@promptbook/markdown-utils 0.89.0-9 โ†’ 0.92.0-10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/README.md +9 -7
  2. package/esm/index.es.js +594 -359
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/servers.d.ts +40 -0
  5. package/esm/typings/src/_packages/core.index.d.ts +14 -4
  6. package/esm/typings/src/_packages/deepseek.index.d.ts +2 -0
  7. package/esm/typings/src/_packages/google.index.d.ts +2 -0
  8. package/esm/typings/src/_packages/types.index.d.ts +18 -0
  9. package/esm/typings/src/_packages/utils.index.d.ts +6 -0
  10. package/esm/typings/src/cli/cli-commands/login.d.ts +0 -1
  11. package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +16 -3
  12. package/esm/typings/src/cli/test/ptbk.d.ts +1 -1
  13. package/esm/typings/src/commands/EXPECT/expectCommandParser.d.ts +2 -0
  14. package/esm/typings/src/config.d.ts +10 -19
  15. package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
  16. package/esm/typings/src/errors/0-index.d.ts +7 -4
  17. package/esm/typings/src/errors/PipelineExecutionError.d.ts +1 -1
  18. package/esm/typings/src/errors/WrappedError.d.ts +10 -0
  19. package/esm/typings/src/errors/assertsError.d.ts +11 -0
  20. package/esm/typings/src/execution/CommonToolsOptions.d.ts +4 -0
  21. package/esm/typings/src/execution/PromptbookFetch.d.ts +1 -1
  22. package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
  23. package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
  24. package/esm/typings/src/formats/csv/utils/csvParse.d.ts +12 -0
  25. package/esm/typings/src/formats/csv/utils/isValidCsvString.d.ts +9 -0
  26. package/esm/typings/src/formats/csv/utils/isValidCsvString.test.d.ts +1 -0
  27. package/esm/typings/src/formats/json/utils/isValidJsonString.d.ts +3 -0
  28. package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
  29. package/esm/typings/src/formats/xml/utils/isValidXmlString.d.ts +9 -0
  30. package/esm/typings/src/formats/xml/utils/isValidXmlString.test.d.ts +1 -0
  31. package/esm/typings/src/llm-providers/_common/filterModels.d.ts +15 -0
  32. package/esm/typings/src/llm-providers/_common/register/{$provideEnvFilepath.d.ts โ†’ $provideEnvFilename.d.ts} +2 -2
  33. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
  34. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
  35. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForWizzardOrCli.d.ts +11 -2
  36. package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
  37. package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
  38. package/esm/typings/src/llm-providers/azure-openai/AzureOpenAiExecutionTools.d.ts +4 -0
  39. package/esm/typings/src/llm-providers/deepseek/deepseek-models.d.ts +23 -0
  40. package/esm/typings/src/llm-providers/google/google-models.d.ts +23 -0
  41. package/esm/typings/src/llm-providers/openai/OpenAiExecutionTools.d.ts +4 -0
  42. package/esm/typings/src/personas/preparePersona.d.ts +1 -1
  43. package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +4 -2
  44. package/esm/typings/src/remote-server/openapi-types.d.ts +626 -0
  45. package/esm/typings/src/remote-server/openapi.d.ts +581 -0
  46. package/esm/typings/src/remote-server/socket-types/_subtypes/Identification.d.ts +7 -1
  47. package/esm/typings/src/remote-server/socket-types/_subtypes/identificationToPromptbookToken.d.ts +11 -0
  48. package/esm/typings/src/remote-server/socket-types/_subtypes/promptbookTokenToIdentification.d.ts +10 -0
  49. package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -2
  50. package/esm/typings/src/remote-server/types/RemoteServerOptions.d.ts +15 -9
  51. package/esm/typings/src/storage/env-storage/$EnvStorage.d.ts +40 -0
  52. package/esm/typings/src/types/typeAliases.d.ts +26 -0
  53. package/package.json +7 -3
  54. package/umd/index.umd.js +595 -360
  55. package/umd/index.umd.js.map +1 -1
  56. package/esm/typings/src/cli/test/ptbk2.d.ts +0 -5
package/esm/index.es.js CHANGED
@@ -25,7 +25,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
25
25
  * @generated
26
26
  * @see https://github.com/webgptorg/promptbook
27
27
  */
28
- const PROMPTBOOK_ENGINE_VERSION = '0.89.0-9';
28
+ const PROMPTBOOK_ENGINE_VERSION = '0.92.0-10';
29
29
  /**
30
30
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
31
31
  * Note: [๐Ÿ’ž] Ignore a discrepancy between file name and entity name
@@ -172,9 +172,302 @@ function extractBlock(markdown) {
172
172
  return content;
173
173
  }
174
174
 
175
+ /**
176
+ * Returns the same value that is passed as argument.
177
+ * No side effects.
178
+ *
179
+ * Note: It can be usefull for:
180
+ *
181
+ * 1) Leveling indentation
182
+ * 2) Putting always-true or always-false conditions without getting eslint errors
183
+ *
184
+ * @param value any values
185
+ * @returns the same values
186
+ * @private within the repository
187
+ */
188
+ function just(value) {
189
+ if (value === undefined) {
190
+ return undefined;
191
+ }
192
+ return value;
193
+ }
194
+
195
+ /**
196
+ * Warning message for the generated sections and files files
197
+ *
198
+ * @private within the repository
199
+ */
200
+ const GENERATOR_WARNING = `โš ๏ธ WARNING: This code has been generated so that any manual changes will be overwritten`;
201
+ /**
202
+ * Name for the Promptbook
203
+ *
204
+ * TODO: [๐Ÿ—ฝ] Unite branding and make single place for it
205
+ *
206
+ * @public exported from `@promptbook/core`
207
+ */
208
+ const NAME = `Promptbook`;
209
+ /**
210
+ * Email of the responsible person
211
+ *
212
+ * @public exported from `@promptbook/core`
213
+ */
214
+ const ADMIN_EMAIL = 'pavol@ptbk.io';
215
+ /**
216
+ * Name of the responsible person for the Promptbook on GitHub
217
+ *
218
+ * @public exported from `@promptbook/core`
219
+ */
220
+ const ADMIN_GITHUB_NAME = 'hejny';
221
+ // <- TODO: [๐ŸŠ] Pick the best claim
222
+ /**
223
+ * When the title is not provided, the default title is used
224
+ *
225
+ * @public exported from `@promptbook/core`
226
+ */
227
+ const DEFAULT_BOOK_TITLE = `โœจ Untitled Book`;
228
+ /**
229
+ * Maximum file size limit
230
+ *
231
+ * @public exported from `@promptbook/core`
232
+ */
233
+ const DEFAULT_MAX_FILE_SIZE = 100 * 1024 * 1024; // 100MB
234
+ // <- TODO: [๐Ÿง ] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
235
+ /**
236
+ * The maximum number of iterations for a loops
237
+ *
238
+ * @private within the repository - too low-level in comparison with other `MAX_...`
239
+ */
240
+ const LOOP_LIMIT = 1000;
241
+ /**
242
+ * Strings to represent various values in the context of parameter values
243
+ *
244
+ * @public exported from `@promptbook/utils`
245
+ */
246
+ const VALUE_STRINGS = {
247
+ empty: '(nothing; empty string)',
248
+ null: '(no value; null)',
249
+ undefined: '(unknown value; undefined)',
250
+ nan: '(not a number; NaN)',
251
+ infinity: '(infinity; โˆž)',
252
+ negativeInfinity: '(negative infinity; -โˆž)',
253
+ unserializable: '(unserializable value)',
254
+ circular: '(circular JSON)',
255
+ };
256
+ /**
257
+ * Small number limit
258
+ *
259
+ * @public exported from `@promptbook/utils`
260
+ */
261
+ const SMALL_NUMBER = 0.001;
262
+ /**
263
+ * Short time interval to prevent race conditions in milliseconds
264
+ *
265
+ * @private within the repository - too low-level in comparison with other `MAX_...`
266
+ */
267
+ const IMMEDIATE_TIME = 10;
268
+ /**
269
+ * The maximum length of the (generated) filename
270
+ *
271
+ * @public exported from `@promptbook/core`
272
+ */
273
+ const MAX_FILENAME_LENGTH = 30;
274
+ /**
275
+ * Strategy for caching the intermediate results for knowledge sources
276
+ *
277
+ * @public exported from `@promptbook/core`
278
+ */
279
+ const DEFAULT_INTERMEDIATE_FILES_STRATEGY = 'HIDE_AND_KEEP';
280
+ // <- TODO: [๐Ÿ˜ก] Change to 'VISIBLE'
281
+ /**
282
+ * The maximum number of (LLM) tasks running in parallel
283
+ *
284
+ * @public exported from `@promptbook/core`
285
+ */
286
+ const DEFAULT_MAX_PARALLEL_COUNT = 5; // <- TODO: [๐Ÿคนโ€โ™‚๏ธ]
287
+ /**
288
+ * The maximum number of attempts to execute LLM task before giving up
289
+ *
290
+ * @public exported from `@promptbook/core`
291
+ */
292
+ const DEFAULT_MAX_EXECUTION_ATTEMPTS = 10; // <- TODO: [๐Ÿคนโ€โ™‚๏ธ]
293
+ // <- TODO: [๐Ÿ•] Make also `BOOKS_DIRNAME_ALTERNATIVES`
294
+ // TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
295
+ /**
296
+ * Where to store the temporary downloads
297
+ *
298
+ * Note: When the folder does not exist, it is created recursively
299
+ *
300
+ * @public exported from `@promptbook/core`
301
+ */
302
+ const DEFAULT_DOWNLOAD_CACHE_DIRNAME = './.promptbook/download-cache';
303
+ /**
304
+ * Where to store the scrape cache
305
+ *
306
+ * Note: When the folder does not exist, it is created recursively
307
+ *
308
+ * @public exported from `@promptbook/core`
309
+ */
310
+ const DEFAULT_SCRAPE_CACHE_DIRNAME = './.promptbook/scrape-cache';
311
+ // <- TODO: [๐Ÿงœโ€โ™‚๏ธ]
312
+ /**
313
+ * @@@
314
+ *
315
+ * @public exported from `@promptbook/core`
316
+ */
317
+ const DEFAULT_CSV_SETTINGS = Object.freeze({
318
+ delimiter: ',',
319
+ quoteChar: '"',
320
+ newline: '\n',
321
+ skipEmptyLines: true,
322
+ });
323
+ /**
324
+ * @@@
325
+ *
326
+ * @public exported from `@promptbook/core`
327
+ */
328
+ let DEFAULT_IS_VERBOSE = false;
329
+ /**
330
+ * @@@
331
+ *
332
+ * @public exported from `@promptbook/core`
333
+ */
334
+ const DEFAULT_IS_AUTO_INSTALLED = false;
335
+ /**
336
+ * @@@
337
+ *
338
+ * @private within the repository
339
+ */
340
+ const IS_PIPELINE_LOGIC_VALIDATED = just(
341
+ /**/
342
+ // Note: In normal situations, we check the pipeline logic:
343
+ true);
344
+ /**
345
+ * Note: [๐Ÿ’ž] Ignore a discrepancy between file name and entity name
346
+ * TODO: [๐Ÿง ][๐Ÿงœโ€โ™‚๏ธ] Maybe join remoteServerUrl and path into single value
347
+ */
348
+
349
+ /**
350
+ * Make error report URL for the given error
351
+ *
352
+ * @private private within the repository
353
+ */
354
+ function getErrorReportUrl(error) {
355
+ const report = {
356
+ title: `๐Ÿœ Error report from ${NAME}`,
357
+ body: spaceTrim((block) => `
358
+
359
+
360
+ \`${error.name || 'Error'}\` has occurred in the [${NAME}], please look into it @${ADMIN_GITHUB_NAME}.
361
+
362
+ \`\`\`
363
+ ${block(error.message || '(no error message)')}
364
+ \`\`\`
365
+
366
+
367
+ ## More info:
368
+
369
+ - **Promptbook engine version:** ${PROMPTBOOK_ENGINE_VERSION}
370
+ - **Book language version:** ${BOOK_LANGUAGE_VERSION}
371
+ - **Time:** ${new Date().toISOString()}
372
+
373
+ <details>
374
+ <summary>Stack trace:</summary>
375
+
376
+ ## Stack trace:
377
+
378
+ \`\`\`stacktrace
379
+ ${block(error.stack || '(empty)')}
380
+ \`\`\`
381
+ </details>
382
+
383
+ `),
384
+ };
385
+ const reportUrl = new URL(`https://github.com/webgptorg/promptbook/issues/new`);
386
+ reportUrl.searchParams.set('labels', 'bug');
387
+ reportUrl.searchParams.set('assignees', ADMIN_GITHUB_NAME);
388
+ reportUrl.searchParams.set('title', report.title);
389
+ reportUrl.searchParams.set('body', report.body);
390
+ return reportUrl;
391
+ }
392
+
393
+ /**
394
+ * This error type indicates that the error should not happen and its last check before crashing with some other error
395
+ *
396
+ * @public exported from `@promptbook/core`
397
+ */
398
+ class UnexpectedError extends Error {
399
+ constructor(message) {
400
+ super(spaceTrim$1((block) => `
401
+ ${block(message)}
402
+
403
+ Note: This error should not happen.
404
+ It's probbably a bug in the pipeline collection
405
+
406
+ Please report issue:
407
+ ${block(getErrorReportUrl(new Error(message)).href)}
408
+
409
+ Or contact us on ${ADMIN_EMAIL}
410
+
411
+ `));
412
+ this.name = 'UnexpectedError';
413
+ Object.setPrototypeOf(this, UnexpectedError.prototype);
414
+ }
415
+ }
416
+
417
+ /**
418
+ * This error type indicates that somewhere in the code non-Error object was thrown and it was wrapped into the `WrappedError`
419
+ *
420
+ * @public exported from `@promptbook/core`
421
+ */
422
+ class WrappedError extends Error {
423
+ constructor(whatWasThrown) {
424
+ const tag = `[๐Ÿคฎ]`;
425
+ console.error(tag, whatWasThrown);
426
+ super(spaceTrim$1(`
427
+ Non-Error object was thrown
428
+
429
+ Note: Look for ${tag} in the console for more details
430
+ Please report issue on ${ADMIN_EMAIL}
431
+ `));
432
+ this.name = 'WrappedError';
433
+ Object.setPrototypeOf(this, WrappedError.prototype);
434
+ }
435
+ }
436
+
437
+ /**
438
+ * Helper used in catch blocks to assert that the error is an instance of `Error`
439
+ *
440
+ * @param whatWasThrown Any object that was thrown
441
+ * @returns Nothing if the error is an instance of `Error`
442
+ * @throws `WrappedError` or `UnexpectedError` if the error is not standard
443
+ *
444
+ * @private within the repository
445
+ */
446
+ function assertsError(whatWasThrown) {
447
+ // Case 1: Handle error which was rethrown as `WrappedError`
448
+ if (whatWasThrown instanceof WrappedError) {
449
+ const wrappedError = whatWasThrown;
450
+ throw wrappedError;
451
+ }
452
+ // Case 2: Handle unexpected errors
453
+ if (whatWasThrown instanceof UnexpectedError) {
454
+ const unexpectedError = whatWasThrown;
455
+ throw unexpectedError;
456
+ }
457
+ // Case 3: Handle standard errors - keep them up to consumer
458
+ if (whatWasThrown instanceof Error) {
459
+ return;
460
+ }
461
+ // Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
462
+ throw new WrappedError(whatWasThrown);
463
+ }
464
+
175
465
  /**
176
466
  * Function isValidJsonString will tell you if the string is valid JSON or not
177
467
  *
468
+ * @param value The string to check
469
+ * @returns True if the string is a valid JSON string, false otherwise
470
+ *
178
471
  * @public exported from `@promptbook/utils`
179
472
  */
180
473
  function isValidJsonString(value /* <- [๐Ÿ‘จโ€โš–๏ธ] */) {
@@ -183,9 +476,7 @@ function isValidJsonString(value /* <- [๐Ÿ‘จโ€โš–๏ธ] */) {
183
476
  return true;
184
477
  }
185
478
  catch (error) {
186
- if (!(error instanceof Error)) {
187
- throw error;
188
- }
479
+ assertsError(error);
189
480
  if (error.message.includes('Unexpected token')) {
190
481
  return false;
191
482
  }
@@ -246,7 +537,7 @@ function extractJsonBlock(markdown) {
246
537
  function keepUnused(...valuesToKeep) {
247
538
  }
248
539
 
249
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
540
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [๐Ÿ†] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โœ Convert Knowledge-piece to title\" but \"โœ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
250
541
 
251
542
  /**
252
543
  * Checks if value is valid email
@@ -487,233 +778,61 @@ function pipelineJsonToString(pipelineJson) {
487
778
  if (postprocessing) {
488
779
  for (const postprocessingFunctionName of postprocessing) {
489
780
  commands.push(`POSTPROCESSING \`${postprocessingFunctionName}\``);
490
- }
491
- } /* not else */
492
- if (expectations) {
493
- for (const [unit, { min, max }] of Object.entries(expectations)) {
494
- if (min === max) {
495
- commands.push(`EXPECT EXACTLY ${min} ${capitalize(unit + (min > 1 ? 's' : ''))}`);
496
- }
497
- else {
498
- if (min !== undefined) {
499
- commands.push(`EXPECT MIN ${min} ${capitalize(unit + (min > 1 ? 's' : ''))}`);
500
- } /* not else */
501
- if (max !== undefined) {
502
- commands.push(`EXPECT MAX ${max} ${capitalize(unit + (max > 1 ? 's' : ''))}`);
503
- }
504
- }
505
- }
506
- } /* not else */
507
- if (format) {
508
- if (format === 'JSON') {
509
- // TODO: @deprecated remove
510
- commands.push(`FORMAT JSON`);
511
- }
512
- } /* not else */
513
- pipelineString += '\n\n';
514
- pipelineString += commands.map((command) => `- ${command}`).join('\n');
515
- pipelineString += '\n\n';
516
- pipelineString += '```' + contentLanguage;
517
- pipelineString += '\n';
518
- pipelineString += spaceTrim(content);
519
- // <- TODO: [main] !!3 Escape
520
- // <- TODO: [๐Ÿง ] Some clear strategy how to spaceTrim the blocks
521
- pipelineString += '\n';
522
- pipelineString += '```';
523
- pipelineString += '\n\n';
524
- pipelineString += `\`-> {${resultingParameterName}}\``; // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
525
- }
526
- return validatePipelineString(pipelineString);
527
- }
528
- /**
529
- * @private internal utility of `pipelineJsonToString`
530
- */
531
- function taskParameterJsonToString(taskParameterJson) {
532
- const { name, description } = taskParameterJson;
533
- let parameterString = `{${name}}`;
534
- if (description) {
535
- parameterString = `${parameterString} ${description}`;
536
- }
537
- return parameterString;
538
- }
539
- /**
540
- * TODO: [๐Ÿ›‹] Implement new features and commands into `pipelineJsonToString` + `taskParameterJsonToString` , use `stringifyCommand`
541
- * TODO: [๐Ÿง ] Is there a way to auto-detect missing features in pipelineJsonToString
542
- * TODO: [๐Ÿ›] Maybe make some markdown builder
543
- * TODO: [๐Ÿ›] Escape all
544
- * TODO: [๐Ÿง ] Should be in generated .book.md file GENERATOR_WARNING
545
- */
546
-
547
- /**
548
- * Returns the same value that is passed as argument.
549
- * No side effects.
550
- *
551
- * Note: It can be usefull for:
552
- *
553
- * 1) Leveling indentation
554
- * 2) Putting always-true or always-false conditions without getting eslint errors
555
- *
556
- * @param value any values
557
- * @returns the same values
558
- * @private within the repository
559
- */
560
- function just(value) {
561
- if (value === undefined) {
562
- return undefined;
563
- }
564
- return value;
565
- }
566
-
567
- /**
568
- * Warning message for the generated sections and files files
569
- *
570
- * @private within the repository
571
- */
572
- const GENERATOR_WARNING = `โš ๏ธ WARNING: This code has been generated so that any manual changes will be overwritten`;
573
- /**
574
- * Name for the Promptbook
575
- *
576
- * TODO: [๐Ÿ—ฝ] Unite branding and make single place for it
577
- *
578
- * @public exported from `@promptbook/core`
579
- */
580
- const NAME = `Promptbook`;
581
- /**
582
- * Email of the responsible person
583
- *
584
- * @public exported from `@promptbook/core`
585
- */
586
- const ADMIN_EMAIL = 'pavol@ptbk.io';
587
- /**
588
- * Name of the responsible person for the Promptbook on GitHub
589
- *
590
- * @public exported from `@promptbook/core`
591
- */
592
- const ADMIN_GITHUB_NAME = 'hejny';
593
- /**
594
- * When the title is not provided, the default title is used
595
- *
596
- * @public exported from `@promptbook/core`
597
- */
598
- const DEFAULT_BOOK_TITLE = `โœจ Untitled Book`;
599
- /**
600
- * Maximum file size limit
601
- *
602
- * @public exported from `@promptbook/core`
603
- */
604
- const DEFAULT_MAX_FILE_SIZE = 100 * 1024 * 1024; // 100MB
605
- // <- TODO: [๐Ÿง ] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
606
- /**
607
- * The maximum number of iterations for a loops
608
- *
609
- * @private within the repository - too low-level in comparison with other `MAX_...`
610
- */
611
- const LOOP_LIMIT = 1000;
612
- /**
613
- * Strings to represent various values in the context of parameter values
614
- *
615
- * @public exported from `@promptbook/utils`
616
- */
617
- const VALUE_STRINGS = {
618
- empty: '(nothing; empty string)',
619
- null: '(no value; null)',
620
- undefined: '(unknown value; undefined)',
621
- nan: '(not a number; NaN)',
622
- infinity: '(infinity; โˆž)',
623
- negativeInfinity: '(negative infinity; -โˆž)',
624
- unserializable: '(unserializable value)',
625
- };
626
- /**
627
- * Small number limit
628
- *
629
- * @public exported from `@promptbook/utils`
630
- */
631
- const SMALL_NUMBER = 0.001;
632
- /**
633
- * Short time interval to prevent race conditions in milliseconds
634
- *
635
- * @private within the repository - too low-level in comparison with other `MAX_...`
636
- */
637
- const IMMEDIATE_TIME = 10;
638
- /**
639
- * The maximum length of the (generated) filename
640
- *
641
- * @public exported from `@promptbook/core`
642
- */
643
- const MAX_FILENAME_LENGTH = 30;
644
- /**
645
- * Strategy for caching the intermediate results for knowledge sources
646
- *
647
- * @public exported from `@promptbook/core`
648
- */
649
- const DEFAULT_INTERMEDIATE_FILES_STRATEGY = 'HIDE_AND_KEEP';
650
- // <- TODO: [๐Ÿ˜ก] Change to 'VISIBLE'
651
- /**
652
- * The maximum number of (LLM) tasks running in parallel
653
- *
654
- * @public exported from `@promptbook/core`
655
- */
656
- const DEFAULT_MAX_PARALLEL_COUNT = 5; // <- TODO: [๐Ÿคนโ€โ™‚๏ธ]
657
- /**
658
- * The maximum number of attempts to execute LLM task before giving up
659
- *
660
- * @public exported from `@promptbook/core`
661
- */
662
- const DEFAULT_MAX_EXECUTION_ATTEMPTS = 10; // <- TODO: [๐Ÿคนโ€โ™‚๏ธ]
663
- // <- TODO: [๐Ÿ•] Make also `BOOKS_DIRNAME_ALTERNATIVES`
664
- // TODO: !!!!!! Just .promptbook dir, hardocode others
665
- /**
666
- * Where to store the temporary downloads
667
- *
668
- * Note: When the folder does not exist, it is created recursively
669
- *
670
- * @public exported from `@promptbook/core`
671
- */
672
- const DEFAULT_DOWNLOAD_CACHE_DIRNAME = './.promptbook/download-cache';
673
- /**
674
- * Where to store the scrape cache
675
- *
676
- * Note: When the folder does not exist, it is created recursively
677
- *
678
- * @public exported from `@promptbook/core`
679
- */
680
- const DEFAULT_SCRAPE_CACHE_DIRNAME = './.promptbook/scrape-cache';
681
- // <- TODO: [๐Ÿงœโ€โ™‚๏ธ]
682
- /**
683
- * @@@
684
- *
685
- * @public exported from `@promptbook/core`
686
- */
687
- const DEFAULT_CSV_SETTINGS = Object.freeze({
688
- delimiter: ',',
689
- quoteChar: '"',
690
- newline: '\n',
691
- skipEmptyLines: true,
692
- });
693
- /**
694
- * @@@
695
- *
696
- * @public exported from `@promptbook/core`
697
- */
698
- let DEFAULT_IS_VERBOSE = false;
699
- /**
700
- * @@@
701
- *
702
- * @public exported from `@promptbook/core`
703
- */
704
- const DEFAULT_IS_AUTO_INSTALLED = false;
781
+ }
782
+ } /* not else */
783
+ if (expectations) {
784
+ for (const [unit, { min, max }] of Object.entries(expectations)) {
785
+ if (min === max) {
786
+ commands.push(`EXPECT EXACTLY ${min} ${capitalize(unit + (min > 1 ? 's' : ''))}`);
787
+ }
788
+ else {
789
+ if (min !== undefined) {
790
+ commands.push(`EXPECT MIN ${min} ${capitalize(unit + (min > 1 ? 's' : ''))}`);
791
+ } /* not else */
792
+ if (max !== undefined) {
793
+ commands.push(`EXPECT MAX ${max} ${capitalize(unit + (max > 1 ? 's' : ''))}`);
794
+ }
795
+ }
796
+ }
797
+ } /* not else */
798
+ if (format) {
799
+ if (format === 'JSON') {
800
+ // TODO: @deprecated remove
801
+ commands.push(`FORMAT JSON`);
802
+ }
803
+ } /* not else */
804
+ pipelineString += '\n\n';
805
+ pipelineString += commands.map((command) => `- ${command}`).join('\n');
806
+ pipelineString += '\n\n';
807
+ pipelineString += '```' + contentLanguage;
808
+ pipelineString += '\n';
809
+ pipelineString += spaceTrim(content);
810
+ // <- TODO: [main] !!3 Escape
811
+ // <- TODO: [๐Ÿง ] Some clear strategy how to spaceTrim the blocks
812
+ pipelineString += '\n';
813
+ pipelineString += '```';
814
+ pipelineString += '\n\n';
815
+ pipelineString += `\`-> {${resultingParameterName}}\``; // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
816
+ }
817
+ return validatePipelineString(pipelineString);
818
+ }
705
819
  /**
706
- * @@@
707
- *
708
- * @private within the repository
820
+ * @private internal utility of `pipelineJsonToString`
709
821
  */
710
- const IS_PIPELINE_LOGIC_VALIDATED = just(
711
- /**/
712
- // Note: In normal situations, we check the pipeline logic:
713
- true);
822
+ function taskParameterJsonToString(taskParameterJson) {
823
+ const { name, description } = taskParameterJson;
824
+ let parameterString = `{${name}}`;
825
+ if (description) {
826
+ parameterString = `${parameterString} ${description}`;
827
+ }
828
+ return parameterString;
829
+ }
714
830
  /**
715
- * Note: [๐Ÿ’ž] Ignore a discrepancy between file name and entity name
716
- * TODO: [๐Ÿง ][๐Ÿงœโ€โ™‚๏ธ] Maybe join remoteServerUrl and path into single value
831
+ * TODO: [๐Ÿ›‹] Implement new features and commands into `pipelineJsonToString` + `taskParameterJsonToString` , use `stringifyCommand`
832
+ * TODO: [๐Ÿง ] Is there a way to auto-detect missing features in pipelineJsonToString
833
+ * TODO: [๐Ÿ›] Maybe make some markdown builder
834
+ * TODO: [๐Ÿ›] Escape all
835
+ * TODO: [๐Ÿง ] Should be in generated .book.md file GENERATOR_WARNING
717
836
  */
718
837
 
719
838
  /**
@@ -758,74 +877,6 @@ function $deepFreeze(objectValue) {
758
877
  * TODO: [๐Ÿง ] Is there a way how to meaningfully test this utility
759
878
  */
760
879
 
761
- /**
762
- * Make error report URL for the given error
763
- *
764
- * @private private within the repository
765
- */
766
- function getErrorReportUrl(error) {
767
- const report = {
768
- title: `๐Ÿœ Error report from ${NAME}`,
769
- body: spaceTrim((block) => `
770
-
771
-
772
- \`${error.name || 'Error'}\` has occurred in the [${NAME}], please look into it @${ADMIN_GITHUB_NAME}.
773
-
774
- \`\`\`
775
- ${block(error.message || '(no error message)')}
776
- \`\`\`
777
-
778
-
779
- ## More info:
780
-
781
- - **Promptbook engine version:** ${PROMPTBOOK_ENGINE_VERSION}
782
- - **Book language version:** ${BOOK_LANGUAGE_VERSION}
783
- - **Time:** ${new Date().toISOString()}
784
-
785
- <details>
786
- <summary>Stack trace:</summary>
787
-
788
- ## Stack trace:
789
-
790
- \`\`\`stacktrace
791
- ${block(error.stack || '(empty)')}
792
- \`\`\`
793
- </details>
794
-
795
- `),
796
- };
797
- const reportUrl = new URL(`https://github.com/webgptorg/promptbook/issues/new`);
798
- reportUrl.searchParams.set('labels', 'bug');
799
- reportUrl.searchParams.set('assignees', ADMIN_GITHUB_NAME);
800
- reportUrl.searchParams.set('title', report.title);
801
- reportUrl.searchParams.set('body', report.body);
802
- return reportUrl;
803
- }
804
-
805
- /**
806
- * This error type indicates that the error should not happen and its last check before crashing with some other error
807
- *
808
- * @public exported from `@promptbook/core`
809
- */
810
- class UnexpectedError extends Error {
811
- constructor(message) {
812
- super(spaceTrim$1((block) => `
813
- ${block(message)}
814
-
815
- Note: This error should not happen.
816
- It's probbably a bug in the pipeline collection
817
-
818
- Please report issue:
819
- ${block(getErrorReportUrl(new Error(message)).href)}
820
-
821
- Or contact us on ${ADMIN_EMAIL}
822
-
823
- `));
824
- this.name = 'UnexpectedError';
825
- Object.setPrototypeOf(this, UnexpectedError.prototype);
826
- }
827
- }
828
-
829
880
  /**
830
881
  * Checks if the value is [๐Ÿš‰] serializable as JSON
831
882
  * If not, throws an UnexpectedError with a rich error message and tracking
@@ -917,9 +968,7 @@ function checkSerializableAsJson(options) {
917
968
  JSON.stringify(value); // <- TODO: [0]
918
969
  }
919
970
  catch (error) {
920
- if (!(error instanceof Error)) {
921
- throw error;
922
- }
971
+ assertsError(error);
923
972
  throw new UnexpectedError(spaceTrim((block) => `
924
973
  \`${name}\` is not serializable
925
974
 
@@ -1514,7 +1563,7 @@ function extractParameterNames(template) {
1514
1563
  */
1515
1564
  function unpreparePipeline(pipeline) {
1516
1565
  let { personas, knowledgeSources, tasks } = pipeline;
1517
- personas = personas.map((persona) => ({ ...persona, modelRequirements: undefined, preparationIds: undefined }));
1566
+ personas = personas.map((persona) => ({ ...persona, modelsRequirements: undefined, preparationIds: undefined }));
1518
1567
  knowledgeSources = knowledgeSources.map((knowledgeSource) => ({ ...knowledgeSource, preparationIds: undefined }));
1519
1568
  tasks = tasks.map((task) => {
1520
1569
  let { dependentParameterNames } = task;
@@ -1708,7 +1757,7 @@ class PipelineExecutionError extends Error {
1708
1757
  }
1709
1758
  }
1710
1759
  /**
1711
- * TODO: !!!!!! Add id to all errors
1760
+ * TODO: [๐Ÿง ][๐ŸŒ‚] Add id to all errors
1712
1761
  */
1713
1762
 
1714
1763
  /**
@@ -1724,7 +1773,7 @@ function isPipelinePrepared(pipeline) {
1724
1773
  if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
1725
1774
  return false;
1726
1775
  }
1727
- if (!pipeline.personas.every((persona) => persona.modelRequirements !== undefined)) {
1776
+ if (!pipeline.personas.every((persona) => persona.modelsRequirements !== undefined)) {
1728
1777
  return false;
1729
1778
  }
1730
1779
  if (!pipeline.knowledgeSources.every((knowledgeSource) => knowledgeSource.preparationIds !== undefined)) {
@@ -1748,6 +1797,45 @@ function isPipelinePrepared(pipeline) {
1748
1797
  * - [โ™จ] Are tasks prepared
1749
1798
  */
1750
1799
 
1800
+ /**
1801
+ * Converts a JavaScript Object Notation (JSON) string into an object.
1802
+ *
1803
+ * Note: This is wrapper around `JSON.parse()` with better error and type handling
1804
+ *
1805
+ * @public exported from `@promptbook/utils`
1806
+ */
1807
+ function jsonParse(value) {
1808
+ if (value === undefined) {
1809
+ throw new Error(`Can not parse JSON from undefined value.`);
1810
+ }
1811
+ else if (typeof value !== 'string') {
1812
+ console.error('Can not parse JSON from non-string value.', { text: value });
1813
+ throw new Error(spaceTrim(`
1814
+ Can not parse JSON from non-string value.
1815
+
1816
+ The value type: ${typeof value}
1817
+ See more in console.
1818
+ `));
1819
+ }
1820
+ try {
1821
+ return JSON.parse(value);
1822
+ }
1823
+ catch (error) {
1824
+ if (!(error instanceof Error)) {
1825
+ throw error;
1826
+ }
1827
+ throw new Error(spaceTrim((block) => `
1828
+ ${block(error.message)}
1829
+
1830
+ The JSON text:
1831
+ ${block(value)}
1832
+ `));
1833
+ }
1834
+ }
1835
+ /**
1836
+ * TODO: !!!! Use in Promptbook.studio
1837
+ */
1838
+
1751
1839
  /**
1752
1840
  * Recursively converts JSON strings to JSON objects
1753
1841
 
@@ -1766,7 +1854,7 @@ function jsonStringsToJsons(object) {
1766
1854
  const newObject = { ...object };
1767
1855
  for (const [key, value] of Object.entries(object)) {
1768
1856
  if (typeof value === 'string' && isValidJsonString(value)) {
1769
- newObject[key] = JSON.parse(value);
1857
+ newObject[key] = jsonParse(value);
1770
1858
  }
1771
1859
  else {
1772
1860
  newObject[key] = jsonStringsToJsons(value);
@@ -1945,7 +2033,10 @@ const PROMPTBOOK_ERRORS = {
1945
2033
  PipelineExecutionError,
1946
2034
  PipelineLogicError,
1947
2035
  PipelineUrlError,
2036
+ AuthenticationError,
2037
+ PromptbookFetchError,
1948
2038
  UnexpectedError,
2039
+ WrappedError,
1949
2040
  // TODO: [๐Ÿช‘]> VersionMismatchError,
1950
2041
  };
1951
2042
  /**
@@ -1962,8 +2053,6 @@ const COMMON_JAVASCRIPT_ERRORS = {
1962
2053
  TypeError,
1963
2054
  URIError,
1964
2055
  AggregateError,
1965
- AuthenticationError,
1966
- PromptbookFetchError,
1967
2056
  /*
1968
2057
  Note: Not widely supported
1969
2058
  > InternalError,
@@ -2086,8 +2175,8 @@ function createTask(options) {
2086
2175
  updatedAt = new Date();
2087
2176
  errors.push(...executionResult.errors);
2088
2177
  warnings.push(...executionResult.warnings);
2089
- // <- TODO: !!! Only unique errors and warnings should be added (or filtered)
2090
- // TODO: [๐Ÿง ] !!! errors, warning, isSuccessful are redundant both in `ExecutionTask` and `ExecutionTask.currentValue`
2178
+ // <- TODO: [๐ŸŒ‚] Only unique errors and warnings should be added (or filtered)
2179
+ // TODO: [๐Ÿง ] !! errors, warning, isSuccessful are redundant both in `ExecutionTask` and `ExecutionTask.currentValue`
2091
2180
  // Also maybe move `ExecutionTask.currentValue.usage` -> `ExecutionTask.usage`
2092
2181
  // And delete `ExecutionTask.currentValue.preparedPipeline`
2093
2182
  assertsTaskSuccessful(executionResult);
@@ -2097,6 +2186,7 @@ function createTask(options) {
2097
2186
  partialResultSubject.next(executionResult);
2098
2187
  }
2099
2188
  catch (error) {
2189
+ assertsError(error);
2100
2190
  status = 'ERROR';
2101
2191
  errors.push(error);
2102
2192
  partialResultSubject.error(error);
@@ -2488,14 +2578,15 @@ class MultipleLlmExecutionTools {
2488
2578
  }
2489
2579
  }
2490
2580
  catch (error) {
2491
- if (!(error instanceof Error) || error instanceof UnexpectedError) {
2581
+ assertsError(error);
2582
+ if (error instanceof UnexpectedError) {
2492
2583
  throw error;
2493
2584
  }
2494
2585
  errors.push({ llmExecutionTools, error });
2495
2586
  }
2496
2587
  }
2497
2588
  if (errors.length === 1) {
2498
- throw errors[0];
2589
+ throw errors[0].error;
2499
2590
  }
2500
2591
  else if (errors.length > 1) {
2501
2592
  throw new PipelineExecutionError(
@@ -2621,27 +2712,48 @@ async function preparePersona(personaDescription, tools, options) {
2621
2712
  pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
2622
2713
  tools,
2623
2714
  });
2624
- // TODO: [๐Ÿš] Make arrayable LLMs -> single LLM DRY
2625
2715
  const _llms = arrayableToArray(tools.llm);
2626
2716
  const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
2627
- const availableModels = await llmTools.listModels();
2628
- const availableModelNames = availableModels
2717
+ const availableModels = (await llmTools.listModels())
2629
2718
  .filter(({ modelVariant }) => modelVariant === 'CHAT')
2630
- .map(({ modelName }) => modelName)
2631
- .join(',');
2632
- const result = await preparePersonaExecutor({ availableModelNames, personaDescription }).asPromise();
2719
+ .map(({ modelName, modelDescription }) => ({
2720
+ modelName,
2721
+ modelDescription,
2722
+ // <- Note: `modelTitle` and `modelVariant` is not relevant for this task
2723
+ }));
2724
+ const result = await preparePersonaExecutor({
2725
+ availableModels /* <- Note: Passing as JSON */,
2726
+ personaDescription,
2727
+ }).asPromise();
2633
2728
  const { outputParameters } = result;
2634
- const { modelRequirements: modelRequirementsRaw } = outputParameters;
2635
- const modelRequirements = JSON.parse(modelRequirementsRaw);
2729
+ const { modelsRequirements: modelsRequirementsJson } = outputParameters;
2730
+ let modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
2636
2731
  if (isVerbose) {
2637
- console.info(`PERSONA ${personaDescription}`, modelRequirements);
2732
+ console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
2638
2733
  }
2639
- const { modelName, systemMessage, temperature } = modelRequirements;
2640
- return {
2734
+ if (!Array.isArray(modelsRequirementsUnchecked)) {
2735
+ // <- TODO: Book should have syntax and system to enforce shape of JSON
2736
+ modelsRequirementsUnchecked = [modelsRequirementsUnchecked];
2737
+ /*
2738
+ throw new UnexpectedError(
2739
+ spaceTrim(
2740
+ (block) => `
2741
+ Invalid \`modelsRequirements\`:
2742
+
2743
+ \`\`\`json
2744
+ ${block(JSON.stringify(modelsRequirementsUnchecked, null, 4))}
2745
+ \`\`\`
2746
+ `,
2747
+ ),
2748
+ );
2749
+ */
2750
+ }
2751
+ const modelsRequirements = modelsRequirementsUnchecked.map((modelRequirements) => ({
2641
2752
  modelVariant: 'CHAT',
2642
- modelName,
2643
- systemMessage,
2644
- temperature,
2753
+ ...modelRequirements,
2754
+ }));
2755
+ return {
2756
+ modelsRequirements,
2645
2757
  };
2646
2758
  }
2647
2759
  /**
@@ -3336,9 +3448,7 @@ const promptbookFetch = async (urlOrRequest, init) => {
3336
3448
  return await fetch(urlOrRequest, init);
3337
3449
  }
3338
3450
  catch (error) {
3339
- if (!(error instanceof Error)) {
3340
- throw error;
3341
- }
3451
+ assertsError(error);
3342
3452
  let url;
3343
3453
  if (typeof urlOrRequest === 'string') {
3344
3454
  url = urlOrRequest;
@@ -3467,7 +3577,7 @@ async function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
3467
3577
  > },
3468
3578
  */
3469
3579
  async asJson() {
3470
- return JSON.parse(await tools.fs.readFile(filename, 'utf-8'));
3580
+ return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
3471
3581
  },
3472
3582
  async asText() {
3473
3583
  return await tools.fs.readFile(filename, 'utf-8');
@@ -3569,9 +3679,7 @@ async function prepareKnowledgePieces(knowledgeSources, tools, options) {
3569
3679
  knowledgePreparedUnflatten[index] = pieces;
3570
3680
  }
3571
3681
  catch (error) {
3572
- if (!(error instanceof Error)) {
3573
- throw error;
3574
- }
3682
+ assertsError(error);
3575
3683
  console.warn(error);
3576
3684
  // <- TODO: [๐Ÿฎ] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
3577
3685
  }
@@ -3727,14 +3835,14 @@ async function preparePipeline(pipeline, tools, options) {
3727
3835
  // TODO: [๐Ÿ–Œ][๐Ÿง ] Implement some `mapAsync` function
3728
3836
  const preparedPersonas = new Array(personas.length);
3729
3837
  await forEachAsync(personas, { maxParallelCount /* <- TODO: [๐Ÿช‚] When there are subtasks, this maximul limit can be broken */ }, async (persona, index) => {
3730
- const modelRequirements = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
3838
+ const { modelsRequirements } = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
3731
3839
  rootDirname,
3732
3840
  maxParallelCount /* <- TODO: [๐Ÿช‚] */,
3733
3841
  isVerbose,
3734
3842
  });
3735
3843
  const preparedPersona = {
3736
3844
  ...persona,
3737
- modelRequirements,
3845
+ modelsRequirements,
3738
3846
  preparationIds: [/* TODO: [๐ŸงŠ] -> */ currentPreparation.id],
3739
3847
  // <- TODO: [๐Ÿ™] Make some standard order of json properties
3740
3848
  };
@@ -3863,13 +3971,19 @@ function valueToString(value) {
3863
3971
  return value.toISOString();
3864
3972
  }
3865
3973
  else {
3866
- return JSON.stringify(value);
3974
+ try {
3975
+ return JSON.stringify(value);
3976
+ }
3977
+ catch (error) {
3978
+ if (error instanceof TypeError && error.message.includes('circular structure')) {
3979
+ return VALUE_STRINGS.circular;
3980
+ }
3981
+ throw error;
3982
+ }
3867
3983
  }
3868
3984
  }
3869
3985
  catch (error) {
3870
- if (!(error instanceof Error)) {
3871
- throw error;
3872
- }
3986
+ assertsError(error);
3873
3987
  console.error(error);
3874
3988
  return VALUE_STRINGS.unserializable;
3875
3989
  }
@@ -3926,9 +4040,7 @@ function extractVariablesFromJavascript(script) {
3926
4040
  }
3927
4041
  }
3928
4042
  catch (error) {
3929
- if (!(error instanceof Error)) {
3930
- throw error;
3931
- }
4043
+ assertsError(error);
3932
4044
  throw new ParseError(spaceTrim$1((block) => `
3933
4045
  Can not extract variables from the script
3934
4046
  ${block(error.stack || error.message)}
@@ -4047,6 +4159,46 @@ const MANDATORY_CSV_SETTINGS = Object.freeze({
4047
4159
  // encoding: 'utf-8',
4048
4160
  });
4049
4161
 
4162
+ /**
4163
+ * Function to check if a string is valid CSV
4164
+ *
4165
+ * @param value The string to check
4166
+ * @returns True if the string is a valid CSV string, false otherwise
4167
+ *
4168
+ * @public exported from `@promptbook/utils`
4169
+ */
4170
+ function isValidCsvString(value) {
4171
+ try {
4172
+ // A simple check for CSV format: at least one comma and no invalid characters
4173
+ if (value.includes(',') && /^[\w\s,"']+$/.test(value)) {
4174
+ return true;
4175
+ }
4176
+ return false;
4177
+ }
4178
+ catch (error) {
4179
+ assertsError(error);
4180
+ return false;
4181
+ }
4182
+ }
4183
+
4184
+ /**
4185
+ * Converts a CSV string into an object
4186
+ *
4187
+ * Note: This is wrapper around `papaparse.parse()` with better autohealing
4188
+ *
4189
+ * @private - for now until `@promptbook/csv` is released
4190
+ */
4191
+ function csvParse(value /* <- TODO: string_csv */, settings, schema /* <- TODO: Make CSV Schemas */) {
4192
+ settings = { ...settings, ...MANDATORY_CSV_SETTINGS };
4193
+ // Note: Autoheal invalid '\n' characters
4194
+ if (settings.newline && !settings.newline.includes('\r') && value.includes('\r')) {
4195
+ console.warn('CSV string contains carriage return characters, but in the CSV settings the `newline` setting does not include them. Autohealing the CSV string.');
4196
+ value = value.replace(/\r\n/g, '\n').replace(/\r/g, '\n');
4197
+ }
4198
+ const csv = parse(value, settings);
4199
+ return csv;
4200
+ }
4201
+
4050
4202
  /**
4051
4203
  * Definition for CSV spreadsheet
4052
4204
  *
@@ -4057,7 +4209,7 @@ const CsvFormatDefinition = {
4057
4209
  formatName: 'CSV',
4058
4210
  aliases: ['SPREADSHEET', 'TABLE'],
4059
4211
  isValid(value, settings, schema) {
4060
- return true;
4212
+ return isValidCsvString(value);
4061
4213
  },
4062
4214
  canBeValid(partialValue, settings, schema) {
4063
4215
  return true;
@@ -4069,8 +4221,7 @@ const CsvFormatDefinition = {
4069
4221
  {
4070
4222
  subvalueName: 'ROW',
4071
4223
  async mapValues(value, outputParameterName, settings, mapCallback) {
4072
- // TODO: [๐Ÿ‘จ๐Ÿพโ€๐Ÿคโ€๐Ÿ‘จ๐Ÿผ] DRY csv parsing
4073
- const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
4224
+ const csv = csvParse(value, settings);
4074
4225
  if (csv.errors.length !== 0) {
4075
4226
  throw new CsvFormatError(spaceTrim((block) => `
4076
4227
  CSV parsing error
@@ -4100,8 +4251,7 @@ const CsvFormatDefinition = {
4100
4251
  {
4101
4252
  subvalueName: 'CELL',
4102
4253
  async mapValues(value, outputParameterName, settings, mapCallback) {
4103
- // TODO: [๐Ÿ‘จ๐Ÿพโ€๐Ÿคโ€๐Ÿ‘จ๐Ÿผ] DRY csv parsing
4104
- const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
4254
+ const csv = csvParse(value, settings);
4105
4255
  if (csv.errors.length !== 0) {
4106
4256
  throw new CsvFormatError(spaceTrim((block) => `
4107
4257
  CSV parsing error
@@ -4211,6 +4361,30 @@ const TextFormatDefinition = {
4211
4361
  * TODO: [๐Ÿข] Allow to expect something inside each item of list and other formats
4212
4362
  */
4213
4363
 
4364
+ /**
4365
+ * Function to check if a string is valid XML
4366
+ *
4367
+ * @param value
4368
+ * @returns True if the string is a valid XML string, false otherwise
4369
+ *
4370
+ * @public exported from `@promptbook/utils`
4371
+ */
4372
+ function isValidXmlString(value) {
4373
+ try {
4374
+ const parser = new DOMParser();
4375
+ const parsedDocument = parser.parseFromString(value, 'application/xml');
4376
+ const parserError = parsedDocument.getElementsByTagName('parsererror');
4377
+ if (parserError.length > 0) {
4378
+ return false;
4379
+ }
4380
+ return true;
4381
+ }
4382
+ catch (error) {
4383
+ assertsError(error);
4384
+ return false;
4385
+ }
4386
+ }
4387
+
4214
4388
  /**
4215
4389
  * Definition for XML format
4216
4390
  *
@@ -4220,7 +4394,7 @@ const XmlFormatDefinition = {
4220
4394
  formatName: 'XML',
4221
4395
  mimeType: 'application/xml',
4222
4396
  isValid(value, settings, schema) {
4223
- return true;
4397
+ return isValidXmlString(value);
4224
4398
  },
4225
4399
  canBeValid(partialValue, settings, schema) {
4226
4400
  return true;
@@ -4691,9 +4865,7 @@ async function executeAttempts(options) {
4691
4865
  break scripts;
4692
4866
  }
4693
4867
  catch (error) {
4694
- if (!(error instanceof Error)) {
4695
- throw error;
4696
- }
4868
+ assertsError(error);
4697
4869
  if (error instanceof UnexpectedError) {
4698
4870
  throw error;
4699
4871
  }
@@ -4763,9 +4935,7 @@ async function executeAttempts(options) {
4763
4935
  break scripts;
4764
4936
  }
4765
4937
  catch (error) {
4766
- if (!(error instanceof Error)) {
4767
- throw error;
4768
- }
4938
+ assertsError(error);
4769
4939
  if (error instanceof UnexpectedError) {
4770
4940
  throw error;
4771
4941
  }
@@ -5008,13 +5178,79 @@ async function getExamplesForTask(task) {
5008
5178
  /**
5009
5179
  * @@@
5010
5180
  *
5181
+ * Here is the place where RAG (retrieval-augmented generation) happens
5182
+ *
5011
5183
  * @private internal utility of `createPipelineExecutor`
5012
5184
  */
5013
5185
  async function getKnowledgeForTask(options) {
5014
- const { preparedPipeline, task } = options;
5015
- return preparedPipeline.knowledgePieces.map(({ content }) => `- ${content}`).join('\n');
5186
+ const { tools, preparedPipeline, task } = options;
5187
+ const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5188
+ const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5189
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5190
+ if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5191
+ return 'No knowledge pieces found';
5192
+ }
5193
+ // TODO: [๐Ÿš] Make arrayable LLMs -> single LLM DRY
5194
+ const _llms = arrayableToArray(tools.llm);
5195
+ const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
5196
+ const taskEmbeddingPrompt = {
5197
+ title: 'Knowledge Search',
5198
+ modelRequirements: {
5199
+ modelVariant: 'EMBEDDING',
5200
+ modelName: firstKnowlegeIndex.modelName,
5201
+ },
5202
+ content: task.content,
5203
+ parameters: {
5204
+ /* !!!!!!!! */
5205
+ },
5206
+ };
5207
+ const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5208
+ const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5209
+ const { index } = knowledgePiece;
5210
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5211
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5212
+ if (knowledgePieceIndex === undefined) {
5213
+ return {
5214
+ content: knowledgePiece.content,
5215
+ relevance: 0,
5216
+ };
5217
+ }
5218
+ const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
5219
+ return {
5220
+ content: knowledgePiece.content,
5221
+ relevance,
5222
+ };
5223
+ });
5224
+ const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
5225
+ const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
5226
+ console.log('!!! Embedding', {
5227
+ task,
5228
+ taskEmbeddingPrompt,
5229
+ taskEmbeddingResult,
5230
+ firstKnowlegePiece,
5231
+ firstKnowlegeIndex,
5232
+ knowledgePiecesWithRelevance,
5233
+ knowledgePiecesSorted,
5234
+ knowledgePiecesLimited,
5235
+ });
5236
+ return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
5016
5237
  // <- TODO: [๐Ÿง ] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
5017
5238
  }
5239
+ // TODO: !!!!!! Annotate + to new file
5240
+ function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
5241
+ if (embeddingVector1.length !== embeddingVector2.length) {
5242
+ throw new TypeError('Embedding vectors must have the same length');
5243
+ }
5244
+ const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
5245
+ const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
5246
+ const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
5247
+ return 1 - dotProduct / (magnitude1 * magnitude2);
5248
+ }
5249
+ /**
5250
+ * TODO: !!!! Verify if this is working
5251
+ * TODO: [โ™จ] Implement Better - use keyword search
5252
+ * TODO: [โ™จ] Examples of values
5253
+ */
5018
5254
 
5019
5255
  /**
5020
5256
  * @@@
@@ -5022,9 +5258,9 @@ async function getKnowledgeForTask(options) {
5022
5258
  * @private internal utility of `createPipelineExecutor`
5023
5259
  */
5024
5260
  async function getReservedParametersForTask(options) {
5025
- const { preparedPipeline, task, pipelineIdentification } = options;
5261
+ const { tools, preparedPipeline, task, pipelineIdentification } = options;
5026
5262
  const context = await getContextForTask(); // <- [๐Ÿ]
5027
- const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
5263
+ const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
5028
5264
  const examples = await getExamplesForTask();
5029
5265
  const currentDate = new Date().toISOString(); // <- TODO: [๐Ÿง ][๐Ÿ’ฉ] Better
5030
5266
  const modelName = RESERVED_PARAMETER_MISSING_VALUE;
@@ -5086,6 +5322,7 @@ async function executeTask(options) {
5086
5322
  }
5087
5323
  const definedParameters = Object.freeze({
5088
5324
  ...(await getReservedParametersForTask({
5325
+ tools,
5089
5326
  preparedPipeline,
5090
5327
  task: currentTask,
5091
5328
  pipelineIdentification,
@@ -5386,9 +5623,7 @@ async function executePipeline(options) {
5386
5623
  await Promise.all(resolving);
5387
5624
  }
5388
5625
  catch (error /* <- Note: [3] */) {
5389
- if (!(error instanceof Error)) {
5390
- throw error;
5391
- }
5626
+ assertsError(error);
5392
5627
  // Note: No need to rethrow UnexpectedError
5393
5628
  // if (error instanceof UnexpectedError) {
5394
5629
  // Note: Count usage, [๐Ÿง ] Maybe put to separate function executionReportJsonToUsage + DRY [๐Ÿคนโ€โ™‚๏ธ]