@promptbook/markdown-utils 0.81.0-19 → 0.81.0-22

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. package/README.md +39 -3
  2. package/esm/index.es.js +63 -20
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/books/index.d.ts +38 -0
  5. package/esm/typings/src/_packages/core.index.d.ts +4 -4
  6. package/esm/typings/src/config.d.ts +1 -1
  7. package/esm/typings/src/conversion/compilePipeline.d.ts +1 -4
  8. package/esm/typings/src/conversion/{precompilePipeline.d.ts → parsePipeline.d.ts} +2 -2
  9. package/esm/typings/src/high-level-abstractions/_common/HighLevelAbstraction.d.ts +1 -1
  10. package/esm/typings/src/high-level-abstractions/index.d.ts +1 -1
  11. package/esm/typings/src/pipeline/book-notation.d.ts +2 -2
  12. package/esm/typings/src/prepare/isPipelinePrepared.d.ts +2 -0
  13. package/esm/typings/src/prepare/preparePipeline.d.ts +2 -0
  14. package/esm/typings/src/scrapers/_common/Converter.d.ts +1 -0
  15. package/esm/typings/src/scrapers/_common/Scraper.d.ts +1 -1
  16. package/esm/typings/src/scrapers/_common/ScraperIntermediateSource.d.ts +3 -0
  17. package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +2 -0
  18. package/esm/typings/src/scrapers/pdf/PdfScraper.d.ts +1 -0
  19. package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
  20. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +1 -1
  21. package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
  22. package/esm/typings/src/scrapers/website/register-metadata.d.ts +1 -1
  23. package/esm/typings/src/utils/markdown/flattenMarkdown.d.ts +1 -1
  24. package/esm/typings/src/utils/organization/$sideEffect.d.ts +9 -0
  25. package/esm/typings/src/wizzard/wizzard.d.ts +23 -11
  26. package/package.json +1 -1
  27. package/umd/index.umd.js +63 -20
  28. package/umd/index.umd.js.map +1 -1
  29. /package/esm/typings/src/conversion/{precompilePipeline.test.d.ts → parsePipeline.test.d.ts} +0 -0
package/umd/index.umd.js CHANGED
@@ -24,7 +24,7 @@
24
24
  * @generated
25
25
  * @see https://github.com/webgptorg/promptbook
26
26
  */
27
- var PROMPTBOOK_ENGINE_VERSION = '0.81.0-18';
27
+ var PROMPTBOOK_ENGINE_VERSION = '0.81.0-21';
28
28
  /**
29
29
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
30
30
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -360,7 +360,7 @@
360
360
  * TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
361
361
  */
362
362
 
363
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
363
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the task:\n\n> {book}\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Title starts with emoticon",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the task:\n\n> {book}\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Title starts with emoticon\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
364
364
 
365
365
  /**
366
366
  * Prettify the html code
@@ -654,7 +654,7 @@
654
654
  *
655
655
  * @public exported from `@promptbook/core`
656
656
  */
657
- var DEFAULT_TITLE = "Untitled";
657
+ var DEFAULT_BOOK_TITLE = "\u2728 Untitled Book";
658
658
  // <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
659
659
  /**
660
660
  * The maximum number of iterations for a loops
@@ -1998,11 +1998,16 @@
1998
1998
  /**
1999
1999
  * Determine if the pipeline is fully prepared
2000
2000
  *
2001
+ * @see https://github.com/webgptorg/promptbook/discussions/196
2002
+ *
2001
2003
  * @public exported from `@promptbook/core`
2002
2004
  */
2003
2005
  function isPipelinePrepared(pipeline) {
2004
2006
  // Note: Ignoring `pipeline.preparations` @@@
2005
2007
  // Note: Ignoring `pipeline.knowledgePieces` @@@
2008
+ if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
2009
+ return false;
2010
+ }
2006
2011
  if (!pipeline.personas.every(function (persona) { return persona.modelRequirements !== undefined; })) {
2007
2012
  return false;
2008
2013
  }
@@ -3741,7 +3746,7 @@
3741
3746
  partialPieces = __spreadArray([], __read(partialPiecesUnchecked), false);
3742
3747
  return [2 /*return*/, "break"];
3743
3748
  }
3744
- console.warn(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n \n The source:\n > ").concat(block(knowledgeSource.sourceContent
3749
+ console.warn(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n\n The source:\n ").concat(block(knowledgeSource.sourceContent
3745
3750
  .split('\n')
3746
3751
  .map(function (line) { return "> ".concat(line); })
3747
3752
  .join('\n')), "\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
@@ -3779,7 +3784,7 @@
3779
3784
  return [7 /*endfinally*/];
3780
3785
  case 9:
3781
3786
  if (partialPieces === null) {
3782
- throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge\n \n The source:\n > ".concat(block(knowledgeSource.sourceContent
3787
+ throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge\n\n The source:\n > ".concat(block(knowledgeSource.sourceContent
3783
3788
  .split('\n')
3784
3789
  .map(function (line) { return "> ".concat(line); })
3785
3790
  .join('\n')), "\n\n No scraper found for the mime type \"").concat(sourceHandler.mimeType, "\"\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
@@ -3880,6 +3885,8 @@
3880
3885
  /**
3881
3886
  * Prepare pipeline from string (markdown) format to JSON format
3882
3887
  *
3888
+ * @see https://github.com/webgptorg/promptbook/discussions/196
3889
+ *
3883
3890
  * Note: This function does not validate logic of the pipeline
3884
3891
  * Note: This function acts as part of compilation process
3885
3892
  * Note: When the pipeline is already prepared, it returns the same pipeline
@@ -3892,16 +3899,17 @@
3892
3899
  <- TODO: [🧠][🪑] `promptbookVersion` */
3893
3900
  knowledgeSources /*
3894
3901
  <- TODO: [🧊] `knowledgePieces` */, personas /*
3895
- <- TODO: [🧊] `preparations` */, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
3902
+ <- TODO: [🧊] `preparations` */, sources, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, title, collection, prepareTitleExecutor, _c, result, outputParameters, titleRaw, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
3903
+ var _d;
3896
3904
  var _this = this;
3897
- return __generator(this, function (_c) {
3898
- switch (_c.label) {
3905
+ return __generator(this, function (_e) {
3906
+ switch (_e.label) {
3899
3907
  case 0:
3900
3908
  if (isPipelinePrepared(pipeline)) {
3901
3909
  return [2 /*return*/, pipeline];
3902
3910
  }
3903
3911
  rootDirname = options.rootDirname, _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a, _b = options.isVerbose, isVerbose = _b === void 0 ? DEFAULT_IS_VERBOSE : _b;
3904
- parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
3912
+ parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas, sources = pipeline.sources;
3905
3913
  if (tools === undefined || tools.llm === undefined) {
3906
3914
  throw new MissingToolsError('LLM tools are required for preparing the pipeline');
3907
3915
  }
@@ -3919,6 +3927,40 @@
3919
3927
  // <- TODO: [🧊]
3920
3928
  currentPreparation,
3921
3929
  ];
3930
+ title = pipeline.title;
3931
+ if (!(title === undefined || title === '' || title === DEFAULT_BOOK_TITLE)) return [3 /*break*/, 3];
3932
+ collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
3933
+ _c = createPipelineExecutor;
3934
+ _d = {};
3935
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book.md')];
3936
+ case 1:
3937
+ prepareTitleExecutor = _c.apply(void 0, [(_d.pipeline = _e.sent(),
3938
+ _d.tools = tools,
3939
+ _d)]);
3940
+ return [4 /*yield*/, prepareTitleExecutor({
3941
+ book: sources
3942
+ .map(function (_a) {
3943
+ var content = _a.content;
3944
+ return content;
3945
+ })
3946
+ .join('\n\n')
3947
+ // TODO: !!!!!!! Parameters in parameters - DO NOT ALLOW, ESCAPE:
3948
+ .split('{')
3949
+ .join('[')
3950
+ .split('}')
3951
+ .join(']'),
3952
+ })];
3953
+ case 2:
3954
+ result = _e.sent();
3955
+ assertsExecutionSuccessful(result);
3956
+ outputParameters = result.outputParameters;
3957
+ titleRaw = outputParameters.title;
3958
+ if (isVerbose) {
3959
+ console.info("The title is \"".concat(titleRaw, "\""));
3960
+ }
3961
+ title = titleRaw || DEFAULT_BOOK_TITLE;
3962
+ _e.label = 3;
3963
+ case 3:
3922
3964
  preparedPersonas = new Array(personas.length);
3923
3965
  return [4 /*yield*/, forEachAsync(personas, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (persona, index) { return __awaiter(_this, void 0, void 0, function () {
3924
3966
  var modelRequirements, preparedPersona;
@@ -3937,12 +3979,12 @@
3937
3979
  }
3938
3980
  });
3939
3981
  }); })];
3940
- case 1:
3941
- _c.sent();
3982
+ case 4:
3983
+ _e.sent();
3942
3984
  knowledgeSourcesPrepared = knowledgeSources.map(function (source) { return (__assign(__assign({}, source), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
3943
3985
  return [4 /*yield*/, prepareKnowledgePieces(knowledgeSources /* <- TODO: [🧊] {knowledgeSources, knowledgePieces} */, __assign(__assign({}, tools), { llm: llmToolsWithUsage }), __assign(__assign({}, options), { rootDirname: rootDirname, maxParallelCount: maxParallelCount /* <- TODO: [🪂] */, isVerbose: isVerbose }))];
3944
- case 2:
3945
- partialknowledgePiecesPrepared = _c.sent();
3986
+ case 5:
3987
+ partialknowledgePiecesPrepared = _e.sent();
3946
3988
  knowledgePiecesPrepared = partialknowledgePiecesPrepared.map(function (piece) { return (__assign(__assign({}, piece), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
3947
3989
  return [4 /*yield*/, prepareTasks({
3948
3990
  parameters: parameters,
@@ -3953,8 +3995,8 @@
3953
3995
  maxParallelCount: maxParallelCount /* <- TODO: [🪂] */,
3954
3996
  isVerbose: isVerbose,
3955
3997
  })];
3956
- case 3:
3957
- tasksPrepared = (_c.sent()).tasksPrepared;
3998
+ case 6:
3999
+ tasksPrepared = (_e.sent()).tasksPrepared;
3958
4000
  // ----- /Tasks preparation -----
3959
4001
  // TODO: [😂] Use here all `AsyncHighLevelAbstraction`
3960
4002
  // Note: Count total usage
@@ -3965,7 +4007,7 @@
3965
4007
  order: ORDER_OF_PIPELINE_JSON,
3966
4008
  value: __assign(__assign({}, pipeline), {
3967
4009
  // <- TODO: Probbably deeply clone the pipeline because `$exportJson` freezes the subobjects
3968
- knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
4010
+ title: title, knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
3969
4011
  // <- TODO: [🪓] Here should be no need for spreading new array, just ` tasks: tasksPrepared`
3970
4012
  personas: preparedPersonas, preparations: __spreadArray([], __read(preparations), false) }),
3971
4013
  })];
@@ -5923,6 +5965,7 @@
5923
5965
  mimeTypes: ['text/markdown', 'text/plain'],
5924
5966
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
5925
5967
  isAvilableInBrowser: true,
5968
+ // <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
5926
5969
  requiredExecutables: [],
5927
5970
  }); /* <- Note: [🤛] */
5928
5971
  /**
@@ -6342,7 +6385,7 @@
6342
6385
  return;
6343
6386
  }
6344
6387
  if (!section.startsWith('#')) {
6345
- section = "# ".concat(DEFAULT_TITLE, "\n\n").concat(section);
6388
+ section = "# ".concat(DEFAULT_BOOK_TITLE, "\n\n").concat(section);
6346
6389
  }
6347
6390
  sections.push(section);
6348
6391
  buffer = [];
@@ -6397,7 +6440,7 @@
6397
6440
  /**
6398
6441
  * Normalizes the markdown by flattening the structure
6399
6442
  *
6400
- * - It always have h1 - if there is no h1 in the markdown, it will be added "# Untitled"
6443
+ * - It always have h1 - if there is no h1 in the markdown, it will be added `DEFAULT_BOOK_TITLE`
6401
6444
  * - All other headings are normalized to h2
6402
6445
  *
6403
6446
  * @public exported from `@promptbook/markdown-utils`
@@ -6406,7 +6449,7 @@
6406
6449
  var e_1, _a;
6407
6450
  var sections = splitMarkdownIntoSections(markdown);
6408
6451
  if (sections.length === 0) {
6409
- return "# ".concat(DEFAULT_TITLE);
6452
+ return "# ".concat(DEFAULT_BOOK_TITLE);
6410
6453
  }
6411
6454
  var flattenedMarkdown = '';
6412
6455
  var parsedSections = sections.map(parseMarkdownSection);
@@ -6417,7 +6460,7 @@
6417
6460
  }
6418
6461
  else {
6419
6462
  parsedSections.unshift(firstSection);
6420
- flattenedMarkdown += "# ".concat(DEFAULT_TITLE) + "\n\n"; // <- [🧠] Maybe 3 new lines?
6463
+ flattenedMarkdown += "# ".concat(DEFAULT_BOOK_TITLE) + "\n\n"; // <- [🧠] Maybe 3 new lines?
6421
6464
  }
6422
6465
  try {
6423
6466
  for (var parsedSections_1 = __values(parsedSections), parsedSections_1_1 = parsedSections_1.next(); !parsedSections_1_1.done; parsedSections_1_1 = parsedSections_1.next()) {