@promptbook/node 0.61.0-21 → 0.61.0-22
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +15 -9
- package/esm/index.es.js.map +1 -1
- package/package.json +2 -2
- package/umd/index.umd.js +15 -9
- package/umd/index.umd.js.map +1 -1
package/esm/index.es.js
CHANGED
|
@@ -638,7 +638,7 @@ function forEachAsync(array, options, callbackfunction) {
|
|
|
638
638
|
});
|
|
639
639
|
}
|
|
640
640
|
|
|
641
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-
|
|
641
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-21",parameters:[{name:"content",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledge",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {content}",dependentParameterNames:["content"],resultingParameterName:"knowledge"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-21",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-21",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {content}",dependentParameterNames:["content"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-21",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-21",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {content}",expectations:{words:{min:1,max:8}},dependentParameterNames:["content"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-21",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-21",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-21",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
|
|
642
642
|
|
|
643
643
|
/**
|
|
644
644
|
* This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
|
|
@@ -1562,7 +1562,11 @@ function assertsExecutionSuccessful(executionResult) {
|
|
|
1562
1562
|
throw errors[0];
|
|
1563
1563
|
}
|
|
1564
1564
|
else {
|
|
1565
|
-
throw new PipelineExecutionError(spaceTrim$1(function (block) { return "\n Multiple errors occurred during promptnook execution\n\n ".concat(block(errors
|
|
1565
|
+
throw new PipelineExecutionError(spaceTrim$1(function (block) { return "\n Multiple errors occurred during promptnook execution\n\n ".concat(block(errors
|
|
1566
|
+
.map(function (error, index) {
|
|
1567
|
+
return spaceTrim$1(function (block) { return "\n Error ".concat(index + 1, ":\n ").concat(block(error.stack || error.message), "\n "); });
|
|
1568
|
+
})
|
|
1569
|
+
.join('\n')), "\n "); }));
|
|
1566
1570
|
}
|
|
1567
1571
|
}
|
|
1568
1572
|
/**
|
|
@@ -2183,7 +2187,7 @@ function union() {
|
|
|
2183
2187
|
/**
|
|
2184
2188
|
* The version of the Promptbook library
|
|
2185
2189
|
*/
|
|
2186
|
-
var PROMPTBOOK_VERSION = '0.61.0-
|
|
2190
|
+
var PROMPTBOOK_VERSION = '0.61.0-21';
|
|
2187
2191
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
2188
2192
|
|
|
2189
2193
|
/**
|
|
@@ -2828,7 +2832,7 @@ function createPipelineExecutor(options) {
|
|
|
2828
2832
|
var parameter = _c.value;
|
|
2829
2833
|
if (parametersToPass[parameter.name] === undefined) {
|
|
2830
2834
|
// [4]
|
|
2831
|
-
errors.push(new PipelineExecutionError("Parameter {".concat(parameter.name, "}
|
|
2835
|
+
errors.push(new PipelineExecutionError("Parameter {".concat(parameter.name, "} should be an output parameter, but it was not be resolved")));
|
|
2832
2836
|
continue;
|
|
2833
2837
|
}
|
|
2834
2838
|
outputParameters[parameter.name] = parametersToPass[parameter.name] || '';
|
|
@@ -2843,7 +2847,7 @@ function createPipelineExecutor(options) {
|
|
|
2843
2847
|
}
|
|
2844
2848
|
return outputParameters;
|
|
2845
2849
|
}
|
|
2846
|
-
var executionReport, _a, _b, parameter, errors, _loop_1, _c, _d, parameterName, state_1, parametersToPass,
|
|
2850
|
+
var executionReport, _a, _b, parameter, errors, _loop_1, _c, _d, parameterName, state_1, parametersToPass, resovedParameterNames_1, unresovedTemplates_1, resolving_1, loopLimit, _loop_2, error_1, usage_1, outputParameters_1, usage, outputParameters;
|
|
2847
2851
|
var e_1, _e, e_2, _f;
|
|
2848
2852
|
return __generator(this, function (_g) {
|
|
2849
2853
|
switch (_g.label) {
|
|
@@ -2936,7 +2940,7 @@ function createPipelineExecutor(options) {
|
|
|
2936
2940
|
_g.label = 3;
|
|
2937
2941
|
case 3:
|
|
2938
2942
|
_g.trys.push([3, 8, , 9]);
|
|
2939
|
-
|
|
2943
|
+
resovedParameterNames_1 = pipeline.parameters
|
|
2940
2944
|
.filter(function (_a) {
|
|
2941
2945
|
var isInput = _a.isInput;
|
|
2942
2946
|
return isInput;
|
|
@@ -2958,7 +2962,9 @@ function createPipelineExecutor(options) {
|
|
|
2958
2962
|
throw new UnexpectedError('Loop limit reached during resolving parameters pipeline execution');
|
|
2959
2963
|
}
|
|
2960
2964
|
currentTemplate = unresovedTemplates_1.find(function (template) {
|
|
2961
|
-
return template.dependentParameterNames.every(function (name) {
|
|
2965
|
+
return template.dependentParameterNames.every(function (name) {
|
|
2966
|
+
return __spreadArray(__spreadArray([], __read(resovedParameterNames_1), false), __read(RESERVED_PARAMETER_NAMES), false).includes(name);
|
|
2967
|
+
});
|
|
2962
2968
|
});
|
|
2963
2969
|
if (!(!currentTemplate && resolving_1.length === 0)) return [3 /*break*/, 1];
|
|
2964
2970
|
throw new UnexpectedError(
|
|
@@ -2970,7 +2976,7 @@ function createPipelineExecutor(options) {
|
|
|
2970
2976
|
.map(function (dependentParameterName) { return "{".concat(dependentParameterName, "}"); })
|
|
2971
2977
|
.join(' and '));
|
|
2972
2978
|
})
|
|
2973
|
-
.join('\n')), "\n\n Resolved:\n ").concat(block(
|
|
2979
|
+
.join('\n')), "\n\n Resolved:\n ").concat(block(resovedParameterNames_1.map(function (name) { return "- Parameter {".concat(name, "}"); }).join('\n')), "\n\n Note: This should be catched in `validatePipeline`\n "); }));
|
|
2974
2980
|
case 1:
|
|
2975
2981
|
if (!!currentTemplate) return [3 /*break*/, 3];
|
|
2976
2982
|
/* [5] */ return [4 /*yield*/, Promise.race(resolving_1)];
|
|
@@ -2981,7 +2987,7 @@ function createPipelineExecutor(options) {
|
|
|
2981
2987
|
unresovedTemplates_1 = unresovedTemplates_1.filter(function (template) { return template !== currentTemplate; });
|
|
2982
2988
|
work_1 = executeSingleTemplate(currentTemplate)
|
|
2983
2989
|
.then(function () {
|
|
2984
|
-
|
|
2990
|
+
resovedParameterNames_1 = __spreadArray(__spreadArray([], __read(resovedParameterNames_1), false), [currentTemplate.resultingParameterName], false);
|
|
2985
2991
|
})
|
|
2986
2992
|
.then(function () {
|
|
2987
2993
|
resolving_1 = resolving_1.filter(function (w) { return w !== work_1; });
|