@promptbook/markitdown 0.94.0 → 0.95.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. package/README.md +2 -10
  2. package/esm/index.es.js +43 -43
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/types.index.d.ts +2 -2
  5. package/esm/typings/src/_packages/{wizzard.index.d.ts → wizard.index.d.ts} +2 -2
  6. package/esm/typings/src/cli/cli-commands/prettify.d.ts +1 -1
  7. package/esm/typings/src/cli/cli-commands/test-command.d.ts +1 -1
  8. package/esm/typings/src/conversion/archive/loadArchive.d.ts +1 -1
  9. package/esm/typings/src/conversion/archive/saveArchive.d.ts +2 -2
  10. package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +1 -1
  11. package/esm/typings/src/dialogs/callback/CallbackInterfaceTools.d.ts +1 -1
  12. package/esm/typings/src/execution/AbstractTaskResult.d.ts +2 -2
  13. package/esm/typings/src/execution/createPipelineExecutor/00-CreatePipelineExecutorOptions.d.ts +1 -1
  14. package/esm/typings/src/execution/execution-report/ExecutionPromptReportJson.d.ts +2 -2
  15. package/esm/typings/src/execution/translation/automatic-translate/translateMessages.d.ts +1 -1
  16. package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForWizzardOrCli.d.ts → $provideLlmToolsForWizardOrCli.d.ts} +2 -2
  17. package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -1
  18. package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -1
  19. package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -1
  20. package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -1
  21. package/esm/typings/src/llm-providers/deepseek/register-configuration.d.ts +1 -1
  22. package/esm/typings/src/llm-providers/deepseek/register-constructor.d.ts +1 -1
  23. package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -1
  24. package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -1
  25. package/esm/typings/src/llm-providers/ollama/register-configuration.d.ts +1 -1
  26. package/esm/typings/src/llm-providers/ollama/register-constructor.d.ts +1 -1
  27. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +1 -1
  28. package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -2
  29. package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -2
  30. package/esm/typings/src/remote-server/socket-types/listModels/PromptbookServer_ListModels_Request.d.ts +1 -1
  31. package/esm/typings/src/scrapers/_boilerplate/createBoilerplateScraper.d.ts +1 -1
  32. package/esm/typings/src/scrapers/_boilerplate/register-constructor.d.ts +1 -1
  33. package/esm/typings/src/scrapers/_boilerplate/register-metadata.d.ts +2 -2
  34. package/esm/typings/src/scrapers/_common/prepareKnowledgePieces.d.ts +1 -1
  35. package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +1 -1
  36. package/esm/typings/src/scrapers/document/createDocumentScraper.d.ts +1 -1
  37. package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -1
  38. package/esm/typings/src/scrapers/document/register-metadata.d.ts +2 -2
  39. package/esm/typings/src/scrapers/document-legacy/createLegacyDocumentScraper.d.ts +1 -1
  40. package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -1
  41. package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +2 -2
  42. package/esm/typings/src/scrapers/markdown/createMarkdownScraper.d.ts +1 -4
  43. package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -1
  44. package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +2 -2
  45. package/esm/typings/src/scrapers/markitdown/createMarkitdownScraper.d.ts +1 -1
  46. package/esm/typings/src/scrapers/markitdown/register-constructor.d.ts +1 -1
  47. package/esm/typings/src/scrapers/markitdown/register-metadata.d.ts +2 -2
  48. package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
  49. package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -1
  50. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -2
  51. package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
  52. package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -1
  53. package/esm/typings/src/scrapers/website/register-metadata.d.ts +2 -2
  54. package/esm/typings/src/types/typeAliases.d.ts +1 -1
  55. package/esm/typings/src/utils/files/listAllFiles.d.ts +1 -1
  56. package/esm/typings/src/version.d.ts +1 -1
  57. package/esm/typings/src/{wizzard → wizard}/$getCompiledBook.d.ts +2 -2
  58. package/esm/typings/src/{wizzard/wizzard.d.ts → wizard/wizard.d.ts} +6 -6
  59. package/package.json +2 -14
  60. package/umd/index.umd.js +43 -43
  61. package/umd/index.umd.js.map +1 -1
package/README.md CHANGED
@@ -56,8 +56,6 @@ Rest of the documentation is common for **entire promptbook ecosystem**:
56
56
 
57
57
  During the computer revolution, we have seen [multiple generations of computer languages](https://github.com/webgptorg/promptbook/discussions/180), from the physical rewiring of the vacuum tubes through low-level machine code to the high-level languages like Python or JavaScript. And now, we're on the edge of the **next revolution**!
58
58
 
59
-
60
-
61
59
  It's a revolution of writing software in **plain human language** that is understandable and executable by both humans and machines – and it's going to change everything!
62
60
 
63
61
  The incredible growth in power of microprocessors and the Moore's Law have been the driving force behind the ever-more powerful languages, and it's been an amazing journey! Similarly, the large language models (like GPT or Claude) are the next big thing in language technology, and they're set to transform the way we interact with computers.
@@ -183,8 +181,6 @@ Join our growing community of developers and users:
183
181
 
184
182
  _A concise, Markdown-based DSL for crafting AI workflows and automations._
185
183
 
186
-
187
-
188
184
  ### Introduction
189
185
 
190
186
  Book is a Markdown-based language that simplifies the creation of AI applications, workflows, and automations. With human-readable commands, you can define inputs, outputs, personas, knowledge sources, and actions—without needing model-specific details.
@@ -234,8 +230,6 @@ Personas can have access to different knowledge, tools and actions. They can als
234
230
 
235
231
  - [PERSONA](https://github.com/webgptorg/promptbook/blob/main/documents/commands/PERSONA.md)
236
232
 
237
-
238
-
239
233
  ### **3. How:** Knowledge, Instruments and Actions
240
234
 
241
235
  The resources used by the personas are used to do the work.
@@ -283,13 +277,13 @@ Or you can install them separately:
283
277
 
284
278
  - ⭐ **[ptbk](https://www.npmjs.com/package/ptbk)** - Bundle of all packages, when you want to install everything and you don't care about the size
285
279
  - **[promptbook](https://www.npmjs.com/package/promptbook)** - Same as `ptbk`
286
- - ⭐🧙‍♂️ **[@promptbook/wizzard](https://www.npmjs.com/package/@promptbook/wizzard)** - Wizzard to just run the books in node without any struggle
280
+ - ⭐🧙‍♂️ **[@promptbook/wizard](https://www.npmjs.com/package/@promptbook/wizard)** - Wizard to just run the books in node without any struggle
287
281
  - **[@promptbook/core](https://www.npmjs.com/package/@promptbook/core)** - Core of the library, it contains the main logic for promptbooks
288
282
  - **[@promptbook/node](https://www.npmjs.com/package/@promptbook/node)** - Core of the library for Node.js environment
289
283
  - **[@promptbook/browser](https://www.npmjs.com/package/@promptbook/browser)** - Core of the library for browser environment
290
284
  - ⭐ **[@promptbook/utils](https://www.npmjs.com/package/@promptbook/utils)** - Utility functions used in the library but also useful for individual use in preprocessing and postprocessing LLM inputs and outputs
291
285
  - **[@promptbook/markdown-utils](https://www.npmjs.com/package/@promptbook/markdown-utils)** - Utility functions used for processing markdown
292
- - _(Not finished)_ **[@promptbook/wizzard](https://www.npmjs.com/package/@promptbook/wizzard)** - Wizard for creating+running promptbooks in single line
286
+ - _(Not finished)_ **[@promptbook/wizard](https://www.npmjs.com/package/@promptbook/wizard)** - Wizard for creating+running promptbooks in single line
293
287
  - **[@promptbook/javascript](https://www.npmjs.com/package/@promptbook/javascript)** - Execution tools for javascript inside promptbooks
294
288
  - **[@promptbook/openai](https://www.npmjs.com/package/@promptbook/openai)** - Execution tools for OpenAI API, wrapper around OpenAI SDK
295
289
  - **[@promptbook/anthropic-claude](https://www.npmjs.com/package/@promptbook/anthropic-claude)** - Execution tools for Anthropic Claude API, wrapper around Anthropic Claude SDK
@@ -335,8 +329,6 @@ The following glossary is used to clarify certain concepts:
335
329
 
336
330
  _Note: This section is not a complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
337
331
 
338
-
339
-
340
332
  ### 💯 Core concepts
341
333
 
342
334
  - [📚 Collection of pipelines](https://github.com/webgptorg/promptbook/discussions/65)
package/esm/index.es.js CHANGED
@@ -26,7 +26,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
26
26
  * @generated
27
27
  * @see https://github.com/webgptorg/promptbook
28
28
  */
29
- const PROMPTBOOK_ENGINE_VERSION = '0.94.0';
29
+ const PROMPTBOOK_ENGINE_VERSION = '0.95.0';
30
30
  /**
31
31
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
32
32
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -862,7 +862,7 @@ async function getScraperIntermediateSource(source, options) {
862
862
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
863
863
  */
864
864
 
865
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
865
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
866
866
 
867
867
  /**
868
868
  * Checks if value is valid email
@@ -1019,7 +1019,7 @@ function prettifyMarkdown(content) {
1019
1019
  });
1020
1020
  }
1021
1021
  catch (error) {
1022
- // TODO: [🟥] Detect browser / node and make it colorfull
1022
+ // TODO: [🟥] Detect browser / node and make it colorful
1023
1023
  console.error('There was an error with prettifying the markdown, using the original as the fallback', {
1024
1024
  error,
1025
1025
  html: content,
@@ -1301,7 +1301,7 @@ function checkSerializableAsJson(options) {
1301
1301
  else {
1302
1302
  for (const [subName, subValue] of Object.entries(value)) {
1303
1303
  if (subValue === undefined) {
1304
- // Note: undefined in object is serializable - it is just omited
1304
+ // Note: undefined in object is serializable - it is just omitted
1305
1305
  continue;
1306
1306
  }
1307
1307
  checkSerializableAsJson({ name: `${name}.${subName}`, value: subValue, message });
@@ -1991,7 +1991,7 @@ class SimplePipelineCollection {
1991
1991
 
1992
1992
  Note: You have probably forgotten to run "ptbk make" to update the collection
1993
1993
  Note: Pipelines with the same URL are not allowed
1994
- Only exepction is when the pipelines are identical
1994
+ Only exception is when the pipelines are identical
1995
1995
 
1996
1996
  `));
1997
1997
  }
@@ -2759,12 +2759,12 @@ function countUsage(llmTools) {
2759
2759
  get title() {
2760
2760
  return `${llmTools.title} (+usage)`;
2761
2761
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2762
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2762
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2763
2763
  },
2764
2764
  get description() {
2765
2765
  return `${llmTools.description} (+usage)`;
2766
2766
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2767
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2767
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2768
2768
  },
2769
2769
  checkConfiguration() {
2770
2770
  return /* not await */ llmTools.checkConfiguration();
@@ -2991,13 +2991,13 @@ function joinLlmExecutionTools(...llmExecutionTools) {
2991
2991
 
2992
2992
  Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
2993
2993
  `);
2994
- // TODO: [🟥] Detect browser / node and make it colorfull
2994
+ // TODO: [🟥] Detect browser / node and make it colorful
2995
2995
  console.warn(warningMessage);
2996
2996
  // <- TODO: [🏮] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
2997
2997
  /*
2998
2998
  return {
2999
2999
  async listModels() {
3000
- // TODO: [🟥] Detect browser / node and make it colorfull
3000
+ // TODO: [🟥] Detect browser / node and make it colorful
3001
3001
  console.warn(
3002
3002
  spaceTrim(
3003
3003
  (block) => `
@@ -3273,17 +3273,17 @@ function $registeredScrapersMessage(availableScrapers) {
3273
3273
  * Mixes registered scrapers from $scrapersMetadataRegister and $scrapersRegister
3274
3274
  */
3275
3275
  const all = [];
3276
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersMetadataRegister.list()) {
3276
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersMetadataRegister.list()) {
3277
3277
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3278
3278
  continue;
3279
3279
  }
3280
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3280
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3281
3281
  }
3282
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersRegister.list()) {
3282
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersRegister.list()) {
3283
3283
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3284
3284
  continue;
3285
3285
  }
3286
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3286
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3287
3287
  }
3288
3288
  for (const { metadata } of availableScrapers) {
3289
3289
  all.push(metadata);
@@ -3295,8 +3295,8 @@ function $registeredScrapersMessage(availableScrapers) {
3295
3295
  const isInstalled = $scrapersRegister
3296
3296
  .list()
3297
3297
  .find(({ packageName, className }) => metadata.packageName === packageName && metadata.className === className);
3298
- const isAvilableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3299
- return { ...metadata, isMetadataAviailable, isInstalled, isAvilableInTools };
3298
+ const isAvailableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3299
+ return { ...metadata, isMetadataAviailable, isInstalled, isAvailableInTools };
3300
3300
  });
3301
3301
  if (metadata.length === 0) {
3302
3302
  return spaceTrim(`
@@ -3309,7 +3309,7 @@ function $registeredScrapersMessage(availableScrapers) {
3309
3309
  return spaceTrim((block) => `
3310
3310
  Available scrapers are:
3311
3311
  ${block(metadata
3312
- .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvilableInBrowser, isAvilableInTools, }, i) => {
3312
+ .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvailableInBrowser, isAvailableInTools, }, i) => {
3313
3313
  const more = [];
3314
3314
  // TODO: [🧠] Maybe use `documentationUrl`
3315
3315
  if (isMetadataAviailable) {
@@ -3318,16 +3318,16 @@ function $registeredScrapersMessage(availableScrapers) {
3318
3318
  if (isInstalled) {
3319
3319
  more.push(`🟩 Installed`);
3320
3320
  } // not else
3321
- if (isAvilableInTools) {
3321
+ if (isAvailableInTools) {
3322
3322
  more.push(`🟦 Available in tools`);
3323
3323
  } // not else
3324
3324
  if (!isMetadataAviailable && isInstalled) {
3325
3325
  more.push(`When no metadata registered but scraper is installed, it is an unexpected behavior`);
3326
3326
  } // not else
3327
- if (!isInstalled && isAvilableInTools) {
3327
+ if (!isInstalled && isAvailableInTools) {
3328
3328
  more.push(`When the scraper is not installed but available in tools, it is an unexpected compatibility behavior`);
3329
3329
  } // not else
3330
- if (!isAvilableInBrowser) {
3330
+ if (!isAvailableInBrowser) {
3331
3331
  more.push(`Not usable in browser`);
3332
3332
  }
3333
3333
  const moreText = more.length === 0 ? '' : ` *(${more.join('; ')})*`;
@@ -3667,7 +3667,7 @@ TODO: [🧊] This is how it can look in future
3667
3667
  /**
3668
3668
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
3669
3669
  * Put `knowledgePieces` into `PrepareKnowledgeOptions`
3670
- * TODO: [🪂] More than max things can run in parallel by acident [1,[2a,2b,_],[3a,3b,_]]
3670
+ * TODO: [🪂] More than max things can run in parallel by accident [1,[2a,2b,_],[3a,3b,_]]
3671
3671
  * TODO: [🧠][❎] Do here proper M:N mapping
3672
3672
  * [x] One source can make multiple pieces
3673
3673
  * [ ] One piece can have multiple sources
@@ -5339,10 +5339,10 @@ function knowledgePiecesToString(knowledgePieces) {
5339
5339
  */
5340
5340
  async function getKnowledgeForTask(options) {
5341
5341
  const { tools, preparedPipeline, task, parameters } = options;
5342
- const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5343
- const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5342
+ const firstKnowledgePiece = preparedPipeline.knowledgePieces[0];
5343
+ const firstKnowledgeIndex = firstKnowledgePiece === null || firstKnowledgePiece === void 0 ? void 0 : firstKnowledgePiece.index[0];
5344
5344
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5345
- if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5345
+ if (firstKnowledgePiece === undefined || firstKnowledgeIndex === undefined) {
5346
5346
  return ''; // <- Note: Np knowledge present, return empty string
5347
5347
  }
5348
5348
  try {
@@ -5353,7 +5353,7 @@ async function getKnowledgeForTask(options) {
5353
5353
  title: 'Knowledge Search',
5354
5354
  modelRequirements: {
5355
5355
  modelVariant: 'EMBEDDING',
5356
- modelName: firstKnowlegeIndex.modelName,
5356
+ modelName: firstKnowledgeIndex.modelName,
5357
5357
  },
5358
5358
  content: task.content,
5359
5359
  parameters,
@@ -5361,7 +5361,7 @@ async function getKnowledgeForTask(options) {
5361
5361
  const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5362
5362
  const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5363
5363
  const { index } = knowledgePiece;
5364
- const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5364
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowledgeIndex.modelName);
5365
5365
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5366
5366
  if (knowledgePieceIndex === undefined) {
5367
5367
  return {
@@ -5382,8 +5382,8 @@ async function getKnowledgeForTask(options) {
5382
5382
  task,
5383
5383
  taskEmbeddingPrompt,
5384
5384
  taskEmbeddingResult,
5385
- firstKnowlegePiece,
5386
- firstKnowlegeIndex,
5385
+ firstKnowledgePiece,
5386
+ firstKnowledgeIndex,
5387
5387
  knowledgePiecesWithRelevance,
5388
5388
  knowledgePiecesSorted,
5389
5389
  knowledgePiecesLimited,
@@ -5452,7 +5452,7 @@ async function getReservedParametersForTask(options) {
5452
5452
  * @private internal utility of `createPipelineExecutor`
5453
5453
  */
5454
5454
  async function executeTask(options) {
5455
- const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSupressed, } = options;
5455
+ const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSuppressed, } = options;
5456
5456
  const priority = preparedPipeline.tasks.length - preparedPipeline.tasks.indexOf(currentTask);
5457
5457
  // Note: Check consistency of used and dependent parameters which was also done in `validatePipeline`, but it’s good to doublecheck
5458
5458
  const usedParameterNames = extractParameterNamesFromTask(currentTask);
@@ -5540,7 +5540,7 @@ async function executeTask(options) {
5540
5540
  cacheDirname,
5541
5541
  intermediateFilesStrategy,
5542
5542
  isAutoInstalled,
5543
- isNotPreparedWarningSupressed,
5543
+ isNotPreparedWarningSuppressed,
5544
5544
  });
5545
5545
  await onProgress({
5546
5546
  outputParameters: {
@@ -5635,7 +5635,7 @@ async function executePipeline(options) {
5635
5635
  }
5636
5636
  return exportJson({
5637
5637
  name: `executionReport`,
5638
- message: `Unuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5638
+ message: `Unsuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5639
5639
  order: [],
5640
5640
  value: {
5641
5641
  isSuccessful: false,
@@ -5672,7 +5672,7 @@ async function executePipeline(options) {
5672
5672
  return exportJson({
5673
5673
  name: 'pipelineExecutorResult',
5674
5674
  message: spaceTrim$1((block) => `
5675
- Unuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5675
+ Unsuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5676
5676
 
5677
5677
  ${block(pipelineIdentification)}
5678
5678
  `),
@@ -5813,7 +5813,7 @@ async function executePipeline(options) {
5813
5813
  }
5814
5814
  return exportJson({
5815
5815
  name: 'pipelineExecutorResult',
5816
- message: `Unuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5816
+ message: `Unsuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5817
5817
  order: [],
5818
5818
  value: {
5819
5819
  isSuccessful: false,
@@ -5864,7 +5864,7 @@ async function executePipeline(options) {
5864
5864
  * @public exported from `@promptbook/core`
5865
5865
  */
5866
5866
  function createPipelineExecutor(options) {
5867
- const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSupressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
5867
+ const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSuppressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
5868
5868
  validatePipeline(pipeline);
5869
5869
  const pipelineIdentification = (() => {
5870
5870
  // Note: This is a 😐 implementation of [🚞]
@@ -5881,7 +5881,7 @@ function createPipelineExecutor(options) {
5881
5881
  if (isPipelinePrepared(pipeline)) {
5882
5882
  preparedPipeline = pipeline;
5883
5883
  }
5884
- else if (isNotPreparedWarningSupressed !== true) {
5884
+ else if (isNotPreparedWarningSuppressed !== true) {
5885
5885
  console.warn(spaceTrim$1((block) => `
5886
5886
  Pipeline is not prepared
5887
5887
 
@@ -5914,7 +5914,7 @@ function createPipelineExecutor(options) {
5914
5914
  maxParallelCount,
5915
5915
  csvSettings,
5916
5916
  isVerbose,
5917
- isNotPreparedWarningSupressed,
5917
+ isNotPreparedWarningSuppressed,
5918
5918
  rootDirname,
5919
5919
  cacheDirname,
5920
5920
  intermediateFilesStrategy,
@@ -5923,7 +5923,7 @@ function createPipelineExecutor(options) {
5923
5923
  assertsError(error);
5924
5924
  return exportJson({
5925
5925
  name: 'pipelineExecutorResult',
5926
- message: `Unuccessful PipelineExecutorResult, last catch`,
5926
+ message: `Unsuccessful PipelineExecutorResult, last catch`,
5927
5927
  order: [],
5928
5928
  value: {
5929
5929
  isSuccessful: false,
@@ -5961,7 +5961,7 @@ const markdownScraperMetadata = $deepFreeze({
5961
5961
  className: 'MarkdownScraper',
5962
5962
  mimeTypes: ['text/markdown', 'text/plain'],
5963
5963
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
5964
- isAvilableInBrowser: true,
5964
+ isAvailableInBrowser: true,
5965
5965
  // <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
5966
5966
  requiredExecutables: [],
5967
5967
  }); /* <- Note: [🤛] */
@@ -5971,7 +5971,7 @@ const markdownScraperMetadata = $deepFreeze({
5971
5971
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
5972
5972
  *
5973
5973
  * @public exported from `@promptbook/core`
5974
- * @public exported from `@promptbook/wizzard`
5974
+ * @public exported from `@promptbook/wizard`
5975
5975
  * @public exported from `@promptbook/cli`
5976
5976
  */
5977
5977
  $scrapersMetadataRegister.register(markdownScraperMetadata);
@@ -6070,7 +6070,7 @@ class MarkdownScraper {
6070
6070
  }
6071
6071
  // ---
6072
6072
  if (!llmTools.callEmbeddingModel) {
6073
- // TODO: [🟥] Detect browser / node and make it colorfull
6073
+ // TODO: [🟥] Detect browser / node and make it colorful
6074
6074
  console.error('No callEmbeddingModel function provided');
6075
6075
  }
6076
6076
  else {
@@ -6096,7 +6096,7 @@ class MarkdownScraper {
6096
6096
  if (!(error instanceof PipelineExecutionError)) {
6097
6097
  throw error;
6098
6098
  }
6099
- // TODO: [🟥] Detect browser / node and make it colorfull
6099
+ // TODO: [🟥] Detect browser / node and make it colorful
6100
6100
  console.error(error, "<- Note: This error is not critical to prepare the pipeline, just knowledge pieces won't have embeddings");
6101
6101
  }
6102
6102
  return {
@@ -6132,7 +6132,7 @@ const markitdownScraperMetadata = $deepFreeze({
6132
6132
  // 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
6133
6133
  ],
6134
6134
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6135
- isAvilableInBrowser: false,
6135
+ isAvailableInBrowser: false,
6136
6136
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6137
6137
  requiredExecutables: [],
6138
6138
  }); /* <- Note: [🤛] */
@@ -6142,7 +6142,7 @@ const markitdownScraperMetadata = $deepFreeze({
6142
6142
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6143
6143
  *
6144
6144
  * @public exported from `@promptbook/core`
6145
- * @public exported from `@promptbook/wizzard`
6145
+ * @public exported from `@promptbook/wizard`
6146
6146
  * @public exported from `@promptbook/cli`
6147
6147
  */
6148
6148
  $scrapersMetadataRegister.register(markitdownScraperMetadata);
@@ -6279,7 +6279,7 @@ const createMarkitdownScraper = Object.assign((tools, options) => {
6279
6279
  *
6280
6280
  * @public exported from `@promptbook/markitdown`
6281
6281
  * @public exported from `@promptbook/pdf`
6282
- * @public exported from `@promptbook/wizzard`
6282
+ * @public exported from `@promptbook/wizard`
6283
6283
  * @public exported from `@promptbook/cli`
6284
6284
  */
6285
6285
  const _MarkitdownScraperRegistration = $scrapersRegister.register(createMarkitdownScraper);