@promptbook/markdown-utils 0.81.0-22 → 0.81.0-23
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +4 -20
- package/esm/index.es.js +52 -37
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +2 -0
- package/esm/typings/src/_packages/types.index.d.ts +2 -0
- package/esm/typings/src/cli/cli-commands/make.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/run.d.ts +2 -2
- package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +11 -0
- package/esm/typings/src/collection/constructors/createCollectionFromUrl.d.ts +1 -1
- package/esm/typings/src/commands/index.d.ts +1 -1
- package/esm/typings/src/config.d.ts +2 -2
- package/esm/typings/src/conversion/parsePipeline.d.ts +1 -1
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +3 -3
- package/esm/typings/src/conversion/validation/validatePipeline.d.ts +7 -7
- package/esm/typings/src/errors/utils/getErrorReportUrl.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/createAnthropicClaudeExecutionTools.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/playground/playground.d.ts +2 -2
- package/esm/typings/src/llm-providers/openai/playground/playground.d.ts +1 -1
- package/esm/typings/src/llm-providers/vercel/playground/playground.d.ts +1 -1
- package/esm/typings/src/other/templates/getBookTemplates.d.ts +1 -1
- package/esm/typings/src/personas/preparePersona.d.ts +4 -4
- package/esm/typings/src/pipeline/PipelineString.d.ts +0 -3
- package/esm/typings/src/pipeline/book-notation.d.ts +0 -1
- package/esm/typings/src/pipeline/isValidPipelineString.d.ts +3 -1
- package/esm/typings/src/pipeline/validatePipelineString.d.ts +14 -0
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +1 -1
- package/esm/typings/src/prepare/prepareTasks.d.ts +1 -1
- package/esm/typings/src/scripting/javascript/JavascriptEvalExecutionTools.test.d.ts +1 -1
- package/esm/typings/src/scripting/javascript/utils/preserve.d.ts +1 -1
- package/esm/typings/src/types/typeAliases.d.ts +8 -2
- package/esm/typings/src/utils/serialization/checkSerializableAsJson.d.ts +1 -1
- package/esm/typings/src/utils/serialization/isSerializableAsJson.d.ts +1 -1
- package/package.json +1 -1
- package/umd/index.umd.js +52 -37
- package/umd/index.umd.js.map +1 -1
package/umd/index.umd.js
CHANGED
|
@@ -24,7 +24,7 @@
|
|
|
24
24
|
* @generated
|
|
25
25
|
* @see https://github.com/webgptorg/promptbook
|
|
26
26
|
*/
|
|
27
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-
|
|
27
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-22';
|
|
28
28
|
/**
|
|
29
29
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
30
30
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -362,6 +362,26 @@
|
|
|
362
362
|
|
|
363
363
|
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the task:\n\n> {book}\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Title starts with emoticon",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the task:\n\n> {book}\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Title starts with emoticon\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
|
|
364
364
|
|
|
365
|
+
/**
|
|
366
|
+
* Function `validatePipelineString` will validate the if the string is a valid pipeline string
|
|
367
|
+
* It does not check if the string is fully logically correct, but if it is a string that can be a pipeline string or the string looks completely different.
|
|
368
|
+
*
|
|
369
|
+
* @param {string} pipelineString the candidate for a pipeline string
|
|
370
|
+
* @returns {PipelineString} the same string as input, but validated as valid
|
|
371
|
+
* @throws {ParseError} if the string is not a valid pipeline string
|
|
372
|
+
* @public exported from `@promptbook/core`
|
|
373
|
+
*/
|
|
374
|
+
function validatePipelineString(pipelineString) {
|
|
375
|
+
if (isValidJsonString(pipelineString)) {
|
|
376
|
+
throw new ParseError('Expected a book, but got a JSON string');
|
|
377
|
+
}
|
|
378
|
+
// <- TODO: Implement the validation + add tests when the pipeline logic considered as invalid
|
|
379
|
+
return pipelineString;
|
|
380
|
+
}
|
|
381
|
+
/**
|
|
382
|
+
* TODO: [🧠][🈴] Where is the best location for this file
|
|
383
|
+
*/
|
|
384
|
+
|
|
365
385
|
/**
|
|
366
386
|
* Prettify the html code
|
|
367
387
|
*
|
|
@@ -419,7 +439,7 @@
|
|
|
419
439
|
if (bookVersion !== "undefined") {
|
|
420
440
|
commands.push("BOOK VERSION ".concat(bookVersion));
|
|
421
441
|
}
|
|
422
|
-
// TODO: [main]
|
|
442
|
+
// TODO: [main] !!5 This increases size of the bundle and is probbably not necessary
|
|
423
443
|
pipelineString = prettifyMarkdown(pipelineString);
|
|
424
444
|
try {
|
|
425
445
|
for (var _g = __values(parameters.filter(function (_a) {
|
|
@@ -567,12 +587,12 @@
|
|
|
567
587
|
pipelineString += '```' + contentLanguage;
|
|
568
588
|
pipelineString += '\n';
|
|
569
589
|
pipelineString += spaceTrim__default["default"](content);
|
|
570
|
-
// <- TODO: [main]
|
|
590
|
+
// <- TODO: [main] !!3 Escape
|
|
571
591
|
// <- TODO: [🧠] Some clear strategy how to spaceTrim the blocks
|
|
572
592
|
pipelineString += '\n';
|
|
573
593
|
pipelineString += '```';
|
|
574
594
|
pipelineString += '\n\n';
|
|
575
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main]
|
|
595
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
|
|
576
596
|
}
|
|
577
597
|
}
|
|
578
598
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -582,7 +602,7 @@
|
|
|
582
602
|
}
|
|
583
603
|
finally { if (e_3) throw e_3.error; }
|
|
584
604
|
}
|
|
585
|
-
return pipelineString;
|
|
605
|
+
return validatePipelineString(pipelineString);
|
|
586
606
|
}
|
|
587
607
|
/**
|
|
588
608
|
* @private internal utility of `pipelineJsonToString`
|
|
@@ -806,7 +826,7 @@
|
|
|
806
826
|
/**
|
|
807
827
|
* Make error report URL for the given error
|
|
808
828
|
*
|
|
809
|
-
* @private
|
|
829
|
+
* @private private within the repository
|
|
810
830
|
*/
|
|
811
831
|
function getErrorReportUrl(error) {
|
|
812
832
|
var report = {
|
|
@@ -957,7 +977,7 @@
|
|
|
957
977
|
}
|
|
958
978
|
/**
|
|
959
979
|
* TODO: Can be return type more type-safe? like `asserts options.value is JsonValue`
|
|
960
|
-
* TODO: [🧠][main]
|
|
980
|
+
* TODO: [🧠][main] !!3 In-memory cache of same values to prevent multiple checks
|
|
961
981
|
* Note: [🐠] This is how `checkSerializableAsJson` + `isSerializableAsJson` together can just retun true/false or rich error message
|
|
962
982
|
*/
|
|
963
983
|
|
|
@@ -1134,7 +1154,7 @@
|
|
|
1134
1154
|
if ( /* version === '1.0.0' || */version === '2.0.0' || version === '3.0.0') {
|
|
1135
1155
|
return false;
|
|
1136
1156
|
}
|
|
1137
|
-
// <- TODO: [main]
|
|
1157
|
+
// <- TODO: [main] !!3 Check isValidPromptbookVersion against PROMPTBOOK_ENGINE_VERSIONS
|
|
1138
1158
|
return true;
|
|
1139
1159
|
}
|
|
1140
1160
|
|
|
@@ -1264,11 +1284,11 @@
|
|
|
1264
1284
|
*/
|
|
1265
1285
|
function validatePipeline(pipeline) {
|
|
1266
1286
|
if (IS_PIPELINE_LOGIC_VALIDATED) {
|
|
1267
|
-
|
|
1287
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1268
1288
|
}
|
|
1269
1289
|
else {
|
|
1270
1290
|
try {
|
|
1271
|
-
|
|
1291
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1272
1292
|
}
|
|
1273
1293
|
catch (error) {
|
|
1274
1294
|
if (!(error instanceof PipelineLogicError)) {
|
|
@@ -1282,7 +1302,7 @@
|
|
|
1282
1302
|
/**
|
|
1283
1303
|
* @private internal function for `validatePipeline`
|
|
1284
1304
|
*/
|
|
1285
|
-
function
|
|
1305
|
+
function validatePipeline_InnerFunction(pipeline) {
|
|
1286
1306
|
// TODO: [🧠] Maybe test if promptbook is a promise and make specific error case for that
|
|
1287
1307
|
var e_1, _a, e_2, _b, e_3, _c;
|
|
1288
1308
|
var pipelineIdentification = (function () {
|
|
@@ -1506,11 +1526,11 @@
|
|
|
1506
1526
|
_loop_3();
|
|
1507
1527
|
}
|
|
1508
1528
|
// Note: Check that formfactor is corresponding to the pipeline interface
|
|
1509
|
-
// TODO:
|
|
1529
|
+
// TODO: !!6 Implement this
|
|
1510
1530
|
// pipeline.formfactorName
|
|
1511
1531
|
}
|
|
1512
1532
|
/**
|
|
1513
|
-
* TODO:
|
|
1533
|
+
* TODO: [🧞♀️] Do not allow joker + foreach
|
|
1514
1534
|
* TODO: [🧠] Work with promptbookVersion
|
|
1515
1535
|
* TODO: Use here some json-schema, Zod or something similar and change it to:
|
|
1516
1536
|
* > /**
|
|
@@ -1522,11 +1542,11 @@
|
|
|
1522
1542
|
* > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
|
|
1523
1543
|
*/
|
|
1524
1544
|
/**
|
|
1525
|
-
* TODO: [🧳][main]
|
|
1526
|
-
* TODO: [🧳][🐝][main]
|
|
1527
|
-
* TODO: [🧳][main]
|
|
1528
|
-
* TODO: [🧳][main]
|
|
1529
|
-
* TODO: [🧳][main]
|
|
1545
|
+
* TODO: [🧳][main] !!4 Validate that all examples match expectations
|
|
1546
|
+
* TODO: [🧳][🐝][main] !!4 Validate that knowledge is valid (non-void)
|
|
1547
|
+
* TODO: [🧳][main] !!4 Validate that persona can be used only with CHAT variant
|
|
1548
|
+
* TODO: [🧳][main] !!4 Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
|
|
1549
|
+
* TODO: [🧳][main] !!4 Validate that reserved parameter is not used as joker
|
|
1530
1550
|
* TODO: [🧠] Validation not only logic itself but imports around - files and websites and rerefenced pipelines exists
|
|
1531
1551
|
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
1532
1552
|
*/
|
|
@@ -1662,7 +1682,7 @@
|
|
|
1662
1682
|
pipelineJsonToString(unpreparePipeline(pipeline)) !==
|
|
1663
1683
|
pipelineJsonToString(unpreparePipeline(this.collection.get(pipeline.pipelineUrl)))) {
|
|
1664
1684
|
var existing = this.collection.get(pipeline.pipelineUrl);
|
|
1665
|
-
throw new PipelineUrlError(spaceTrim.spaceTrim("\n Pipeline with URL
|
|
1685
|
+
throw new PipelineUrlError(spaceTrim.spaceTrim("\n Pipeline with URL ".concat(pipeline.pipelineUrl, " is already in the collection \uD83C\uDF4E\n\n Conflicting files:\n ").concat(existing.sourceFile || 'Unknown', "\n ").concat(pipeline.sourceFile || 'Unknown', "\n\n Note: You have probably forgotten to run \"ptbk make\" to update the collection\n Note: Pipelines with the same URL are not allowed\n Only exepction is when the pipelines are identical\n\n ")));
|
|
1666
1686
|
}
|
|
1667
1687
|
// Note: [🧠] Overwrite existing pipeline with the same URL
|
|
1668
1688
|
this.collection.set(pipeline.pipelineUrl, pipeline);
|
|
@@ -2023,7 +2043,7 @@
|
|
|
2023
2043
|
return true;
|
|
2024
2044
|
}
|
|
2025
2045
|
/**
|
|
2026
|
-
* TODO: [🔃][main]
|
|
2046
|
+
* TODO: [🔃][main] If the pipeline was prepared with different version or different set of models, prepare it once again
|
|
2027
2047
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2028
2048
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2029
2049
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
@@ -2788,10 +2808,10 @@
|
|
|
2788
2808
|
});
|
|
2789
2809
|
}
|
|
2790
2810
|
/**
|
|
2791
|
-
* TODO: [🔃][main]
|
|
2792
|
-
* TODO: [🏢]
|
|
2793
|
-
* TODO: [🏢]
|
|
2794
|
-
* TODO: [🏢]
|
|
2811
|
+
* TODO: [🔃][main] If the persona was prepared with different version or different set of models, prepare it once again
|
|
2812
|
+
* TODO: [🏢] Check validity of `modelName` in pipeline
|
|
2813
|
+
* TODO: [🏢] Check validity of `systemMessage` in pipeline
|
|
2814
|
+
* TODO: [🏢] Check validity of `temperature` in pipeline
|
|
2795
2815
|
*/
|
|
2796
2816
|
|
|
2797
2817
|
/**
|
|
@@ -3875,7 +3895,7 @@
|
|
|
3875
3895
|
* TODO: [😂] Adding knowledge should be convert to async high-level abstractions, simmilar thing with expectations to sync high-level abstractions
|
|
3876
3896
|
* TODO: [🧠] Add context to each task (if missing)
|
|
3877
3897
|
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3878
|
-
* TODO: [♨][main]
|
|
3898
|
+
* TODO: [♨][main] !!3 Prepare index the examples and maybe tasks
|
|
3879
3899
|
* TODO: Write tests for `preparePipeline`
|
|
3880
3900
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
3881
3901
|
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
@@ -3938,17 +3958,10 @@
|
|
|
3938
3958
|
_d.tools = tools,
|
|
3939
3959
|
_d)]);
|
|
3940
3960
|
return [4 /*yield*/, prepareTitleExecutor({
|
|
3941
|
-
book: sources
|
|
3942
|
-
.map(function (_a) {
|
|
3961
|
+
book: sources.map(function (_a) {
|
|
3943
3962
|
var content = _a.content;
|
|
3944
3963
|
return content;
|
|
3945
|
-
})
|
|
3946
|
-
.join('\n\n')
|
|
3947
|
-
// TODO: !!!!!!! Parameters in parameters - DO NOT ALLOW, ESCAPE:
|
|
3948
|
-
.split('{')
|
|
3949
|
-
.join('[')
|
|
3950
|
-
.split('}')
|
|
3951
|
-
.join(']'),
|
|
3964
|
+
}).join('\n\n'),
|
|
3952
3965
|
})];
|
|
3953
3966
|
case 2:
|
|
3954
3967
|
result = _e.sent();
|
|
@@ -4616,6 +4629,8 @@
|
|
|
4616
4629
|
throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
|
|
4617
4630
|
}
|
|
4618
4631
|
parameterValue = valueToString(parameterValue);
|
|
4632
|
+
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4633
|
+
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4619
4634
|
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4620
4635
|
parameterValue = parameterValue
|
|
4621
4636
|
.split('\n')
|
|
@@ -4975,7 +4990,7 @@
|
|
|
4975
4990
|
promptTitle: task.title,
|
|
4976
4991
|
promptMessage: templateParameters(task.description || '', parameters),
|
|
4977
4992
|
defaultValue: templateParameters(preparedContent, parameters),
|
|
4978
|
-
// TODO: [🧠]
|
|
4993
|
+
// TODO: [🧠] Figure out how to define placeholder in .book.md file
|
|
4979
4994
|
placeholder: undefined,
|
|
4980
4995
|
priority: priority,
|
|
4981
4996
|
}))];
|
|
@@ -6060,12 +6075,12 @@
|
|
|
6060
6075
|
outputParameters = result.outputParameters;
|
|
6061
6076
|
knowledgePiecesRaw = outputParameters.knowledgePieces;
|
|
6062
6077
|
knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
|
|
6063
|
-
// <- TODO: [main]
|
|
6078
|
+
// <- TODO: [main] Smarter split and filter out empty pieces
|
|
6064
6079
|
if (isVerbose) {
|
|
6065
6080
|
console.info('knowledgeTextPieces:', knowledgeTextPieces);
|
|
6066
6081
|
}
|
|
6067
6082
|
return [4 /*yield*/, Promise.all(
|
|
6068
|
-
// TODO: [🪂]
|
|
6083
|
+
// TODO: [🪂] Do not send all at once but in chunks
|
|
6069
6084
|
knowledgeTextPieces.map(function (knowledgeTextPiece, i) { return __awaiter(_this, void 0, void 0, function () {
|
|
6070
6085
|
var name, title, knowledgePieceContent, keywords, index, titleResult, _a, titleRaw, keywordsResult, _b, keywordsRaw, embeddingResult, error_1;
|
|
6071
6086
|
return __generator(this, function (_c) {
|