@promptbook/node 0.61.0-16 โ 0.61.0-17
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +1092 -6
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/node.index.d.ts +2 -1
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +1 -0
- package/package.json +4 -2
- package/umd/index.umd.js +1096 -9
- package/umd/index.umd.js.map +1 -1
- package/umd/typings/src/_packages/node.index.d.ts +2 -1
- package/umd/typings/src/prepare/isPipelinePrepared.d.ts +1 -0
package/esm/index.es.js
CHANGED
|
@@ -4,6 +4,8 @@ import { join } from 'path';
|
|
|
4
4
|
import spaceTrim, { spaceTrim as spaceTrim$1 } from 'spacetrim';
|
|
5
5
|
import { format } from 'prettier';
|
|
6
6
|
import parserHtml from 'prettier/parser-html';
|
|
7
|
+
import Anthropic from '@anthropic-ai/sdk';
|
|
8
|
+
import OpenAI from 'openai';
|
|
7
9
|
|
|
8
10
|
/*! *****************************************************************************
|
|
9
11
|
Copyright (c) Microsoft Corporation.
|
|
@@ -393,7 +395,7 @@ function forEachAsync(array, options, callbackfunction) {
|
|
|
393
395
|
});
|
|
394
396
|
}
|
|
395
397
|
|
|
396
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-
|
|
398
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-16",parameters:[{name:"content",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledge",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {content}",dependentParameterNames:["content"],resultingParameterName:"knowledge"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-16",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-16",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {content}",dependentParameterNames:["content"],resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-16",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-16",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {content}",expectations:{words:{min:1,max:8}},dependentParameterNames:["content"],resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-16",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-16",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{blockType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",expectFormat:"JSON",dependentParameterNames:["availableModelNames","personaDescription"],resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-16",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
|
|
397
399
|
|
|
398
400
|
/**
|
|
399
401
|
* Prettify the html code
|
|
@@ -1002,11 +1004,11 @@ function validatePipeline(pipeline) {
|
|
|
1002
1004
|
throw new PipelineLogicError(spaceTrim$1(function (block) { return "\n\n Can not resolve some parameters:\n Either you are using a parameter that is not defined, or there are some circular dependencies.\n\n Can not resolve:\n ".concat(block(unresovedTemplates
|
|
1003
1005
|
.map(function (_a) {
|
|
1004
1006
|
var resultingParameterName = _a.resultingParameterName, dependentParameterNames = _a.dependentParameterNames;
|
|
1005
|
-
return "- {".concat(resultingParameterName, "} depends on ").concat(dependentParameterNames
|
|
1007
|
+
return "- Parameter {".concat(resultingParameterName, "} which depends on ").concat(dependentParameterNames
|
|
1006
1008
|
.map(function (dependentParameterName) { return "{".concat(dependentParameterName, "}"); })
|
|
1007
|
-
.join('
|
|
1009
|
+
.join(' and '));
|
|
1008
1010
|
})
|
|
1009
|
-
.join('\n')), "\n\n Resolved:\n ").concat(block(resovedParameters.map(function (name) { return "- {".concat(name, "}"); }).join('\n')), "\n "); }));
|
|
1011
|
+
.join('\n')), "\n\n Resolved:\n ").concat(block(resovedParameters.map(function (name) { return "- Parameter {".concat(name, "}"); }).join('\n')), "\n "); }));
|
|
1010
1012
|
}
|
|
1011
1013
|
resovedParameters = __spreadArray(__spreadArray([], __read(resovedParameters), false), __read(currentlyResovedTemplates.map(function (_a) {
|
|
1012
1014
|
var resultingParameterName = _a.resultingParameterName;
|
|
@@ -2029,9 +2031,11 @@ function isPipelinePrepared(pipeline) {
|
|
|
2029
2031
|
// Note: Ignoring `pipeline.preparations` @@@
|
|
2030
2032
|
// Note: Ignoring `pipeline.knowledgePieces` @@@
|
|
2031
2033
|
if (!pipeline.personas.every(function (persona) { return persona.modelRequirements !== undefined; })) {
|
|
2034
|
+
console.log('!!!!', 'Not all personas have modelRequirements');
|
|
2032
2035
|
return false;
|
|
2033
2036
|
}
|
|
2034
2037
|
if (!pipeline.knowledgeSources.every(function (knowledgeSource) { return knowledgeSource.preparationIds !== undefined; })) {
|
|
2038
|
+
console.log('!!!!', 'Not all knowledgeSources have preparationIds');
|
|
2035
2039
|
return false;
|
|
2036
2040
|
}
|
|
2037
2041
|
// TODO: !!!!! Is context in each template
|
|
@@ -2040,6 +2044,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
2040
2044
|
return true;
|
|
2041
2045
|
}
|
|
2042
2046
|
/**
|
|
2047
|
+
* TODO: [๐ ] Maybe base this on `makeValidator`
|
|
2043
2048
|
* TODO: [๐ผ] Export via core or utils
|
|
2044
2049
|
* TODO: [๐ง] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2045
2050
|
*/
|
|
@@ -2155,7 +2160,7 @@ function replaceParameters(template, parameters) {
|
|
|
2155
2160
|
/**
|
|
2156
2161
|
* The version of the Promptbook library
|
|
2157
2162
|
*/
|
|
2158
|
-
var PROMPTBOOK_VERSION = '0.61.0-
|
|
2163
|
+
var PROMPTBOOK_VERSION = '0.61.0-16';
|
|
2159
2164
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
2160
2165
|
|
|
2161
2166
|
/**
|
|
@@ -5604,5 +5609,1086 @@ function listAllFiles(path, isRecursive) {
|
|
|
5604
5609
|
* Note: [๐ข] This code should never be published outside of `@promptbook/node`
|
|
5605
5610
|
*/
|
|
5606
5611
|
|
|
5607
|
-
|
|
5612
|
+
/**
|
|
5613
|
+
* This error type indicates that you try to use a feature that is not available in the current environment
|
|
5614
|
+
*/
|
|
5615
|
+
var EnvironmentMismatchError = /** @class */ (function (_super) {
|
|
5616
|
+
__extends(EnvironmentMismatchError, _super);
|
|
5617
|
+
function EnvironmentMismatchError(message) {
|
|
5618
|
+
var _this = _super.call(this, message) || this;
|
|
5619
|
+
_this.name = 'EnvironmentMismatchError';
|
|
5620
|
+
Object.setPrototypeOf(_this, EnvironmentMismatchError.prototype);
|
|
5621
|
+
return _this;
|
|
5622
|
+
}
|
|
5623
|
+
return EnvironmentMismatchError;
|
|
5624
|
+
}(Error));
|
|
5625
|
+
|
|
5626
|
+
/**
|
|
5627
|
+
* Helper of usage compute
|
|
5628
|
+
*
|
|
5629
|
+
* @param content the content of prompt or response
|
|
5630
|
+
* @returns part of PromptResultUsageCounts
|
|
5631
|
+
*
|
|
5632
|
+
* @private internal util of LlmExecutionTools
|
|
5633
|
+
*/
|
|
5634
|
+
function computeUsageCounts(content) {
|
|
5635
|
+
return {
|
|
5636
|
+
charactersCount: { value: countCharacters(content) },
|
|
5637
|
+
wordsCount: { value: countWords(content) },
|
|
5638
|
+
sentencesCount: { value: countSentences(content) },
|
|
5639
|
+
linesCount: { value: countLines(content) },
|
|
5640
|
+
paragraphsCount: { value: countParagraphs(content) },
|
|
5641
|
+
pagesCount: { value: countPages(content) },
|
|
5642
|
+
};
|
|
5643
|
+
}
|
|
5644
|
+
|
|
5645
|
+
/**
|
|
5646
|
+
* Make UncertainNumber
|
|
5647
|
+
*
|
|
5648
|
+
* @param value
|
|
5649
|
+
*
|
|
5650
|
+
* @private utility for initializating UncertainNumber
|
|
5651
|
+
*/
|
|
5652
|
+
function uncertainNumber(value) {
|
|
5653
|
+
if (value === null || value === undefined || Number.isNaN(NaN)) {
|
|
5654
|
+
return { value: 0, isUncertain: true };
|
|
5655
|
+
}
|
|
5656
|
+
return { value: value };
|
|
5657
|
+
}
|
|
5658
|
+
|
|
5659
|
+
/**
|
|
5660
|
+
* Get current date in ISO 8601 format
|
|
5661
|
+
*
|
|
5662
|
+
* @private This is internal util of the promptbook
|
|
5663
|
+
*/
|
|
5664
|
+
function getCurrentIsoDate() {
|
|
5665
|
+
return new Date().toISOString();
|
|
5666
|
+
}
|
|
5667
|
+
|
|
5668
|
+
/**
|
|
5669
|
+
* Function computeUsage will create price per one token based on the string value found on openai page
|
|
5670
|
+
*
|
|
5671
|
+
* @private within the repository, used only as internal helper for `OPENAI_MODELS`
|
|
5672
|
+
*/
|
|
5673
|
+
function computeUsage(value) {
|
|
5674
|
+
var _a = __read(value.split(' / '), 2), price = _a[0], tokens = _a[1];
|
|
5675
|
+
return parseFloat(price.replace('$', '')) / parseFloat(tokens.replace('M tokens', '')) / 1000000;
|
|
5676
|
+
}
|
|
5677
|
+
|
|
5678
|
+
/**
|
|
5679
|
+
* List of available Anthropic Claude models with pricing
|
|
5680
|
+
*
|
|
5681
|
+
* Note: Done at 2024-05-25
|
|
5682
|
+
*
|
|
5683
|
+
* @see https://docs.anthropic.com/en/docs/models-overview
|
|
5684
|
+
*/
|
|
5685
|
+
var ANTHROPIC_CLAUDE_MODELS = [
|
|
5686
|
+
{
|
|
5687
|
+
modelVariant: 'CHAT',
|
|
5688
|
+
modelTitle: 'Claude 3 Opus',
|
|
5689
|
+
modelName: 'claude-3-opus-20240229',
|
|
5690
|
+
pricing: {
|
|
5691
|
+
prompt: computeUsage("$15.00 / 1M tokens"),
|
|
5692
|
+
output: computeUsage("$75.00 / 1M tokens"),
|
|
5693
|
+
},
|
|
5694
|
+
},
|
|
5695
|
+
{
|
|
5696
|
+
modelVariant: 'CHAT',
|
|
5697
|
+
modelTitle: 'Claude 3 Sonnet',
|
|
5698
|
+
modelName: 'claude-3-sonnet-20240229',
|
|
5699
|
+
pricing: {
|
|
5700
|
+
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
5701
|
+
output: computeUsage("$15.00 / 1M tokens"),
|
|
5702
|
+
},
|
|
5703
|
+
},
|
|
5704
|
+
{
|
|
5705
|
+
modelVariant: 'CHAT',
|
|
5706
|
+
modelTitle: 'Claude 3 Haiku',
|
|
5707
|
+
modelName: ' claude-3-haiku-20240307',
|
|
5708
|
+
pricing: {
|
|
5709
|
+
prompt: computeUsage("$0.25 / 1M tokens"),
|
|
5710
|
+
output: computeUsage("$1.25 / 1M tokens"),
|
|
5711
|
+
},
|
|
5712
|
+
},
|
|
5713
|
+
{
|
|
5714
|
+
modelVariant: 'CHAT',
|
|
5715
|
+
modelTitle: 'Claude 2.1',
|
|
5716
|
+
modelName: 'claude-2.1',
|
|
5717
|
+
pricing: {
|
|
5718
|
+
prompt: computeUsage("$8.00 / 1M tokens"),
|
|
5719
|
+
output: computeUsage("$24.00 / 1M tokens"),
|
|
5720
|
+
},
|
|
5721
|
+
},
|
|
5722
|
+
{
|
|
5723
|
+
modelVariant: 'CHAT',
|
|
5724
|
+
modelTitle: 'Claude 2',
|
|
5725
|
+
modelName: 'claude-2.0',
|
|
5726
|
+
pricing: {
|
|
5727
|
+
prompt: computeUsage("$8.00 / 1M tokens"),
|
|
5728
|
+
output: computeUsage("$24.00 / 1M tokens"),
|
|
5729
|
+
},
|
|
5730
|
+
},
|
|
5731
|
+
{
|
|
5732
|
+
modelVariant: 'CHAT',
|
|
5733
|
+
modelTitle: ' Claude Instant 1.2',
|
|
5734
|
+
modelName: 'claude-instant-1.2',
|
|
5735
|
+
pricing: {
|
|
5736
|
+
prompt: computeUsage("$0.80 / 1M tokens"),
|
|
5737
|
+
output: computeUsage("$2.40 / 1M tokens"),
|
|
5738
|
+
},
|
|
5739
|
+
},
|
|
5740
|
+
// TODO: !!! Claude 1 and 2 has also completion versions - ask Hoagy
|
|
5741
|
+
];
|
|
5742
|
+
/**
|
|
5743
|
+
* Note: [๐ค] Add models of new variant
|
|
5744
|
+
* TODO: [๐ง ] !!! Add embedding models OR Anthropic has only chat+completion models?
|
|
5745
|
+
* TODO: [๐ง ] Some mechanism to propagate unsureness
|
|
5746
|
+
* TODO: [๐ง ][๐ฎโโ๏ธ] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
|
|
5747
|
+
* TODO: [๐] Make this list dynamic - dynamically can be listed modelNames but not modelVariant, legacy status, context length and pricing
|
|
5748
|
+
*/
|
|
5749
|
+
|
|
5750
|
+
/**
|
|
5751
|
+
* Execution Tools for calling Anthropic Claude API.
|
|
5752
|
+
*/
|
|
5753
|
+
var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
5754
|
+
/**
|
|
5755
|
+
* Creates Anthropic Claude Execution Tools.
|
|
5756
|
+
*
|
|
5757
|
+
* @param options which are relevant are directly passed to the Anthropic Claude client
|
|
5758
|
+
*/
|
|
5759
|
+
function AnthropicClaudeExecutionTools(options) {
|
|
5760
|
+
if (options === void 0) { options = {}; }
|
|
5761
|
+
this.options = options;
|
|
5762
|
+
// Note: Passing only Anthropic Claude relevant options to Anthropic constructor
|
|
5763
|
+
var anthropicOptions = __assign({}, options);
|
|
5764
|
+
delete anthropicOptions.isVerbose;
|
|
5765
|
+
this.client = new Anthropic(anthropicOptions);
|
|
5766
|
+
}
|
|
5767
|
+
Object.defineProperty(AnthropicClaudeExecutionTools.prototype, "title", {
|
|
5768
|
+
get: function () {
|
|
5769
|
+
return 'Anthropic Claude';
|
|
5770
|
+
},
|
|
5771
|
+
enumerable: false,
|
|
5772
|
+
configurable: true
|
|
5773
|
+
});
|
|
5774
|
+
Object.defineProperty(AnthropicClaudeExecutionTools.prototype, "description", {
|
|
5775
|
+
get: function () {
|
|
5776
|
+
return 'Use all models provided by Anthropic Claude';
|
|
5777
|
+
},
|
|
5778
|
+
enumerable: false,
|
|
5779
|
+
configurable: true
|
|
5780
|
+
});
|
|
5781
|
+
/**
|
|
5782
|
+
* Calls Anthropic Claude API to use a chat model.
|
|
5783
|
+
*/
|
|
5784
|
+
AnthropicClaudeExecutionTools.prototype.callChatModel = function (prompt) {
|
|
5785
|
+
return __awaiter(this, void 0, void 0, function () {
|
|
5786
|
+
var content, parameters, modelRequirements, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
5787
|
+
return __generator(this, function (_a) {
|
|
5788
|
+
switch (_a.label) {
|
|
5789
|
+
case 0:
|
|
5790
|
+
if (this.options.isVerbose) {
|
|
5791
|
+
console.info('๐ฌ Anthropic Claude callChatModel call');
|
|
5792
|
+
}
|
|
5793
|
+
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
5794
|
+
// TODO: [โ] Use here more modelRequirements
|
|
5795
|
+
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
5796
|
+
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
5797
|
+
}
|
|
5798
|
+
rawRequest = {
|
|
5799
|
+
model: modelRequirements.modelName || this.getDefaultChatModel().modelName,
|
|
5800
|
+
max_tokens: modelRequirements.maxTokens || 4096,
|
|
5801
|
+
// <- TODO: [๐พ] Make some global max cap for maxTokens
|
|
5802
|
+
temperature: modelRequirements.temperature,
|
|
5803
|
+
system: modelRequirements.systemMessage,
|
|
5804
|
+
// <- TODO: [๐] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
5805
|
+
// <- Note: [๐ง]
|
|
5806
|
+
messages: [
|
|
5807
|
+
{
|
|
5808
|
+
role: 'user',
|
|
5809
|
+
content: replaceParameters(content, parameters),
|
|
5810
|
+
},
|
|
5811
|
+
],
|
|
5812
|
+
// TODO: Is here some equivalent of user identification?> user: this.options.user,
|
|
5813
|
+
};
|
|
5814
|
+
start = getCurrentIsoDate();
|
|
5815
|
+
if (this.options.isVerbose) {
|
|
5816
|
+
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
5817
|
+
}
|
|
5818
|
+
return [4 /*yield*/, this.client.messages.create(rawRequest)];
|
|
5819
|
+
case 1:
|
|
5820
|
+
rawResponse = _a.sent();
|
|
5821
|
+
if (this.options.isVerbose) {
|
|
5822
|
+
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
5823
|
+
}
|
|
5824
|
+
if (!rawResponse.content[0]) {
|
|
5825
|
+
throw new PipelineExecutionError('No content from Anthropic Claude');
|
|
5826
|
+
}
|
|
5827
|
+
if (rawResponse.content.length > 1) {
|
|
5828
|
+
throw new PipelineExecutionError('More than one content blocks from Anthropic Claude');
|
|
5829
|
+
}
|
|
5830
|
+
resultContent = rawResponse.content[0].text;
|
|
5831
|
+
// eslint-disable-next-line prefer-const
|
|
5832
|
+
complete = getCurrentIsoDate();
|
|
5833
|
+
usage = {
|
|
5834
|
+
price: { value: 0, isUncertain: true } /* <- TODO: [๐] Compute usage */,
|
|
5835
|
+
input: __assign({ tokensCount: uncertainNumber(rawResponse.usage.input_tokens) }, computeUsageCounts(prompt.content)),
|
|
5836
|
+
output: __assign({ tokensCount: uncertainNumber(rawResponse.usage.output_tokens) }, computeUsageCounts(prompt.content)),
|
|
5837
|
+
};
|
|
5838
|
+
return [2 /*return*/, {
|
|
5839
|
+
content: resultContent,
|
|
5840
|
+
modelName: rawResponse.model,
|
|
5841
|
+
timing: {
|
|
5842
|
+
start: start,
|
|
5843
|
+
complete: complete,
|
|
5844
|
+
},
|
|
5845
|
+
usage: usage,
|
|
5846
|
+
rawResponse: rawResponse,
|
|
5847
|
+
// <- [๐คนโโ๏ธ]
|
|
5848
|
+
}];
|
|
5849
|
+
}
|
|
5850
|
+
});
|
|
5851
|
+
});
|
|
5852
|
+
};
|
|
5853
|
+
/*
|
|
5854
|
+
TODO: [๐]
|
|
5855
|
+
public async callCompletionModel(
|
|
5856
|
+
prompt: Pick<Prompt, 'content' | 'parameters' | 'modelRequirements'>,
|
|
5857
|
+
): Promise<PromptCompletionResult> {
|
|
5858
|
+
|
|
5859
|
+
if (this.options.isVerbose) {
|
|
5860
|
+
console.info('๐ Anthropic Claude callCompletionModel call');
|
|
5861
|
+
}
|
|
5862
|
+
|
|
5863
|
+
const { content, parameters, modelRequirements } = prompt;
|
|
5864
|
+
|
|
5865
|
+
// TODO: [โ] Use here more modelRequirements
|
|
5866
|
+
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
5867
|
+
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
5868
|
+
}
|
|
5869
|
+
|
|
5870
|
+
const model = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
5871
|
+
const modelSettings = {
|
|
5872
|
+
model: rawResponse.model || model,
|
|
5873
|
+
max_tokens: modelRequirements.maxTokens || 2000, // <- Note: 2000 is for lagacy reasons
|
|
5874
|
+
// <- TODO: [๐พ] Make some global max cap for maxTokens
|
|
5875
|
+
// <- TODO: Use here `systemMessage`, `temperature` and `seed`
|
|
5876
|
+
};
|
|
5877
|
+
|
|
5878
|
+
const rawRequest: xxxx.Completions.CompletionCreateParamsNonStreaming = {
|
|
5879
|
+
...modelSettings,
|
|
5880
|
+
prompt: replaceParameters(content, parameters),
|
|
5881
|
+
user: this.options.user,
|
|
5882
|
+
};
|
|
5883
|
+
const start: string_date_iso8601 = getCurrentIsoDate();
|
|
5884
|
+
let complete: string_date_iso8601;
|
|
5885
|
+
|
|
5886
|
+
if (this.options.isVerbose) {
|
|
5887
|
+
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
5888
|
+
}
|
|
5889
|
+
const rawResponse = await this.client.completions.create(rawRequest);
|
|
5890
|
+
if (this.options.isVerbose) {
|
|
5891
|
+
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
5892
|
+
}
|
|
5893
|
+
|
|
5894
|
+
if (!rawResponse.choices[0]) {
|
|
5895
|
+
throw new PipelineExecutionError('No choises from Anthropic Claude');
|
|
5896
|
+
}
|
|
5897
|
+
|
|
5898
|
+
if (rawResponse.choices.length > 1) {
|
|
5899
|
+
// TODO: This should be maybe only warning
|
|
5900
|
+
throw new PipelineExecutionError('More than one choise from Anthropic Claude');
|
|
5901
|
+
}
|
|
5902
|
+
|
|
5903
|
+
const resultContent = rawResponse.choices[0].text;
|
|
5904
|
+
// eslint-disable-next-line prefer-const
|
|
5905
|
+
complete = getCurrentIsoDate();
|
|
5906
|
+
const usage = { price: 'UNKNOWN', inputTokens: 0, outputTokens: 0 /* <- TODO: [๐] Compute usage * / } satisfies PromptResultUsage;
|
|
5907
|
+
|
|
5908
|
+
|
|
5909
|
+
|
|
5910
|
+
return {
|
|
5911
|
+
content: resultContent,
|
|
5912
|
+
modelName: rawResponse.model || model,
|
|
5913
|
+
timing: {
|
|
5914
|
+
start,
|
|
5915
|
+
complete,
|
|
5916
|
+
},
|
|
5917
|
+
usage,
|
|
5918
|
+
rawResponse,
|
|
5919
|
+
// <- [๐คนโโ๏ธ]
|
|
5920
|
+
};
|
|
5921
|
+
}
|
|
5922
|
+
*/
|
|
5923
|
+
// <- Note: [๐ค] callXxxModel
|
|
5924
|
+
/**
|
|
5925
|
+
* Get the model that should be used as default
|
|
5926
|
+
*/
|
|
5927
|
+
AnthropicClaudeExecutionTools.prototype.getDefaultModel = function (defaultModelName) {
|
|
5928
|
+
var model = ANTHROPIC_CLAUDE_MODELS.find(function (_a) {
|
|
5929
|
+
var modelName = _a.modelName;
|
|
5930
|
+
return modelName.startsWith(defaultModelName);
|
|
5931
|
+
});
|
|
5932
|
+
if (model === undefined) {
|
|
5933
|
+
throw new UnexpectedError(spaceTrim(function (block) {
|
|
5934
|
+
return "\n Cannot find model in OpenAI models with name \"".concat(defaultModelName, "\" which should be used as default.\n\n Available models:\n ").concat(block(ANTHROPIC_CLAUDE_MODELS.map(function (_a) {
|
|
5935
|
+
var modelName = _a.modelName;
|
|
5936
|
+
return "- \"".concat(modelName, "\"");
|
|
5937
|
+
}).join('\n')), "\n\n ");
|
|
5938
|
+
}));
|
|
5939
|
+
}
|
|
5940
|
+
return model;
|
|
5941
|
+
};
|
|
5942
|
+
/**
|
|
5943
|
+
* Default model for chat variant.
|
|
5944
|
+
*/
|
|
5945
|
+
AnthropicClaudeExecutionTools.prototype.getDefaultChatModel = function () {
|
|
5946
|
+
return this.getDefaultModel('claude-3-opus');
|
|
5947
|
+
};
|
|
5948
|
+
// <- Note: [๐ค] getDefaultXxxModel
|
|
5949
|
+
/**
|
|
5950
|
+
* List all available Anthropic Claude models that can be used
|
|
5951
|
+
*/
|
|
5952
|
+
AnthropicClaudeExecutionTools.prototype.listModels = function () {
|
|
5953
|
+
return ANTHROPIC_CLAUDE_MODELS;
|
|
5954
|
+
};
|
|
5955
|
+
return AnthropicClaudeExecutionTools;
|
|
5956
|
+
}());
|
|
5957
|
+
/**
|
|
5958
|
+
* TODO: !!!! [๐] JSON mode
|
|
5959
|
+
* TODO: [๐ง ] Maybe handle errors via transformAnthropicError (like transformAzureError)
|
|
5960
|
+
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
5961
|
+
* TODO: Maybe make custom OpenaiError
|
|
5962
|
+
* TODO: [๐ง ][๐] Maybe use `isDeterministic` from options
|
|
5963
|
+
*/
|
|
5964
|
+
|
|
5965
|
+
/**
|
|
5966
|
+
* List of available OpenAI models with pricing
|
|
5967
|
+
*
|
|
5968
|
+
* Note: Done at 2024-05-20
|
|
5969
|
+
*
|
|
5970
|
+
* @see https://platform.openai.com/docs/models/
|
|
5971
|
+
* @see https://openai.com/api/pricing/
|
|
5972
|
+
*/
|
|
5973
|
+
var OPENAI_MODELS = [
|
|
5974
|
+
/*/
|
|
5975
|
+
{
|
|
5976
|
+
modelTitle: 'dall-e-3',
|
|
5977
|
+
modelName: 'dall-e-3',
|
|
5978
|
+
},
|
|
5979
|
+
/**/
|
|
5980
|
+
/*/
|
|
5981
|
+
{
|
|
5982
|
+
modelTitle: 'whisper-1',
|
|
5983
|
+
modelName: 'whisper-1',
|
|
5984
|
+
},
|
|
5985
|
+
/**/
|
|
5986
|
+
/**/
|
|
5987
|
+
{
|
|
5988
|
+
modelVariant: 'COMPLETION',
|
|
5989
|
+
modelTitle: 'davinci-002',
|
|
5990
|
+
modelName: 'davinci-002',
|
|
5991
|
+
pricing: {
|
|
5992
|
+
prompt: computeUsage("$2.00 / 1M tokens"),
|
|
5993
|
+
output: computeUsage("$2.00 / 1M tokens"), // <- not sure
|
|
5994
|
+
},
|
|
5995
|
+
},
|
|
5996
|
+
/**/
|
|
5997
|
+
/*/
|
|
5998
|
+
{
|
|
5999
|
+
modelTitle: 'dall-e-2',
|
|
6000
|
+
modelName: 'dall-e-2',
|
|
6001
|
+
},
|
|
6002
|
+
/**/
|
|
6003
|
+
/**/
|
|
6004
|
+
{
|
|
6005
|
+
modelVariant: 'CHAT',
|
|
6006
|
+
modelTitle: 'gpt-3.5-turbo-16k',
|
|
6007
|
+
modelName: 'gpt-3.5-turbo-16k',
|
|
6008
|
+
pricing: {
|
|
6009
|
+
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
6010
|
+
output: computeUsage("$4.00 / 1M tokens"),
|
|
6011
|
+
},
|
|
6012
|
+
},
|
|
6013
|
+
/**/
|
|
6014
|
+
/*/
|
|
6015
|
+
{
|
|
6016
|
+
modelTitle: 'tts-1-hd-1106',
|
|
6017
|
+
modelName: 'tts-1-hd-1106',
|
|
6018
|
+
},
|
|
6019
|
+
/**/
|
|
6020
|
+
/*/
|
|
6021
|
+
{
|
|
6022
|
+
modelTitle: 'tts-1-hd',
|
|
6023
|
+
modelName: 'tts-1-hd',
|
|
6024
|
+
},
|
|
6025
|
+
/**/
|
|
6026
|
+
/**/
|
|
6027
|
+
{
|
|
6028
|
+
modelVariant: 'CHAT',
|
|
6029
|
+
modelTitle: 'gpt-4',
|
|
6030
|
+
modelName: 'gpt-4',
|
|
6031
|
+
pricing: {
|
|
6032
|
+
prompt: computeUsage("$30.00 / 1M tokens"),
|
|
6033
|
+
output: computeUsage("$60.00 / 1M tokens"),
|
|
6034
|
+
},
|
|
6035
|
+
},
|
|
6036
|
+
/**/
|
|
6037
|
+
/**/
|
|
6038
|
+
{
|
|
6039
|
+
modelVariant: 'CHAT',
|
|
6040
|
+
modelTitle: 'gpt-4-32k',
|
|
6041
|
+
modelName: 'gpt-4-32k',
|
|
6042
|
+
pricing: {
|
|
6043
|
+
prompt: computeUsage("$60.00 / 1M tokens"),
|
|
6044
|
+
output: computeUsage("$120.00 / 1M tokens"),
|
|
6045
|
+
},
|
|
6046
|
+
},
|
|
6047
|
+
/**/
|
|
6048
|
+
/*/
|
|
6049
|
+
{
|
|
6050
|
+
modelVariant: 'CHAT',
|
|
6051
|
+
modelTitle: 'gpt-4-0613',
|
|
6052
|
+
modelName: 'gpt-4-0613',
|
|
6053
|
+
pricing: {
|
|
6054
|
+
prompt: computeUsage(` / 1M tokens`),
|
|
6055
|
+
output: computeUsage(` / 1M tokens`),
|
|
6056
|
+
},
|
|
6057
|
+
},
|
|
6058
|
+
/**/
|
|
6059
|
+
/**/
|
|
6060
|
+
{
|
|
6061
|
+
modelVariant: 'CHAT',
|
|
6062
|
+
modelTitle: 'gpt-4-turbo-2024-04-09',
|
|
6063
|
+
modelName: 'gpt-4-turbo-2024-04-09',
|
|
6064
|
+
pricing: {
|
|
6065
|
+
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
6066
|
+
output: computeUsage("$30.00 / 1M tokens"),
|
|
6067
|
+
},
|
|
6068
|
+
},
|
|
6069
|
+
/**/
|
|
6070
|
+
/**/
|
|
6071
|
+
{
|
|
6072
|
+
modelVariant: 'CHAT',
|
|
6073
|
+
modelTitle: 'gpt-3.5-turbo-1106',
|
|
6074
|
+
modelName: 'gpt-3.5-turbo-1106',
|
|
6075
|
+
pricing: {
|
|
6076
|
+
prompt: computeUsage("$1.00 / 1M tokens"),
|
|
6077
|
+
output: computeUsage("$2.00 / 1M tokens"),
|
|
6078
|
+
},
|
|
6079
|
+
},
|
|
6080
|
+
/**/
|
|
6081
|
+
/**/
|
|
6082
|
+
{
|
|
6083
|
+
modelVariant: 'CHAT',
|
|
6084
|
+
modelTitle: 'gpt-4-turbo',
|
|
6085
|
+
modelName: 'gpt-4-turbo',
|
|
6086
|
+
pricing: {
|
|
6087
|
+
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
6088
|
+
output: computeUsage("$30.00 / 1M tokens"),
|
|
6089
|
+
},
|
|
6090
|
+
},
|
|
6091
|
+
/**/
|
|
6092
|
+
/**/
|
|
6093
|
+
{
|
|
6094
|
+
modelVariant: 'COMPLETION',
|
|
6095
|
+
modelTitle: 'gpt-3.5-turbo-instruct-0914',
|
|
6096
|
+
modelName: 'gpt-3.5-turbo-instruct-0914',
|
|
6097
|
+
pricing: {
|
|
6098
|
+
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
6099
|
+
output: computeUsage("$2.00 / 1M tokens"), // <- For gpt-3.5-turbo-instruct
|
|
6100
|
+
},
|
|
6101
|
+
},
|
|
6102
|
+
/**/
|
|
6103
|
+
/**/
|
|
6104
|
+
{
|
|
6105
|
+
modelVariant: 'COMPLETION',
|
|
6106
|
+
modelTitle: 'gpt-3.5-turbo-instruct',
|
|
6107
|
+
modelName: 'gpt-3.5-turbo-instruct',
|
|
6108
|
+
pricing: {
|
|
6109
|
+
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
6110
|
+
output: computeUsage("$2.00 / 1M tokens"),
|
|
6111
|
+
},
|
|
6112
|
+
},
|
|
6113
|
+
/**/
|
|
6114
|
+
/*/
|
|
6115
|
+
{
|
|
6116
|
+
modelTitle: 'tts-1',
|
|
6117
|
+
modelName: 'tts-1',
|
|
6118
|
+
},
|
|
6119
|
+
/**/
|
|
6120
|
+
/**/
|
|
6121
|
+
{
|
|
6122
|
+
modelVariant: 'CHAT',
|
|
6123
|
+
modelTitle: 'gpt-3.5-turbo',
|
|
6124
|
+
modelName: 'gpt-3.5-turbo',
|
|
6125
|
+
pricing: {
|
|
6126
|
+
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
6127
|
+
output: computeUsage("$6.00 / 1M tokens"), // <- Not sure, refer to gpt-3.5-turbo in Fine-tuning models
|
|
6128
|
+
},
|
|
6129
|
+
},
|
|
6130
|
+
/**/
|
|
6131
|
+
/**/
|
|
6132
|
+
{
|
|
6133
|
+
modelVariant: 'CHAT',
|
|
6134
|
+
modelTitle: 'gpt-3.5-turbo-0301',
|
|
6135
|
+
modelName: 'gpt-3.5-turbo-0301',
|
|
6136
|
+
pricing: {
|
|
6137
|
+
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
6138
|
+
output: computeUsage("$2.00 / 1M tokens"),
|
|
6139
|
+
},
|
|
6140
|
+
},
|
|
6141
|
+
/**/
|
|
6142
|
+
/**/
|
|
6143
|
+
{
|
|
6144
|
+
modelVariant: 'COMPLETION',
|
|
6145
|
+
modelTitle: 'babbage-002',
|
|
6146
|
+
modelName: 'babbage-002',
|
|
6147
|
+
pricing: {
|
|
6148
|
+
prompt: computeUsage("$0.40 / 1M tokens"),
|
|
6149
|
+
output: computeUsage("$0.40 / 1M tokens"), // <- Not sure
|
|
6150
|
+
},
|
|
6151
|
+
},
|
|
6152
|
+
/**/
|
|
6153
|
+
/**/
|
|
6154
|
+
{
|
|
6155
|
+
modelVariant: 'CHAT',
|
|
6156
|
+
modelTitle: 'gpt-4-1106-preview',
|
|
6157
|
+
modelName: 'gpt-4-1106-preview',
|
|
6158
|
+
pricing: {
|
|
6159
|
+
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
6160
|
+
output: computeUsage("$30.00 / 1M tokens"),
|
|
6161
|
+
},
|
|
6162
|
+
},
|
|
6163
|
+
/**/
|
|
6164
|
+
/**/
|
|
6165
|
+
{
|
|
6166
|
+
modelVariant: 'CHAT',
|
|
6167
|
+
modelTitle: 'gpt-4-0125-preview',
|
|
6168
|
+
modelName: 'gpt-4-0125-preview',
|
|
6169
|
+
pricing: {
|
|
6170
|
+
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
6171
|
+
output: computeUsage("$30.00 / 1M tokens"),
|
|
6172
|
+
},
|
|
6173
|
+
},
|
|
6174
|
+
/**/
|
|
6175
|
+
/*/
|
|
6176
|
+
{
|
|
6177
|
+
modelTitle: 'tts-1-1106',
|
|
6178
|
+
modelName: 'tts-1-1106',
|
|
6179
|
+
},
|
|
6180
|
+
/**/
|
|
6181
|
+
/**/
|
|
6182
|
+
{
|
|
6183
|
+
modelVariant: 'CHAT',
|
|
6184
|
+
modelTitle: 'gpt-3.5-turbo-0125',
|
|
6185
|
+
modelName: 'gpt-3.5-turbo-0125',
|
|
6186
|
+
pricing: {
|
|
6187
|
+
prompt: computeUsage("$0.50 / 1M tokens"),
|
|
6188
|
+
output: computeUsage("$1.50 / 1M tokens"),
|
|
6189
|
+
},
|
|
6190
|
+
},
|
|
6191
|
+
/**/
|
|
6192
|
+
/**/
|
|
6193
|
+
{
|
|
6194
|
+
modelVariant: 'CHAT',
|
|
6195
|
+
modelTitle: 'gpt-4-turbo-preview',
|
|
6196
|
+
modelName: 'gpt-4-turbo-preview',
|
|
6197
|
+
pricing: {
|
|
6198
|
+
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
6199
|
+
output: computeUsage("$30.00 / 1M tokens"), // <- Not sure, just for gpt-4-turbo
|
|
6200
|
+
},
|
|
6201
|
+
},
|
|
6202
|
+
/**/
|
|
6203
|
+
/**/
|
|
6204
|
+
{
|
|
6205
|
+
modelVariant: 'EMBEDDING',
|
|
6206
|
+
modelTitle: 'text-embedding-3-large',
|
|
6207
|
+
modelName: 'text-embedding-3-large',
|
|
6208
|
+
pricing: {
|
|
6209
|
+
prompt: computeUsage("$0.13 / 1M tokens"),
|
|
6210
|
+
// TODO: [๐] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
6211
|
+
output: 0, // <- Note: [๐] In Embedding models you dont pay for output
|
|
6212
|
+
},
|
|
6213
|
+
},
|
|
6214
|
+
/**/
|
|
6215
|
+
/**/
|
|
6216
|
+
{
|
|
6217
|
+
modelVariant: 'EMBEDDING',
|
|
6218
|
+
modelTitle: 'text-embedding-3-small',
|
|
6219
|
+
modelName: 'text-embedding-3-small',
|
|
6220
|
+
pricing: {
|
|
6221
|
+
prompt: computeUsage("$0.02 / 1M tokens"),
|
|
6222
|
+
// TODO: [๐] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
6223
|
+
output: 0, // <- Note: [๐] In Embedding models you dont pay for output
|
|
6224
|
+
},
|
|
6225
|
+
},
|
|
6226
|
+
/**/
|
|
6227
|
+
/**/
|
|
6228
|
+
{
|
|
6229
|
+
modelVariant: 'CHAT',
|
|
6230
|
+
modelTitle: 'gpt-3.5-turbo-0613',
|
|
6231
|
+
modelName: 'gpt-3.5-turbo-0613',
|
|
6232
|
+
pricing: {
|
|
6233
|
+
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
6234
|
+
output: computeUsage("$2.00 / 1M tokens"),
|
|
6235
|
+
},
|
|
6236
|
+
},
|
|
6237
|
+
/**/
|
|
6238
|
+
/**/
|
|
6239
|
+
{
|
|
6240
|
+
modelVariant: 'EMBEDDING',
|
|
6241
|
+
modelTitle: 'text-embedding-ada-002',
|
|
6242
|
+
modelName: 'text-embedding-ada-002',
|
|
6243
|
+
pricing: {
|
|
6244
|
+
prompt: computeUsage("$0.1 / 1M tokens"),
|
|
6245
|
+
// TODO: [๐] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
6246
|
+
output: 0, // <- Note: [๐] In Embedding models you dont pay for output
|
|
6247
|
+
},
|
|
6248
|
+
},
|
|
6249
|
+
/**/
|
|
6250
|
+
/*/
|
|
6251
|
+
{
|
|
6252
|
+
modelVariant: 'CHAT',
|
|
6253
|
+
modelTitle: 'gpt-4-1106-vision-preview',
|
|
6254
|
+
modelName: 'gpt-4-1106-vision-preview',
|
|
6255
|
+
},
|
|
6256
|
+
/**/
|
|
6257
|
+
/*/
|
|
6258
|
+
{
|
|
6259
|
+
modelVariant: 'CHAT',
|
|
6260
|
+
modelTitle: 'gpt-4-vision-preview',
|
|
6261
|
+
modelName: 'gpt-4-vision-preview',
|
|
6262
|
+
pricing: {
|
|
6263
|
+
prompt: computeUsage(`$10.00 / 1M tokens`),
|
|
6264
|
+
output: computeUsage(`$30.00 / 1M tokens`),
|
|
6265
|
+
},
|
|
6266
|
+
},
|
|
6267
|
+
/**/
|
|
6268
|
+
/**/
|
|
6269
|
+
{
|
|
6270
|
+
modelVariant: 'CHAT',
|
|
6271
|
+
modelTitle: 'gpt-4o-2024-05-13',
|
|
6272
|
+
modelName: 'gpt-4o-2024-05-13',
|
|
6273
|
+
pricing: {
|
|
6274
|
+
prompt: computeUsage("$5.00 / 1M tokens"),
|
|
6275
|
+
output: computeUsage("$15.00 / 1M tokens"),
|
|
6276
|
+
},
|
|
6277
|
+
},
|
|
6278
|
+
/**/
|
|
6279
|
+
/**/
|
|
6280
|
+
{
|
|
6281
|
+
modelVariant: 'CHAT',
|
|
6282
|
+
modelTitle: 'gpt-4o',
|
|
6283
|
+
modelName: 'gpt-4o',
|
|
6284
|
+
pricing: {
|
|
6285
|
+
prompt: computeUsage("$5.00 / 1M tokens"),
|
|
6286
|
+
output: computeUsage("$15.00 / 1M tokens"),
|
|
6287
|
+
},
|
|
6288
|
+
},
|
|
6289
|
+
/**/
|
|
6290
|
+
/**/
|
|
6291
|
+
{
|
|
6292
|
+
modelVariant: 'CHAT',
|
|
6293
|
+
modelTitle: 'gpt-3.5-turbo-16k-0613',
|
|
6294
|
+
modelName: 'gpt-3.5-turbo-16k-0613',
|
|
6295
|
+
pricing: {
|
|
6296
|
+
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
6297
|
+
output: computeUsage("$4.00 / 1M tokens"),
|
|
6298
|
+
},
|
|
6299
|
+
},
|
|
6300
|
+
/**/
|
|
6301
|
+
];
|
|
6302
|
+
/**
|
|
6303
|
+
* Note: [๐ค] Add models of new variant
|
|
6304
|
+
* TODO: [๐ง ] Some mechanism to propagate unsureness
|
|
6305
|
+
* TODO: [๐][๐ฎโโ๏ธ] Make this list dynamic - dynamically can be listed modelNames but not modelVariant, legacy status, context length and pricing
|
|
6306
|
+
* TODO: [๐ง ][๐ฎโโ๏ธ] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
|
|
6307
|
+
* @see https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
|
|
6308
|
+
* @see https://openai.com/api/pricing/
|
|
6309
|
+
* @see /other/playground/playground.ts
|
|
6310
|
+
* TODO: [๐] Make better
|
|
6311
|
+
* TODO: Change model titles to human eg: "gpt-4-turbo-2024-04-09" -> "GPT-4 Turbo (2024-04-09)"
|
|
6312
|
+
* TODO: [๐ธ] Not all models are compatible with JSON mode, add this information here and use it
|
|
6313
|
+
*/
|
|
6314
|
+
|
|
6315
|
+
/**
|
|
6316
|
+
* Computes the usage of the OpenAI API based on the response from OpenAI
|
|
6317
|
+
*
|
|
6318
|
+
* @param promptContent The content of the prompt
|
|
6319
|
+
* @param resultContent The content of the result (for embedding prompts or failed prompts pass empty string)
|
|
6320
|
+
* @param rawResponse The raw response from OpenAI API
|
|
6321
|
+
* @throws {PipelineExecutionError} If the usage is not defined in the response from OpenAI
|
|
6322
|
+
* @private internal util of `OpenAiExecutionTools`
|
|
6323
|
+
*/
|
|
6324
|
+
function computeOpenaiUsage(promptContent, // <- Note: Intentionally using [] to access type properties to bring jsdoc from Prompt/PromptResult to consumer
|
|
6325
|
+
resultContent, rawResponse) {
|
|
6326
|
+
var _a, _b;
|
|
6327
|
+
if (rawResponse.usage === undefined) {
|
|
6328
|
+
throw new PipelineExecutionError('The usage is not defined in the response from OpenAI');
|
|
6329
|
+
}
|
|
6330
|
+
if (((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.prompt_tokens) === undefined) {
|
|
6331
|
+
throw new PipelineExecutionError('In OpenAI response `usage.prompt_tokens` not defined');
|
|
6332
|
+
}
|
|
6333
|
+
var inputTokens = rawResponse.usage.prompt_tokens;
|
|
6334
|
+
var outputTokens = ((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completion_tokens) || 0;
|
|
6335
|
+
var modelInfo = OPENAI_MODELS.find(function (model) { return model.modelName === rawResponse.model; });
|
|
6336
|
+
var price;
|
|
6337
|
+
if (modelInfo === undefined || modelInfo.pricing === undefined) {
|
|
6338
|
+
price = uncertainNumber();
|
|
6339
|
+
}
|
|
6340
|
+
else {
|
|
6341
|
+
price = uncertainNumber(inputTokens * modelInfo.pricing.prompt + outputTokens * modelInfo.pricing.output);
|
|
6342
|
+
}
|
|
6343
|
+
return {
|
|
6344
|
+
price: price,
|
|
6345
|
+
input: __assign({ tokensCount: uncertainNumber(rawResponse.usage.prompt_tokens) }, computeUsageCounts(promptContent)),
|
|
6346
|
+
output: __assign({ tokensCount: uncertainNumber(outputTokens) }, computeUsageCounts(resultContent)),
|
|
6347
|
+
};
|
|
6348
|
+
}
|
|
6349
|
+
|
|
6350
|
+
/**
|
|
6351
|
+
* Execution Tools for calling OpenAI API.
|
|
6352
|
+
*/
|
|
6353
|
+
var OpenAiExecutionTools = /** @class */ (function () {
|
|
6354
|
+
/**
|
|
6355
|
+
* Creates OpenAI Execution Tools.
|
|
6356
|
+
*
|
|
6357
|
+
* @param options which are relevant are directly passed to the OpenAI client
|
|
6358
|
+
*/
|
|
6359
|
+
function OpenAiExecutionTools(options) {
|
|
6360
|
+
if (options === void 0) { options = {}; }
|
|
6361
|
+
this.options = options;
|
|
6362
|
+
// Note: Passing only OpenAI relevant options to OpenAI constructor
|
|
6363
|
+
var openAiOptions = __assign({}, options);
|
|
6364
|
+
delete openAiOptions.isVerbose;
|
|
6365
|
+
delete openAiOptions.user;
|
|
6366
|
+
this.client = new OpenAI(__assign({}, openAiOptions));
|
|
6367
|
+
}
|
|
6368
|
+
Object.defineProperty(OpenAiExecutionTools.prototype, "title", {
|
|
6369
|
+
get: function () {
|
|
6370
|
+
return 'OpenAI';
|
|
6371
|
+
},
|
|
6372
|
+
enumerable: false,
|
|
6373
|
+
configurable: true
|
|
6374
|
+
});
|
|
6375
|
+
Object.defineProperty(OpenAiExecutionTools.prototype, "description", {
|
|
6376
|
+
get: function () {
|
|
6377
|
+
return 'Use all models provided by OpenAI';
|
|
6378
|
+
},
|
|
6379
|
+
enumerable: false,
|
|
6380
|
+
configurable: true
|
|
6381
|
+
});
|
|
6382
|
+
/**
|
|
6383
|
+
* Calls OpenAI API to use a chat model.
|
|
6384
|
+
*/
|
|
6385
|
+
OpenAiExecutionTools.prototype.callChatModel = function (prompt) {
|
|
6386
|
+
return __awaiter(this, void 0, void 0, function () {
|
|
6387
|
+
var content, parameters, modelRequirements, expectFormat, model, modelSettings, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6388
|
+
return __generator(this, function (_a) {
|
|
6389
|
+
switch (_a.label) {
|
|
6390
|
+
case 0:
|
|
6391
|
+
if (this.options.isVerbose) {
|
|
6392
|
+
console.info('๐ฌ OpenAI callChatModel call', { prompt: prompt });
|
|
6393
|
+
}
|
|
6394
|
+
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements, expectFormat = prompt.expectFormat;
|
|
6395
|
+
// TODO: [โ] Use here more modelRequirements
|
|
6396
|
+
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
6397
|
+
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
6398
|
+
}
|
|
6399
|
+
model = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
6400
|
+
modelSettings = {
|
|
6401
|
+
model: model,
|
|
6402
|
+
max_tokens: modelRequirements.maxTokens,
|
|
6403
|
+
// <- TODO: [๐พ] Make some global max cap for maxTokens
|
|
6404
|
+
temperature: modelRequirements.temperature,
|
|
6405
|
+
// <- TODO: [๐] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
6406
|
+
// <- Note: [๐ง]
|
|
6407
|
+
};
|
|
6408
|
+
if (expectFormat === 'JSON') {
|
|
6409
|
+
modelSettings.response_format = {
|
|
6410
|
+
type: 'json_object',
|
|
6411
|
+
};
|
|
6412
|
+
}
|
|
6413
|
+
rawRequest = __assign(__assign({}, modelSettings), { messages: __spreadArray(__spreadArray([], __read((modelRequirements.systemMessage === undefined
|
|
6414
|
+
? []
|
|
6415
|
+
: [
|
|
6416
|
+
{
|
|
6417
|
+
role: 'system',
|
|
6418
|
+
content: modelRequirements.systemMessage,
|
|
6419
|
+
},
|
|
6420
|
+
])), false), [
|
|
6421
|
+
{
|
|
6422
|
+
role: 'user',
|
|
6423
|
+
content: replaceParameters(content, parameters),
|
|
6424
|
+
},
|
|
6425
|
+
], false), user: this.options.user });
|
|
6426
|
+
start = getCurrentIsoDate();
|
|
6427
|
+
if (this.options.isVerbose) {
|
|
6428
|
+
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
6429
|
+
}
|
|
6430
|
+
return [4 /*yield*/, this.client.chat.completions.create(rawRequest)];
|
|
6431
|
+
case 1:
|
|
6432
|
+
rawResponse = _a.sent();
|
|
6433
|
+
if (this.options.isVerbose) {
|
|
6434
|
+
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
6435
|
+
}
|
|
6436
|
+
if (!rawResponse.choices[0]) {
|
|
6437
|
+
throw new PipelineExecutionError('No choises from OpenAI');
|
|
6438
|
+
}
|
|
6439
|
+
if (rawResponse.choices.length > 1) {
|
|
6440
|
+
// TODO: This should be maybe only warning
|
|
6441
|
+
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
6442
|
+
}
|
|
6443
|
+
resultContent = rawResponse.choices[0].message.content;
|
|
6444
|
+
// eslint-disable-next-line prefer-const
|
|
6445
|
+
complete = getCurrentIsoDate();
|
|
6446
|
+
usage = computeOpenaiUsage(content, resultContent || '', rawResponse);
|
|
6447
|
+
if (resultContent === null) {
|
|
6448
|
+
throw new PipelineExecutionError('No response message from OpenAI');
|
|
6449
|
+
}
|
|
6450
|
+
return [2 /*return*/, {
|
|
6451
|
+
content: resultContent,
|
|
6452
|
+
modelName: rawResponse.model || model,
|
|
6453
|
+
timing: {
|
|
6454
|
+
start: start,
|
|
6455
|
+
complete: complete,
|
|
6456
|
+
},
|
|
6457
|
+
usage: usage,
|
|
6458
|
+
rawResponse: rawResponse,
|
|
6459
|
+
// <- [๐คนโโ๏ธ]
|
|
6460
|
+
}];
|
|
6461
|
+
}
|
|
6462
|
+
});
|
|
6463
|
+
});
|
|
6464
|
+
};
|
|
6465
|
+
/**
|
|
6466
|
+
* Calls OpenAI API to use a complete model.
|
|
6467
|
+
*/
|
|
6468
|
+
OpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
6469
|
+
return __awaiter(this, void 0, void 0, function () {
|
|
6470
|
+
var content, parameters, modelRequirements, model, modelSettings, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6471
|
+
return __generator(this, function (_a) {
|
|
6472
|
+
switch (_a.label) {
|
|
6473
|
+
case 0:
|
|
6474
|
+
if (this.options.isVerbose) {
|
|
6475
|
+
console.info('๐ OpenAI callCompletionModel call', { prompt: prompt });
|
|
6476
|
+
}
|
|
6477
|
+
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
6478
|
+
// TODO: [โ] Use here more modelRequirements
|
|
6479
|
+
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
6480
|
+
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
6481
|
+
}
|
|
6482
|
+
model = modelRequirements.modelName || this.getDefaultCompletionModel().modelName;
|
|
6483
|
+
modelSettings = {
|
|
6484
|
+
model: model,
|
|
6485
|
+
max_tokens: modelRequirements.maxTokens || 2000,
|
|
6486
|
+
// <- TODO: [๐พ] Make some global max cap for maxTokens
|
|
6487
|
+
temperature: modelRequirements.temperature,
|
|
6488
|
+
// <- TODO: [๐] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
6489
|
+
// <- Note: [๐ง]
|
|
6490
|
+
};
|
|
6491
|
+
rawRequest = __assign(__assign({}, modelSettings), { prompt: replaceParameters(content, parameters), user: this.options.user });
|
|
6492
|
+
start = getCurrentIsoDate();
|
|
6493
|
+
if (this.options.isVerbose) {
|
|
6494
|
+
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
6495
|
+
}
|
|
6496
|
+
return [4 /*yield*/, this.client.completions.create(rawRequest)];
|
|
6497
|
+
case 1:
|
|
6498
|
+
rawResponse = _a.sent();
|
|
6499
|
+
if (this.options.isVerbose) {
|
|
6500
|
+
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
6501
|
+
}
|
|
6502
|
+
if (!rawResponse.choices[0]) {
|
|
6503
|
+
throw new PipelineExecutionError('No choises from OpenAI');
|
|
6504
|
+
}
|
|
6505
|
+
if (rawResponse.choices.length > 1) {
|
|
6506
|
+
// TODO: This should be maybe only warning
|
|
6507
|
+
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
6508
|
+
}
|
|
6509
|
+
resultContent = rawResponse.choices[0].text;
|
|
6510
|
+
// eslint-disable-next-line prefer-const
|
|
6511
|
+
complete = getCurrentIsoDate();
|
|
6512
|
+
usage = computeOpenaiUsage(content, resultContent || '', rawResponse);
|
|
6513
|
+
return [2 /*return*/, {
|
|
6514
|
+
content: resultContent,
|
|
6515
|
+
modelName: rawResponse.model || model,
|
|
6516
|
+
timing: {
|
|
6517
|
+
start: start,
|
|
6518
|
+
complete: complete,
|
|
6519
|
+
},
|
|
6520
|
+
usage: usage,
|
|
6521
|
+
rawResponse: rawResponse,
|
|
6522
|
+
// <- [๐คนโโ๏ธ]
|
|
6523
|
+
}];
|
|
6524
|
+
}
|
|
6525
|
+
});
|
|
6526
|
+
});
|
|
6527
|
+
};
|
|
6528
|
+
/**
|
|
6529
|
+
* Calls OpenAI API to use a embedding model
|
|
6530
|
+
*/
|
|
6531
|
+
OpenAiExecutionTools.prototype.callEmbeddingModel = function (prompt) {
|
|
6532
|
+
return __awaiter(this, void 0, void 0, function () {
|
|
6533
|
+
var content, parameters, modelRequirements, model, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
6534
|
+
return __generator(this, function (_a) {
|
|
6535
|
+
switch (_a.label) {
|
|
6536
|
+
case 0:
|
|
6537
|
+
if (this.options.isVerbose) {
|
|
6538
|
+
console.info('๐ OpenAI embedding call', { prompt: prompt });
|
|
6539
|
+
}
|
|
6540
|
+
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
6541
|
+
// TODO: [โ] Use here more modelRequirements
|
|
6542
|
+
if (modelRequirements.modelVariant !== 'EMBEDDING') {
|
|
6543
|
+
throw new PipelineExecutionError('Use embed only for EMBEDDING variant');
|
|
6544
|
+
}
|
|
6545
|
+
model = modelRequirements.modelName || this.getDefaultEmbeddingModel().modelName;
|
|
6546
|
+
rawRequest = {
|
|
6547
|
+
input: replaceParameters(content, parameters),
|
|
6548
|
+
model: model,
|
|
6549
|
+
// TODO: !!!! Test model 3 and dimensions
|
|
6550
|
+
};
|
|
6551
|
+
start = getCurrentIsoDate();
|
|
6552
|
+
if (this.options.isVerbose) {
|
|
6553
|
+
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
6554
|
+
}
|
|
6555
|
+
return [4 /*yield*/, this.client.embeddings.create(rawRequest)];
|
|
6556
|
+
case 1:
|
|
6557
|
+
rawResponse = _a.sent();
|
|
6558
|
+
if (this.options.isVerbose) {
|
|
6559
|
+
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
6560
|
+
}
|
|
6561
|
+
if (rawResponse.data.length !== 1) {
|
|
6562
|
+
throw new PipelineExecutionError("Expected exactly 1 data item in response, got ".concat(rawResponse.data.length));
|
|
6563
|
+
}
|
|
6564
|
+
resultContent = rawResponse.data[0].embedding;
|
|
6565
|
+
// eslint-disable-next-line prefer-const
|
|
6566
|
+
complete = getCurrentIsoDate();
|
|
6567
|
+
usage = computeOpenaiUsage(content, '', rawResponse);
|
|
6568
|
+
return [2 /*return*/, {
|
|
6569
|
+
content: resultContent,
|
|
6570
|
+
modelName: rawResponse.model || model,
|
|
6571
|
+
timing: {
|
|
6572
|
+
start: start,
|
|
6573
|
+
complete: complete,
|
|
6574
|
+
},
|
|
6575
|
+
usage: usage,
|
|
6576
|
+
rawResponse: rawResponse,
|
|
6577
|
+
// <- [๐คนโโ๏ธ]
|
|
6578
|
+
}];
|
|
6579
|
+
}
|
|
6580
|
+
});
|
|
6581
|
+
});
|
|
6582
|
+
};
|
|
6583
|
+
// <- Note: [๐ค] callXxxModel
|
|
6584
|
+
/**
|
|
6585
|
+
* Get the model that should be used as default
|
|
6586
|
+
*/
|
|
6587
|
+
OpenAiExecutionTools.prototype.getDefaultModel = function (defaultModelName) {
|
|
6588
|
+
var model = OPENAI_MODELS.find(function (_a) {
|
|
6589
|
+
var modelName = _a.modelName;
|
|
6590
|
+
return modelName === defaultModelName;
|
|
6591
|
+
});
|
|
6592
|
+
if (model === undefined) {
|
|
6593
|
+
throw new UnexpectedError(spaceTrim(function (block) {
|
|
6594
|
+
return "\n Cannot find model in OpenAI models with name \"".concat(defaultModelName, "\" which should be used as default.\n\n Available models:\n ").concat(block(OPENAI_MODELS.map(function (_a) {
|
|
6595
|
+
var modelName = _a.modelName;
|
|
6596
|
+
return "- \"".concat(modelName, "\"");
|
|
6597
|
+
}).join('\n')), "\n\n ");
|
|
6598
|
+
}));
|
|
6599
|
+
}
|
|
6600
|
+
return model;
|
|
6601
|
+
};
|
|
6602
|
+
/**
|
|
6603
|
+
* Default model for chat variant.
|
|
6604
|
+
*/
|
|
6605
|
+
OpenAiExecutionTools.prototype.getDefaultChatModel = function () {
|
|
6606
|
+
return this.getDefaultModel('gpt-4o');
|
|
6607
|
+
};
|
|
6608
|
+
/**
|
|
6609
|
+
* Default model for completion variant.
|
|
6610
|
+
*/
|
|
6611
|
+
OpenAiExecutionTools.prototype.getDefaultCompletionModel = function () {
|
|
6612
|
+
return this.getDefaultModel('gpt-3.5-turbo-instruct');
|
|
6613
|
+
};
|
|
6614
|
+
/**
|
|
6615
|
+
* Default model for completion variant.
|
|
6616
|
+
*/
|
|
6617
|
+
OpenAiExecutionTools.prototype.getDefaultEmbeddingModel = function () {
|
|
6618
|
+
return this.getDefaultModel('text-embedding-3-large');
|
|
6619
|
+
};
|
|
6620
|
+
// <- Note: [๐ค] getDefaultXxxModel
|
|
6621
|
+
/**
|
|
6622
|
+
* List all available OpenAI models that can be used
|
|
6623
|
+
*/
|
|
6624
|
+
OpenAiExecutionTools.prototype.listModels = function () {
|
|
6625
|
+
/*
|
|
6626
|
+
Note: Dynamic lising of the models
|
|
6627
|
+
const models = await this.openai.models.list({});
|
|
6628
|
+
|
|
6629
|
+
console.log({ models });
|
|
6630
|
+
console.log(models.data);
|
|
6631
|
+
*/
|
|
6632
|
+
return OPENAI_MODELS;
|
|
6633
|
+
};
|
|
6634
|
+
return OpenAiExecutionTools;
|
|
6635
|
+
}());
|
|
6636
|
+
/**
|
|
6637
|
+
* TODO: [๐ง ][๐งโโ๏ธ] Maybe there can be some wizzard for thoose who want to use just OpenAI
|
|
6638
|
+
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
6639
|
+
* TODO: Maybe make custom OpenaiError
|
|
6640
|
+
* TODO: [๐ง ][๐] Maybe use `isDeterministic` from options
|
|
6641
|
+
*/
|
|
6642
|
+
|
|
6643
|
+
/**
|
|
6644
|
+
* @@@
|
|
6645
|
+
*
|
|
6646
|
+
* Note: This function is not cached, every call creates new instance of `LlmExecutionTools`
|
|
6647
|
+
*
|
|
6648
|
+
* It looks for environment variables:
|
|
6649
|
+
* - `process.env.OPENAI_API_KEY`
|
|
6650
|
+
* - `process.env.ANTHROPIC_CLAUDE_API_KEY`
|
|
6651
|
+
*
|
|
6652
|
+
* @returns @@@
|
|
6653
|
+
*/
|
|
6654
|
+
function createLlmToolsFromEnv(options) {
|
|
6655
|
+
if (options === void 0) { options = {}; }
|
|
6656
|
+
if (!isRunningInNode()) {
|
|
6657
|
+
throw new EnvironmentMismatchError('Function `createLlmToolsFromEnv` works only in Node.js environment');
|
|
6658
|
+
}
|
|
6659
|
+
var _a = options.isVerbose, isVerbose = _a === void 0 ? false : _a;
|
|
6660
|
+
var llmTools = [];
|
|
6661
|
+
if (typeof process.env.OPENAI_API_KEY === 'string') {
|
|
6662
|
+
llmTools.push(new OpenAiExecutionTools({
|
|
6663
|
+
isVerbose: isVerbose,
|
|
6664
|
+
apiKey: process.env.OPENAI_API_KEY,
|
|
6665
|
+
}));
|
|
6666
|
+
}
|
|
6667
|
+
if (typeof process.env.ANTHROPIC_CLAUDE_API_KEY === 'string') {
|
|
6668
|
+
llmTools.push(new AnthropicClaudeExecutionTools({
|
|
6669
|
+
isVerbose: isVerbose,
|
|
6670
|
+
apiKey: process.env.ANTHROPIC_CLAUDE_API_KEY,
|
|
6671
|
+
}));
|
|
6672
|
+
}
|
|
6673
|
+
if (llmTools.length === 0) {
|
|
6674
|
+
throw new Error(spaceTrim("\n No LLM tools found in the environment\n\n Please set one of environment variables:\n - OPENAI_API_KEY\n - ANTHROPIC_CLAUDE_API_KEY\n "));
|
|
6675
|
+
}
|
|
6676
|
+
else if (llmTools.length === 1) {
|
|
6677
|
+
return llmTools[0];
|
|
6678
|
+
}
|
|
6679
|
+
else {
|
|
6680
|
+
return joinLlmExecutionTools.apply(void 0, __spreadArray([], __read(llmTools), false));
|
|
6681
|
+
}
|
|
6682
|
+
}
|
|
6683
|
+
/**
|
|
6684
|
+
* TODO: [๐ผ] !!! Export via `@promptbook/node`
|
|
6685
|
+
* TODO: @@@ write discussion about this - wizzard
|
|
6686
|
+
* TODO: Add Azure
|
|
6687
|
+
* TODO: [๐ง ] Which name is better `createLlmToolsFromEnv` or `createLlmToolsFromEnvironment`?
|
|
6688
|
+
* TODO: [๐ง ] Is there some meaningfull way how to test this util
|
|
6689
|
+
* TODO: [๐ง ] Maybe pass env as argument
|
|
6690
|
+
* Note: [๐ข] This code should never be published outside of `@promptbook/node`
|
|
6691
|
+
*/
|
|
6692
|
+
|
|
6693
|
+
export { PROMPTBOOK_VERSION, createCollectionFromDirectory, createLlmToolsFromEnv };
|
|
5608
6694
|
//# sourceMappingURL=index.es.js.map
|