@promptbook/markdown-utils 0.80.0-1 → 0.81.0-11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. package/README.md +3 -0
  2. package/esm/index.es.js +149 -40
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/books/index.d.ts +15 -0
  5. package/esm/typings/src/_packages/core.index.d.ts +2 -6
  6. package/esm/typings/src/_packages/editable.index.d.ts +10 -0
  7. package/esm/typings/src/_packages/templates.index.d.ts +4 -0
  8. package/esm/typings/src/_packages/types.index.d.ts +6 -0
  9. package/esm/typings/src/_packages/utils.index.d.ts +10 -2
  10. package/esm/typings/src/_packages/wizzard.index.d.ts +44 -0
  11. package/esm/typings/src/config.d.ts +26 -0
  12. package/esm/typings/src/execution/ExecutionTools.d.ts +7 -0
  13. package/esm/typings/src/execution/PipelineExecutor.d.ts +2 -2
  14. package/esm/typings/src/execution/PromptbookFetch.d.ts +5 -0
  15. package/esm/typings/src/execution/PromptbookFetch.test-type.d.ts +5 -0
  16. package/esm/typings/src/execution/createPipelineExecutor/10-executePipeline.d.ts +2 -2
  17. package/esm/typings/src/expectations/drafts/isDomainNameFree.d.ts +2 -1
  18. package/esm/typings/src/expectations/drafts/isGithubNameFree.d.ts +2 -1
  19. package/esm/typings/src/high-level-abstractions/index.d.ts +10 -0
  20. package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForCli.d.ts → $provideLlmToolsForWizzardOrCli.d.ts} +2 -2
  21. package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -0
  22. package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +2 -0
  23. package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -0
  24. package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -0
  25. package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -0
  26. package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -0
  27. package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -0
  28. package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -0
  29. package/esm/typings/src/other/templates/getBookTemplate.d.ts +21 -0
  30. package/esm/typings/src/other/templates/getTemplatesPipelineCollection.d.ts +10 -0
  31. package/esm/typings/src/pipeline/PipelineJson/PipelineJson.d.ts +10 -0
  32. package/esm/typings/src/scrapers/_common/utils/makeKnowledgeSourceHandler.d.ts +1 -1
  33. package/esm/typings/src/scrapers/_common/utils/scraperFetch.d.ts +7 -0
  34. package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -0
  35. package/esm/typings/src/scrapers/document/register-metadata.d.ts +1 -0
  36. package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -0
  37. package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +1 -0
  38. package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -0
  39. package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +1 -0
  40. package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -0
  41. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +1 -0
  42. package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -0
  43. package/esm/typings/src/scrapers/website/register-metadata.d.ts +1 -0
  44. package/esm/typings/src/types/typeAliases.d.ts +8 -0
  45. package/esm/typings/src/utils/editable/types/PipelineEditableSerialized.d.ts +27 -0
  46. package/esm/typings/src/{conversion → utils/editable}/utils/removePipelineCommand.d.ts +3 -3
  47. package/esm/typings/src/{conversion → utils/editable}/utils/renamePipelineParameter.d.ts +3 -3
  48. package/esm/typings/src/{conversion → utils/editable}/utils/stringifyPipelineJson.d.ts +2 -2
  49. package/esm/typings/src/utils/parameters/numberToString.d.ts +7 -0
  50. package/esm/typings/src/utils/parameters/{replaceParameters.d.ts → templateParameters.d.ts} +6 -2
  51. package/esm/typings/src/utils/parameters/valueToString.d.ts +17 -0
  52. package/esm/typings/src/utils/parameters/valueToString.test.d.ts +1 -0
  53. package/esm/typings/src/utils/serialization/asSerializable.d.ts +4 -0
  54. package/esm/typings/src/version.d.ts +7 -0
  55. package/esm/typings/src/wizzard/wizzard.d.ts +51 -0
  56. package/package.json +1 -1
  57. package/umd/index.umd.js +149 -40
  58. package/umd/index.umd.js.map +1 -1
  59. package/esm/typings/src/utils/formatNumber.d.ts +0 -6
  60. /package/esm/typings/src/{conversion → utils/editable}/utils/removePipelineCommand.test.d.ts +0 -0
  61. /package/esm/typings/src/{conversion → utils/editable}/utils/renamePipelineParameter.test.d.ts +0 -0
  62. /package/esm/typings/src/{conversion → utils/editable}/utils/stringifyPipelineJson.test.d.ts +0 -0
  63. /package/esm/typings/src/utils/{formatNumber.test.d.ts → parameters/numberToString.test.d.ts} +0 -0
  64. /package/esm/typings/src/utils/parameters/{replaceParameters.test.d.ts → templateParameters.test.d.ts} +0 -0
package/README.md CHANGED
@@ -231,6 +231,7 @@ Or you can install them separately:
231
231
 
232
232
  - ⭐ **[ptbk](https://www.npmjs.com/package/ptbk)** - Bundle of all packages, when you want to install everything and you don't care about the size
233
233
  - **[promptbook](https://www.npmjs.com/package/promptbook)** - Same as `ptbk`
234
+ - ⭐🧙‍♂️ **[@promptbook/wizzard](https://www.npmjs.com/package/@promptbook/wizzard)** - Wizzard to just run the books in node without any struggle
234
235
  - **[@promptbook/core](https://www.npmjs.com/package/@promptbook/core)** - Core of the library, it contains the main logic for promptbooks
235
236
  - **[@promptbook/node](https://www.npmjs.com/package/@promptbook/node)** - Core of the library for Node.js environment
236
237
  - **[@promptbook/browser](https://www.npmjs.com/package/@promptbook/browser)** - Core of the library for browser environment
@@ -251,6 +252,8 @@ Or you can install them separately:
251
252
  - **[@promptbook/documents](https://www.npmjs.com/package/@promptbook/documents)** - Read knowledge from documents like `.docx`, `.odt`,…
252
253
  - **[@promptbook/legacy-documents](https://www.npmjs.com/package/@promptbook/legacy-documents)** - Read knowledge from legacy documents like `.doc`, `.rtf`,…
253
254
  - **[@promptbook/website-crawler](https://www.npmjs.com/package/@promptbook/website-crawler)** - Crawl knowledge from the web
255
+ - **[@promptbook/editable](https://www.npmjs.com/package/@promptbook/editable)** - Editable book as native javascript object with imperative object API
256
+ - **[@promptbook/templates](https://www.npmjs.com/package/@promptbook/templates)** - Usefull templates and examples of books which can be used as a starting point
254
257
  - **[@promptbook/types](https://www.npmjs.com/package/@promptbook/types)** - Just typescript types used in the library
255
258
  - **[@promptbook/cli](https://www.npmjs.com/package/@promptbook/cli)** - Command line interface utilities for promptbooks
256
259
 
package/esm/index.es.js CHANGED
@@ -12,15 +12,17 @@ import { unparse, parse } from 'papaparse';
12
12
  /**
13
13
  * The version of the Book language
14
14
  *
15
+ * @generated
15
16
  * @see https://github.com/webgptorg/book
16
17
  */
17
18
  var BOOK_LANGUAGE_VERSION = '1.0.0';
18
19
  /**
19
20
  * The version of the Promptbook engine
20
21
  *
22
+ * @generated
21
23
  * @see https://github.com/webgptorg/promptbook
22
24
  */
23
- var PROMPTBOOK_ENGINE_VERSION = '0.80.0-0';
25
+ var PROMPTBOOK_ENGINE_VERSION = '0.81.0-10';
24
26
  /**
25
27
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
26
28
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -356,7 +358,7 @@ function extractJsonBlock(markdown) {
356
358
  * TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
357
359
  */
358
360
 
359
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-persona.book.md"}];
361
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
360
362
 
361
363
  /**
362
364
  * Prettify the html code
@@ -658,6 +660,26 @@ var DEFAULT_TITLE = "Untitled";
658
660
  * @private within the repository - too low-level in comparison with other `MAX_...`
659
661
  */
660
662
  var LOOP_LIMIT = 1000;
663
+ /**
664
+ * Strings to represent various values in the context of parameter values
665
+ *
666
+ * @public exported from `@promptbook/utils`
667
+ */
668
+ var VALUE_STRINGS = {
669
+ empty: '(nothing; empty string)',
670
+ null: '(no value; null)',
671
+ undefined: '(unknown value; undefined)',
672
+ nan: '(not a number; NaN)',
673
+ infinity: '(infinity; ∞)',
674
+ negativeInfinity: '(negative infinity; -∞)',
675
+ unserializable: '(unserializable value)',
676
+ };
677
+ /**
678
+ * Small number limit
679
+ *
680
+ * @public exported from `@promptbook/utils`
681
+ */
682
+ var SMALL_NUMBER = 0.001;
661
683
  /**
662
684
  * Short time interval to prevent race conditions in milliseconds
663
685
  *
@@ -1001,6 +1023,7 @@ function exportJson(options) {
1001
1023
  * @public exported from `@promptbook/core`
1002
1024
  */
1003
1025
  var ORDER_OF_PIPELINE_JSON = [
1026
+ // Note: [🍙] In this order will be pipeline serialized
1004
1027
  'title',
1005
1028
  'pipelineUrl',
1006
1029
  'bookVersion',
@@ -1012,6 +1035,7 @@ var ORDER_OF_PIPELINE_JSON = [
1012
1035
  'preparations',
1013
1036
  'knowledgeSources',
1014
1037
  'knowledgePieces',
1038
+ 'sources', // <- TODO: [🧠] Where should the `sources` be
1015
1039
  ];
1016
1040
  /**
1017
1041
  * Nonce which is used for replacing things in strings
@@ -1209,9 +1233,6 @@ function isValidPipelineUrl(url) {
1209
1233
  if (!url.startsWith('https://')) {
1210
1234
  return false;
1211
1235
  }
1212
- if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
1213
- return false;
1214
- }
1215
1236
  if (url.includes('#')) {
1216
1237
  // TODO: [🐠]
1217
1238
  return false;
@@ -2005,6 +2026,81 @@ function isPipelinePrepared(pipeline) {
2005
2026
  * - [♨] Are tasks prepared
2006
2027
  */
2007
2028
 
2029
+ /**
2030
+ * Format either small or big number
2031
+ *
2032
+ * @public exported from `@promptbook/utils`
2033
+ */
2034
+ function numberToString(value) {
2035
+ if (value === 0) {
2036
+ return '0';
2037
+ }
2038
+ else if (Number.isNaN(value)) {
2039
+ return VALUE_STRINGS.nan;
2040
+ }
2041
+ else if (value === Infinity) {
2042
+ return VALUE_STRINGS.infinity;
2043
+ }
2044
+ else if (value === -Infinity) {
2045
+ return VALUE_STRINGS.negativeInfinity;
2046
+ }
2047
+ for (var exponent = 0; exponent < 15; exponent++) {
2048
+ var factor = Math.pow(10, exponent);
2049
+ var valueRounded = Math.round(value * factor) / factor;
2050
+ if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
2051
+ return valueRounded.toFixed(exponent);
2052
+ }
2053
+ }
2054
+ return value.toString();
2055
+ }
2056
+
2057
+ /**
2058
+ * Function `valueToString` will convert the given value to string
2059
+ * This is useful and used in the `templateParameters` function
2060
+ *
2061
+ * Note: This function is not just calling `toString` method
2062
+ * It's more complex and can handle this conversion specifically for LLM models
2063
+ * See `VALUE_STRINGS`
2064
+ *
2065
+ * Note: There are 2 similar functions
2066
+ * - `valueToString` converts value to string for LLM models as human-readable string
2067
+ * - `asSerializable` converts value to string to preserve full information to be able to convert it back
2068
+ *
2069
+ * @public exported from `@promptbook/utils`
2070
+ */
2071
+ function valueToString(value) {
2072
+ try {
2073
+ if (value === '') {
2074
+ return VALUE_STRINGS.empty;
2075
+ }
2076
+ else if (value === null) {
2077
+ return VALUE_STRINGS.null;
2078
+ }
2079
+ else if (value === undefined) {
2080
+ return VALUE_STRINGS.undefined;
2081
+ }
2082
+ else if (typeof value === 'string') {
2083
+ return value;
2084
+ }
2085
+ else if (typeof value === 'number') {
2086
+ return numberToString(value);
2087
+ }
2088
+ else if (value instanceof Date) {
2089
+ return value.toISOString();
2090
+ }
2091
+ else {
2092
+ return JSON.stringify(value);
2093
+ }
2094
+ }
2095
+ catch (error) {
2096
+ if (!(error instanceof Error)) {
2097
+ throw error;
2098
+ }
2099
+ console.error(error);
2100
+ return VALUE_STRINGS.unserializable;
2101
+ }
2102
+ }
2103
+
2008
2104
  /**
2009
2105
  * Serializes an error into a [🚉] JSON-serializable object
2010
2106
  *
@@ -3400,6 +3496,30 @@ function isValidFilePath(filename) {
3400
3496
  return false;
3401
3497
  }
3402
3498
 
3499
+ /**
3500
+ * The built-in `fetch' function with a lightweight error handling wrapper as default fetch function used in Promptbook scrapers
3501
+ *
3502
+ * @private as default `fetch` function used in Promptbook scrapers
3503
+ */
3504
+ var scraperFetch = function (url, init) { return __awaiter(void 0, void 0, void 0, function () {
3505
+ var error_1;
3506
+ return __generator(this, function (_a) {
3507
+ switch (_a.label) {
3508
+ case 0:
3509
+ _a.trys.push([0, 2, , 3]);
3510
+ return [4 /*yield*/, fetch(url, init)];
3511
+ case 1: return [2 /*return*/, _a.sent()];
3512
+ case 2:
3513
+ error_1 = _a.sent();
3514
+ if (!(error_1 instanceof Error)) {
3515
+ throw error_1;
3516
+ }
3517
+ throw new KnowledgeScrapeError(spaceTrim(function (block) { return "\n Can not fetch \"".concat(url, "\"\n\n Fetch error:\n ").concat(block(error_1.message), "\n\n "); }));
3518
+ case 3: return [2 /*return*/];
3519
+ }
3520
+ });
3521
+ }); };
3522
+
3403
3523
  /**
3404
3524
  * @@@
3405
3525
  *
@@ -3408,13 +3528,14 @@ function isValidFilePath(filename) {
3408
3528
  function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
3409
3529
  var _a;
3410
3530
  return __awaiter(this, void 0, void 0, function () {
3411
- var sourceContent, name, _b, _c, rootDirname, url, response_1, mimeType, filename_1, fileExtension, mimeType;
3412
- return __generator(this, function (_e) {
3413
- switch (_e.label) {
3531
+ var _b, fetch, sourceContent, name, _c, _d, rootDirname, url, response_1, mimeType, filename_1, fileExtension, mimeType;
3532
+ return __generator(this, function (_f) {
3533
+ switch (_f.label) {
3414
3534
  case 0:
3535
+ _b = tools.fetch, fetch = _b === void 0 ? scraperFetch : _b;
3415
3536
  sourceContent = knowledgeSource.sourceContent;
3416
3537
  name = knowledgeSource.name;
3417
- _b = options || {}, _c = _b.rootDirname, rootDirname = _c === void 0 ? null : _c, _b.isVerbose;
3538
+ _c = options || {}, _d = _c.rootDirname, rootDirname = _d === void 0 ? null : _d, _c.isVerbose;
3418
3539
  if (!name) {
3419
3540
  name = sourceContentToName(sourceContent);
3420
3541
  }
@@ -3422,7 +3543,7 @@ function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
3422
3543
  url = sourceContent;
3423
3544
  return [4 /*yield*/, fetch(url)];
3424
3545
  case 1:
3425
- response_1 = _e.sent();
3546
+ response_1 = _f.sent();
3426
3547
  mimeType = ((_a = response_1.headers.get('content-type')) === null || _a === void 0 ? void 0 : _a.split(';')[0]) || 'text/html';
3427
3548
  return [2 /*return*/, {
3428
3549
  source: name,
@@ -3479,7 +3600,7 @@ function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
3479
3600
  mimeType = extensionToMimeType(fileExtension || '');
3480
3601
  return [4 /*yield*/, isFileExisting(filename_1, tools.fs)];
3481
3602
  case 3:
3482
- if (!(_e.sent())) {
3603
+ if (!(_f.sent())) {
3483
3604
  throw new NotFoundError(spaceTrim(function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(filename_1), "\n "); }));
3484
3605
  }
3485
3606
  // TODO: [🧠][😿] Test security file - file is scoped to the project (BUT maybe do this in `filesystemTools`)
@@ -4373,13 +4494,16 @@ function mapAvailableToExpectedParameters(options) {
4373
4494
  /**
4374
4495
  * Replaces parameters in template with values from parameters object
4375
4496
  *
4497
+ * Note: This function is not places strings into string,
4498
+ * It's more complex and can handle this operation specifically for LLM models
4499
+ *
4376
4500
  * @param template the template with parameters in {curly} braces
4377
4501
  * @param parameters the object with parameters
4378
4502
  * @returns the template with replaced parameters
4379
4503
  * @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
4380
4504
  * @public exported from `@promptbook/utils`
4381
4505
  */
4382
- function replaceParameters(template, parameters) {
4506
+ function templateParameters(template, parameters) {
4383
4507
  var e_1, _a;
4384
4508
  try {
4385
4509
  for (var _b = __values(Object.entries(parameters)), _c = _b.next(); !_c.done; _c = _b.next()) {
@@ -4405,7 +4529,7 @@ function replaceParameters(template, parameters) {
4405
4529
  var loopLimit = LOOP_LIMIT;
4406
4530
  var _loop_1 = function () {
4407
4531
  if (loopLimit-- < 0) {
4408
- throw new LimitReachedError('Loop limit reached during parameters replacement in `replaceParameters`');
4532
+ throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
4409
4533
  }
4410
4534
  var precol = match.groups.precol;
4411
4535
  var parameterName = match.groups.parameterName;
@@ -4422,7 +4546,7 @@ function replaceParameters(template, parameters) {
4422
4546
  if (parameterValue === undefined) {
4423
4547
  throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
4424
4548
  }
4425
- parameterValue = parameterValue.toString();
4549
+ parameterValue = valueToString(parameterValue);
4426
4550
  if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
4427
4551
  parameterValue = parameterValue
4428
4552
  .split('\n')
@@ -4657,7 +4781,7 @@ function executeAttempts(options) {
4657
4781
  }
4658
4782
  return [3 /*break*/, 24];
4659
4783
  case 2:
4660
- $ongoingTaskResult.$resultString = replaceParameters(preparedContent, parameters);
4784
+ $ongoingTaskResult.$resultString = templateParameters(preparedContent, parameters);
4661
4785
  return [3 /*break*/, 25];
4662
4786
  case 3:
4663
4787
  modelRequirements = __assign(__assign({ modelVariant: 'CHAT' }, (preparedPipeline.defaultModelRequirements || {})), (task.modelRequirements || {}));
@@ -4780,8 +4904,8 @@ function executeAttempts(options) {
4780
4904
  _j = $ongoingTaskResult;
4781
4905
  return [4 /*yield*/, tools.userInterface.promptDialog($deepFreeze({
4782
4906
  promptTitle: task.title,
4783
- promptMessage: replaceParameters(task.description || '', parameters),
4784
- defaultValue: replaceParameters(preparedContent, parameters),
4907
+ promptMessage: templateParameters(task.description || '', parameters),
4908
+ defaultValue: templateParameters(preparedContent, parameters),
4785
4909
  // TODO: [🧠] !! Figure out how to define placeholder in .book.md file
4786
4910
  placeholder: undefined,
4787
4911
  priority: priority,
@@ -4905,7 +5029,7 @@ function executeAttempts(options) {
4905
5029
  if (!isJokerAttempt &&
4906
5030
  task.taskType === 'PROMPT_TASK' &&
4907
5031
  $ongoingTaskResult.$prompt
4908
- // <- Note: [2] When some expected parameter is not defined, error will occur in replaceParameters
5032
+ // <- Note: [2] When some expected parameter is not defined, error will occur in templateParameters
4909
5033
  // In that case we don’t want to make a report about it because it’s not a llm execution error
4910
5034
  ) {
4911
5035
  // TODO: [🧠] Maybe put other taskTypes into report
@@ -5482,7 +5606,10 @@ function executePipeline(options) {
5482
5606
  finally { if (e_2) throw e_2.error; }
5483
5607
  return [7 /*endfinally*/];
5484
5608
  case 19:
5485
- parametersToPass = inputParameters;
5609
+ parametersToPass = Object.fromEntries(Object.entries(inputParameters).map(function (_a) {
5610
+ var _b = __read(_a, 2), key = _b[0], value = _b[1];
5611
+ return [key, valueToString(value)];
5612
+ }));
5486
5613
  _g.label = 20;
5487
5614
  case 20:
5488
5615
  _g.trys.push([20, 25, , 28]);
@@ -5777,6 +5904,7 @@ var markdownScraperMetadata = $deepFreeze({
5777
5904
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
5778
5905
  *
5779
5906
  * @public exported from `@promptbook/core`
5907
+ * @public exported from `@promptbook/wizzard`
5780
5908
  * @public exported from `@promptbook/cli`
5781
5909
  */
5782
5910
  $scrapersMetadataRegister.register(markdownScraperMetadata);
@@ -5972,6 +6100,7 @@ var createMarkdownScraper = Object.assign(function (tools, options) {
5972
6100
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
5973
6101
  *
5974
6102
  * @public exported from `@promptbook/markdown-utils`
6103
+ * @public exported from `@promptbook/wizzard`
5975
6104
  * @public exported from `@promptbook/cli`
5976
6105
  */
5977
6106
  var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScraper);
@@ -6019,26 +6148,6 @@ function addAutoGeneratedSection(content, options) {
6019
6148
  * TODO: [🏛] This can be part of markdown builder
6020
6149
  */
6021
6150
 
6022
- /**
6023
- * Format either small or big number
6024
- *
6025
- * @private within the repository
6026
- */
6027
- function formatNumber(value) {
6028
- if (value === 0) {
6029
- return '0';
6030
- }
6031
- for (var exponent = 0; exponent < 15; exponent++) {
6032
- var factor = Math.pow(10, exponent);
6033
- var valueRounded = Math.round(value * factor) / factor;
6034
- if (Math.abs(value - valueRounded) / value <
6035
- 0.001 /* <- TODO: Pass as option, pass to executionReportJsonToString as option */) {
6036
- return valueRounded.toFixed(exponent);
6037
- }
6038
- }
6039
- return value.toString();
6040
- }
6041
-
6042
6151
  /**
6043
6152
  * Create a markdown table from a 2D array of strings
6044
6153
  *
@@ -6098,7 +6207,7 @@ function createMarkdownChart(options) {
6098
6207
  }
6099
6208
  finally { if (e_1) throw e_1.error; }
6100
6209
  }
6101
- var legend = "_Note: Each \u2588 represents ".concat(formatNumber(1 / scale), " ").concat(unitName, ", width of ").concat(valueHeader.toLowerCase(), " is ").concat(formatNumber(to - from), " ").concat(unitName, " = ").concat(width, " squares_");
6210
+ var legend = "_Note: Each \u2588 represents ".concat(numberToString(1 / scale), " ").concat(unitName, ", width of ").concat(valueHeader.toLowerCase(), " is ").concat(numberToString(to - from), " ").concat(unitName, " = ").concat(width, " squares_");
6102
6211
  return createMarkdownTable(table) + '\n\n' + legend;
6103
6212
  }
6104
6213
  /**