrepared;
|
|
3498
|
+
// ----- /Templates preparation -----
|
|
3499
|
+
return [2 /*return*/, __assign(__assign({}, pipeline), { promptTemplates: promptTemplatesPrepared, knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, personas: preparedPersonas, preparations: preparations })];
|
|
3437
3500
|
}
|
|
3438
3501
|
});
|
|
3439
3502
|
});
|
|
3440
3503
|
}
|
|
3441
3504
|
/**
|
|
3442
|
-
* TODO: !!!!! Index the samples and maybe templates
|
|
3443
3505
|
* TODO: [🔼] !!! Export via `@promptbook/core`
|
|
3444
3506
|
* TODO: Write tests for `preparePipeline`
|
|
3445
3507
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
@@ -5372,6 +5434,7 @@ function pipelineStringToJsonSync(pipelineString) {
|
|
|
5372
5434
|
* TODO: [🥞] Not optimal parsing because `splitMarkdownIntoSections` is executed twice with same string, once through `flattenMarkdown` and second directly here
|
|
5373
5435
|
* TODO: [♈] Probbably move expectations from templates to parameters
|
|
5374
5436
|
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
5437
|
+
* TODO: [🍙] Make some standart order of json properties
|
|
5375
5438
|
*/
|
|
5376
5439
|
|
|
5377
5440
|
/**
|
|
@@ -5955,7 +6018,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
|
5955
6018
|
*/
|
|
5956
6019
|
AnthropicClaudeExecutionTools.prototype.callChatModel = function (prompt) {
|
|
5957
6020
|
return __awaiter(this, void 0, void 0, function () {
|
|
5958
|
-
var content, parameters, modelRequirements, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6021
|
+
var content, parameters, modelRequirements, modelName, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
5959
6022
|
return __generator(this, function (_a) {
|
|
5960
6023
|
switch (_a.label) {
|
|
5961
6024
|
case 0:
|
|
@@ -5967,6 +6030,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
|
5967
6030
|
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
5968
6031
|
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
5969
6032
|
}
|
|
6033
|
+
modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
5970
6034
|
rawRequest = {
|
|
5971
6035
|
model: modelRequirements.modelName || this.getDefaultChatModel().modelName,
|
|
5972
6036
|
max_tokens: modelRequirements.maxTokens || 4096,
|
|
@@ -5978,7 +6042,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
|
5978
6042
|
messages: [
|
|
5979
6043
|
{
|
|
5980
6044
|
role: 'user',
|
|
5981
|
-
content: replaceParameters(content, parameters),
|
|
6045
|
+
content: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })),
|
|
5982
6046
|
},
|
|
5983
6047
|
],
|
|
5984
6048
|
// TODO: Is here some equivalent of user identification?> user: this.options.user,
|
|
@@ -6039,9 +6103,9 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
|
6039
6103
|
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
6040
6104
|
}
|
|
6041
6105
|
|
|
6042
|
-
const
|
|
6106
|
+
const modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
6043
6107
|
const modelSettings = {
|
|
6044
|
-
model:
|
|
6108
|
+
model: modelName,
|
|
6045
6109
|
max_tokens: modelRequirements.maxTokens || 2000, // <- Note: 2000 is for lagacy reasons
|
|
6046
6110
|
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
6047
6111
|
// <- TODO: Use here `systemMessage`, `temperature` and `seed`
|
|
@@ -6049,7 +6113,7 @@ var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
|
6049
6113
|
|
|
6050
6114
|
const rawRequest: xxxx.Completions.CompletionCreateParamsNonStreaming = {
|
|
6051
6115
|
...modelSettings,
|
|
6052
|
-
prompt: replaceParameters(content, parameters),
|
|
6116
|
+
prompt: replaceParameters(content, { ...parameters, modelName }),
|
|
6053
6117
|
user: this.options.user,
|
|
6054
6118
|
};
|
|
6055
6119
|
const start: string_date_iso8601 = getCurrentIsoDate();
|
|
@@ -6556,7 +6620,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6556
6620
|
*/
|
|
6557
6621
|
OpenAiExecutionTools.prototype.callChatModel = function (prompt) {
|
|
6558
6622
|
return __awaiter(this, void 0, void 0, function () {
|
|
6559
|
-
var content, parameters, modelRequirements, expectFormat,
|
|
6623
|
+
var content, parameters, modelRequirements, expectFormat, modelName, modelSettings, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6560
6624
|
return __generator(this, function (_a) {
|
|
6561
6625
|
switch (_a.label) {
|
|
6562
6626
|
case 0:
|
|
@@ -6568,9 +6632,9 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6568
6632
|
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
6569
6633
|
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
6570
6634
|
}
|
|
6571
|
-
|
|
6635
|
+
modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
6572
6636
|
modelSettings = {
|
|
6573
|
-
model:
|
|
6637
|
+
model: modelName,
|
|
6574
6638
|
max_tokens: modelRequirements.maxTokens,
|
|
6575
6639
|
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
6576
6640
|
temperature: modelRequirements.temperature,
|
|
@@ -6592,7 +6656,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6592
6656
|
])), false), [
|
|
6593
6657
|
{
|
|
6594
6658
|
role: 'user',
|
|
6595
|
-
content: replaceParameters(content, parameters),
|
|
6659
|
+
content: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })),
|
|
6596
6660
|
},
|
|
6597
6661
|
], false), user: this.options.user });
|
|
6598
6662
|
start = getCurrentIsoDate();
|
|
@@ -6621,7 +6685,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6621
6685
|
}
|
|
6622
6686
|
return [2 /*return*/, {
|
|
6623
6687
|
content: resultContent,
|
|
6624
|
-
modelName: rawResponse.model ||
|
|
6688
|
+
modelName: rawResponse.model || modelName,
|
|
6625
6689
|
timing: {
|
|
6626
6690
|
start: start,
|
|
6627
6691
|
complete: complete,
|
|
@@ -6639,7 +6703,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6639
6703
|
*/
|
|
6640
6704
|
OpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
6641
6705
|
return __awaiter(this, void 0, void 0, function () {
|
|
6642
|
-
var content, parameters, modelRequirements,
|
|
6706
|
+
var content, parameters, modelRequirements, modelName, modelSettings, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6643
6707
|
return __generator(this, function (_a) {
|
|
6644
6708
|
switch (_a.label) {
|
|
6645
6709
|
case 0:
|
|
@@ -6651,16 +6715,16 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6651
6715
|
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
6652
6716
|
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
6653
6717
|
}
|
|
6654
|
-
|
|
6718
|
+
modelName = modelRequirements.modelName || this.getDefaultCompletionModel().modelName;
|
|
6655
6719
|
modelSettings = {
|
|
6656
|
-
model:
|
|
6720
|
+
model: modelName,
|
|
6657
6721
|
max_tokens: modelRequirements.maxTokens || 2000,
|
|
6658
6722
|
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
6659
6723
|
temperature: modelRequirements.temperature,
|
|
6660
6724
|
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
6661
6725
|
// <- Note: [🧆]
|
|
6662
6726
|
};
|
|
6663
|
-
rawRequest = __assign(__assign({}, modelSettings), { prompt: replaceParameters(content, parameters), user: this.options.user });
|
|
6727
|
+
rawRequest = __assign(__assign({}, modelSettings), { prompt: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })), user: this.options.user });
|
|
6664
6728
|
start = getCurrentIsoDate();
|
|
6665
6729
|
if (this.options.isVerbose) {
|
|
6666
6730
|
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
@@ -6684,7 +6748,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6684
6748
|
usage = computeOpenaiUsage(content, resultContent || '', rawResponse);
|
|
6685
6749
|
return [2 /*return*/, {
|
|
6686
6750
|
content: resultContent,
|
|
6687
|
-
modelName: rawResponse.model ||
|
|
6751
|
+
modelName: rawResponse.model || modelName,
|
|
6688
6752
|
timing: {
|
|
6689
6753
|
start: start,
|
|
6690
6754
|
complete: complete,
|
|
@@ -6702,7 +6766,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6702
6766
|
*/
|
|
6703
6767
|
OpenAiExecutionTools.prototype.callEmbeddingModel = function (prompt) {
|
|
6704
6768
|
return __awaiter(this, void 0, void 0, function () {
|
|
6705
|
-
var content, parameters, modelRequirements,
|
|
6769
|
+
var content, parameters, modelRequirements, modelName, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6706
6770
|
return __generator(this, function (_a) {
|
|
6707
6771
|
switch (_a.label) {
|
|
6708
6772
|
case 0:
|
|
@@ -6714,10 +6778,10 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6714
6778
|
if (modelRequirements.modelVariant !== 'EMBEDDING') {
|
|
6715
6779
|
throw new PipelineExecutionError('Use embed only for EMBEDDING variant');
|
|
6716
6780
|
}
|
|
6717
|
-
|
|
6781
|
+
modelName = modelRequirements.modelName || this.getDefaultEmbeddingModel().modelName;
|
|
6718
6782
|
rawRequest = {
|
|
6719
|
-
input: replaceParameters(content, parameters),
|
|
6720
|
-
model:
|
|
6783
|
+
input: replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName })),
|
|
6784
|
+
model: modelName,
|
|
6721
6785
|
// TODO: !!!! Test model 3 and dimensions
|
|
6722
6786
|
};
|
|
6723
6787
|
start = getCurrentIsoDate();
|
|
@@ -6739,7 +6803,7 @@ var OpenAiExecutionTools = /** @class */ (function () {
|
|
|
6739
6803
|
usage = computeOpenaiUsage(content, '', rawResponse);
|
|
6740
6804
|
return [2 /*return*/, {
|
|
6741
6805
|
content: resultContent,
|
|
6742
|
-
modelName: rawResponse.model ||
|
|
6806
|
+
modelName: rawResponse.model || modelName,
|
|
6743
6807
|
timing: {
|
|
6744
6808
|
start: start,
|
|
6745
6809
|
complete: complete,
|