@promptbook/node 0.61.0-12 → 0.61.0-13
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +107 -34
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/execute-javascript.index.d.ts +1 -1
- package/esm/typings/src/_packages/utils.index.d.ts +1 -1
- package/esm/typings/src/config.d.ts +1 -1
- package/esm/typings/src/errors/LimitReachedError.d.ts +7 -0
- package/esm/typings/src/execution/utils/addUsage.d.ts +57 -1
- package/esm/typings/src/llm-providers/_common/utils/count-total-cost/limitTotalCost.d.ts +32 -0
- package/esm/typings/src/utils/deepClone.d.ts +9 -0
- package/esm/typings/src/utils/deepFreeze.d.ts +13 -0
- package/esm/typings/src/utils/organization/just.d.ts +4 -1
- package/esm/typings/src/utils/organization/keepUnused.d.ts +16 -0
- package/esm/typings/src/version.d.ts +0 -3
- package/package.json +2 -2
- package/umd/index.umd.js +107 -34
- package/umd/index.umd.js.map +1 -1
- package/umd/typings/src/_packages/execute-javascript.index.d.ts +1 -1
- package/umd/typings/src/_packages/utils.index.d.ts +1 -1
- package/umd/typings/src/config.d.ts +1 -1
- package/umd/typings/src/errors/LimitReachedError.d.ts +7 -0
- package/umd/typings/src/execution/utils/addUsage.d.ts +57 -1
- package/umd/typings/src/llm-providers/_common/utils/count-total-cost/limitTotalCost.d.ts +32 -0
- package/umd/typings/src/utils/deepClone.d.ts +9 -0
- package/umd/typings/src/utils/deepFreeze.d.ts +13 -0
- package/umd/typings/src/utils/organization/just.d.ts +4 -1
- package/umd/typings/src/utils/organization/keepUnused.d.ts +16 -0
- package/umd/typings/src/version.d.ts +0 -3
- package/esm/typings/src/execution/addPromptResultUsage.test.d.ts +0 -1
- package/esm/typings/src/utils/organization/keepImported.d.ts +0 -12
- package/esm/typings/src/utils/organization/notUsing.d.ts +0 -12
- package/umd/typings/src/execution/addPromptResultUsage.test.d.ts +0 -1
- package/umd/typings/src/utils/organization/keepImported.d.ts +0 -12
- package/umd/typings/src/utils/organization/notUsing.d.ts +0 -12
- /package/esm/typings/src/{utils/postprocessing → postprocessing/utils}/extractBlock.d.ts +0 -0
- /package/umd/typings/src/{utils/postprocessing → postprocessing/utils}/extractBlock.d.ts +0 -0
package/esm/index.es.js
CHANGED
|
@@ -124,6 +124,39 @@ function __spreadArray(to, from, pack) {
|
|
|
124
124
|
return to.concat(ar || Array.prototype.slice.call(from));
|
|
125
125
|
}
|
|
126
126
|
|
|
127
|
+
/**
|
|
128
|
+
* @@@
|
|
129
|
+
*
|
|
130
|
+
* @returns The same object as the input, but deeply frozen
|
|
131
|
+
*
|
|
132
|
+
* Note: This function mutates the object
|
|
133
|
+
*/
|
|
134
|
+
function deepFreeze(objectValue) {
|
|
135
|
+
var e_1, _a;
|
|
136
|
+
var propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
137
|
+
try {
|
|
138
|
+
for (var propertyNames_1 = __values(propertyNames), propertyNames_1_1 = propertyNames_1.next(); !propertyNames_1_1.done; propertyNames_1_1 = propertyNames_1.next()) {
|
|
139
|
+
var propertyName = propertyNames_1_1.value;
|
|
140
|
+
var value = objectValue[propertyName];
|
|
141
|
+
if (value && typeof value === 'object') {
|
|
142
|
+
deepFreeze(value);
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
}
|
|
146
|
+
catch (e_1_1) { e_1 = { error: e_1_1 }; }
|
|
147
|
+
finally {
|
|
148
|
+
try {
|
|
149
|
+
if (propertyNames_1_1 && !propertyNames_1_1.done && (_a = propertyNames_1.return)) _a.call(propertyNames_1);
|
|
150
|
+
}
|
|
151
|
+
finally { if (e_1) throw e_1.error; }
|
|
152
|
+
}
|
|
153
|
+
return Object.freeze(objectValue);
|
|
154
|
+
}
|
|
155
|
+
/**
|
|
156
|
+
* TODO: [🔼] Export from `@promptbook/utils`
|
|
157
|
+
* TODO: [🧠] Is there a way how to meaningfully test this utility
|
|
158
|
+
*/
|
|
159
|
+
|
|
127
160
|
/**
|
|
128
161
|
* The maximum number of iterations for a loops
|
|
129
162
|
*/
|
|
@@ -139,47 +172,74 @@ var PIPELINE_COLLECTION_BASE_FILENAME = "index";
|
|
|
139
172
|
/**
|
|
140
173
|
* The names of the parameters that are reserved for special purposes
|
|
141
174
|
*/
|
|
142
|
-
var RESERVED_PARAMETER_NAMES = [
|
|
175
|
+
var RESERVED_PARAMETER_NAMES = deepFreeze([
|
|
143
176
|
'context',
|
|
144
177
|
// <- TODO: Add more like 'date', 'modelName',...
|
|
145
178
|
// <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
|
|
146
|
-
];
|
|
179
|
+
]);
|
|
147
180
|
/*
|
|
148
181
|
TODO: !!! Just testing false-negative detection of [🟡][🟢][🔵][⚪] leak
|
|
149
182
|
*/
|
|
150
183
|
// [🟡][🟢][🔵][⚪]
|
|
151
184
|
|
|
185
|
+
/**
|
|
186
|
+
* @@@
|
|
187
|
+
*/
|
|
188
|
+
function deepClone(objectValue) {
|
|
189
|
+
return JSON.parse(JSON.stringify(objectValue));
|
|
190
|
+
/*
|
|
191
|
+
TODO: [🧠] Is there a better implementation?
|
|
192
|
+
> const propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
193
|
+
> for (const propertyName of propertyNames) {
|
|
194
|
+
> const value = (objectValue as really_any)[propertyName];
|
|
195
|
+
> if (value && typeof value === 'object') {
|
|
196
|
+
> deepClone(value);
|
|
197
|
+
> }
|
|
198
|
+
> }
|
|
199
|
+
> return Object.assign({}, objectValue);
|
|
200
|
+
*/
|
|
201
|
+
}
|
|
202
|
+
/**
|
|
203
|
+
* TODO: [🔼] Export from `@promptbook/utils`
|
|
204
|
+
* TODO: [🧠] Is there a way how to meaningfully test this utility
|
|
205
|
+
*/
|
|
206
|
+
|
|
207
|
+
/**
|
|
208
|
+
* @@@
|
|
209
|
+
*
|
|
210
|
+
* TODO: [🔼] Export with addUsage
|
|
211
|
+
*/
|
|
212
|
+
var ZERO_USAGE = deepFreeze({
|
|
213
|
+
price: { value: 0 },
|
|
214
|
+
input: {
|
|
215
|
+
tokensCount: { value: 0 },
|
|
216
|
+
charactersCount: { value: 0 },
|
|
217
|
+
wordsCount: { value: 0 },
|
|
218
|
+
sentencesCount: { value: 0 },
|
|
219
|
+
linesCount: { value: 0 },
|
|
220
|
+
paragraphsCount: { value: 0 },
|
|
221
|
+
pagesCount: { value: 0 },
|
|
222
|
+
},
|
|
223
|
+
output: {
|
|
224
|
+
tokensCount: { value: 0 },
|
|
225
|
+
charactersCount: { value: 0 },
|
|
226
|
+
wordsCount: { value: 0 },
|
|
227
|
+
sentencesCount: { value: 0 },
|
|
228
|
+
linesCount: { value: 0 },
|
|
229
|
+
paragraphsCount: { value: 0 },
|
|
230
|
+
pagesCount: { value: 0 },
|
|
231
|
+
},
|
|
232
|
+
});
|
|
152
233
|
/**
|
|
153
234
|
* Function `addUsage` will add multiple usages into one
|
|
154
235
|
*
|
|
155
|
-
* Note: If you provide 0 values, it returns
|
|
236
|
+
* Note: If you provide 0 values, it returns ZERO_USAGE
|
|
156
237
|
*/
|
|
157
238
|
function addUsage() {
|
|
158
239
|
var usageItems = [];
|
|
159
240
|
for (var _i = 0; _i < arguments.length; _i++) {
|
|
160
241
|
usageItems[_i] = arguments[_i];
|
|
161
242
|
}
|
|
162
|
-
var initialStructure = {
|
|
163
|
-
price: { value: 0 },
|
|
164
|
-
input: {
|
|
165
|
-
tokensCount: { value: 0 },
|
|
166
|
-
charactersCount: { value: 0 },
|
|
167
|
-
wordsCount: { value: 0 },
|
|
168
|
-
sentencesCount: { value: 0 },
|
|
169
|
-
linesCount: { value: 0 },
|
|
170
|
-
paragraphsCount: { value: 0 },
|
|
171
|
-
pagesCount: { value: 0 },
|
|
172
|
-
},
|
|
173
|
-
output: {
|
|
174
|
-
tokensCount: { value: 0 },
|
|
175
|
-
charactersCount: { value: 0 },
|
|
176
|
-
wordsCount: { value: 0 },
|
|
177
|
-
sentencesCount: { value: 0 },
|
|
178
|
-
linesCount: { value: 0 },
|
|
179
|
-
paragraphsCount: { value: 0 },
|
|
180
|
-
pagesCount: { value: 0 },
|
|
181
|
-
},
|
|
182
|
-
};
|
|
183
243
|
return usageItems.reduce(function (acc, item) {
|
|
184
244
|
var e_1, _a, e_2, _b;
|
|
185
245
|
var _c;
|
|
@@ -237,7 +297,7 @@ function addUsage() {
|
|
|
237
297
|
finally { if (e_2) throw e_2.error; }
|
|
238
298
|
}
|
|
239
299
|
return acc;
|
|
240
|
-
},
|
|
300
|
+
}, deepClone(ZERO_USAGE));
|
|
241
301
|
}
|
|
242
302
|
|
|
243
303
|
/**
|
|
@@ -314,7 +374,7 @@ function forEachAsync(array, options, callbackfunction) {
|
|
|
314
374
|
});
|
|
315
375
|
}
|
|
316
376
|
|
|
317
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-
|
|
377
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",promptbookVersion:"0.61.0-12",parameters:[{name:"content",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledge",description:"The knowledge JSON object",isInput:false,isOutput:true}],promptTemplates:[{name:"knowledge",title:"Knowledge",dependentParameterNames:["content"],blockType:"PROMPT_TEMPLATE",personaName:null,modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {content}",resultingParameterName:"knowledge"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-12",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",promptbookVersion:"0.61.0-12",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],promptTemplates:[{name:"knowledge",title:"Knowledge",dependentParameterNames:["content"],blockType:"PROMPT_TEMPLATE",personaName:null,modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {content}",resultingParameterName:"keywords"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-12",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",promptbookVersion:"0.61.0-12",parameters:[{name:"content",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],promptTemplates:[{name:"knowledge",title:"Knowledge",dependentParameterNames:["content"],blockType:"PROMPT_TEMPLATE",expectations:{words:{min:1,max:8}},personaName:null,modelRequirements:{modelVariant:"CHAT",modelName:"claude-3-opus-20240229"},content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {content}",resultingParameterName:"title"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-12",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",promptbookVersion:"0.61.0-12",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],promptTemplates:[{name:"make-model-requirements",title:"Make modelRequirements",dependentParameterNames:["availableModelNames","personaDescription"],blockType:"PROMPT_TEMPLATE",expectFormat:"JSON",personaName:null,modelRequirements:{modelVariant:"CHAT",modelName:"gpt-4-turbo"},content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n### Option `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Option `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Option `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements"}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[{id:1,promptbookVersion:"0.61.0-12",modelUsage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
|
|
318
378
|
|
|
319
379
|
/**
|
|
320
380
|
* Prettify the html code
|
|
@@ -894,6 +954,7 @@ function validatePipeline(pipeline) {
|
|
|
894
954
|
var loopLimit = LOOP_LIMIT;
|
|
895
955
|
var _loop_2 = function () {
|
|
896
956
|
if (loopLimit-- < 0) {
|
|
957
|
+
// Note: Really UnexpectedError not LimitReachedError - this should not happen and be caught below
|
|
897
958
|
throw new UnexpectedError('Loop limit reached during detection of circular dependencies in `validatePipeline`');
|
|
898
959
|
}
|
|
899
960
|
var currentlyResovedTemplates = unresovedTemplates.filter(function (template) {
|
|
@@ -1736,11 +1797,8 @@ function arrayableToArray(input) {
|
|
|
1736
1797
|
/**
|
|
1737
1798
|
* The version of the Promptbook library
|
|
1738
1799
|
*/
|
|
1739
|
-
var PROMPTBOOK_VERSION = '0.61.0-
|
|
1800
|
+
var PROMPTBOOK_VERSION = '0.61.0-12';
|
|
1740
1801
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
1741
|
-
/**
|
|
1742
|
-
* TODO: [🔼] !!! Export via `@promptbook/code`
|
|
1743
|
-
*/
|
|
1744
1802
|
|
|
1745
1803
|
/**
|
|
1746
1804
|
* Counts number of characters in the text
|
|
@@ -1852,6 +1910,20 @@ function checkExpectations(expectations, value) {
|
|
|
1852
1910
|
* TODO: [💝] Unite object for expecting amount and format
|
|
1853
1911
|
*/
|
|
1854
1912
|
|
|
1913
|
+
/**
|
|
1914
|
+
* This error type indicates that some limit was reached
|
|
1915
|
+
*/
|
|
1916
|
+
var LimitReachedError = /** @class */ (function (_super) {
|
|
1917
|
+
__extends(LimitReachedError, _super);
|
|
1918
|
+
function LimitReachedError(message) {
|
|
1919
|
+
var _this = _super.call(this, message) || this;
|
|
1920
|
+
_this.name = 'LimitReachedError';
|
|
1921
|
+
Object.setPrototypeOf(_this, LimitReachedError.prototype);
|
|
1922
|
+
return _this;
|
|
1923
|
+
}
|
|
1924
|
+
return LimitReachedError;
|
|
1925
|
+
}(Error));
|
|
1926
|
+
|
|
1855
1927
|
/**
|
|
1856
1928
|
* Replaces parameters in template with values from parameters object
|
|
1857
1929
|
*
|
|
@@ -1868,7 +1940,7 @@ function replaceParameters(template, parameters) {
|
|
|
1868
1940
|
var loopLimit = LOOP_LIMIT;
|
|
1869
1941
|
var _loop_1 = function () {
|
|
1870
1942
|
if (loopLimit-- < 0) {
|
|
1871
|
-
throw new
|
|
1943
|
+
throw new LimitReachedError('Loop limit reached during parameters replacement in `replaceParameters`');
|
|
1872
1944
|
}
|
|
1873
1945
|
var precol = match.groups.precol;
|
|
1874
1946
|
var parameterName = match.groups.parameterName;
|
|
@@ -2356,6 +2428,7 @@ function createPipelineExecutor(options) {
|
|
|
2356
2428
|
switch (_e.label) {
|
|
2357
2429
|
case 0:
|
|
2358
2430
|
if (loopLimit-- < 0) {
|
|
2431
|
+
// Note: Really UnexpectedError not LimitReachedError - this should be catched during validatePipeline
|
|
2359
2432
|
throw new UnexpectedError('Loop limit reached during resolving parameters pipeline execution');
|
|
2360
2433
|
}
|
|
2361
2434
|
currentTemplate = unresovedTemplates.find(function (template) {
|
|
@@ -2402,7 +2475,7 @@ function createPipelineExecutor(options) {
|
|
|
2402
2475
|
}
|
|
2403
2476
|
usage_1 = addUsage.apply(void 0, __spreadArray([], __read(executionReport.promptExecutions.map(function (_a) {
|
|
2404
2477
|
var result = _a.result;
|
|
2405
|
-
return (result === null || result === void 0 ? void 0 : result.usage) ||
|
|
2478
|
+
return (result === null || result === void 0 ? void 0 : result.usage) || ZERO_USAGE;
|
|
2406
2479
|
})), false));
|
|
2407
2480
|
return [2 /*return*/, {
|
|
2408
2481
|
isSuccessful: false,
|
|
@@ -2431,7 +2504,7 @@ function createPipelineExecutor(options) {
|
|
|
2431
2504
|
}
|
|
2432
2505
|
usage = addUsage.apply(void 0, __spreadArray([], __read(executionReport.promptExecutions.map(function (_a) {
|
|
2433
2506
|
var result = _a.result;
|
|
2434
|
-
return (result === null || result === void 0 ? void 0 : result.usage) ||
|
|
2507
|
+
return (result === null || result === void 0 ? void 0 : result.usage) || ZERO_USAGE;
|
|
2435
2508
|
})), false));
|
|
2436
2509
|
return [2 /*return*/, {
|
|
2437
2510
|
isSuccessful: true,
|
|
@@ -2757,7 +2830,7 @@ function preparePipeline(pipeline, options) {
|
|
|
2757
2830
|
id: 1,
|
|
2758
2831
|
// TODO: [🍥]> date: $currentDate(),
|
|
2759
2832
|
promptbookVersion: PROMPTBOOK_VERSION,
|
|
2760
|
-
modelUsage:
|
|
2833
|
+
modelUsage: ZERO_USAGE,
|
|
2761
2834
|
};
|
|
2762
2835
|
preparations = [
|
|
2763
2836
|
// ...preparations
|