@promptbook/markdown-utils 0.75.0-2 → 0.75.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +46 -30
- package/esm/index.es.js +46 -46
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +16 -4
- package/esm/typings/src/_packages/types.index.d.ts +8 -6
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/commands/EXPECT/ExpectCommand.d.ts +1 -1
- package/esm/typings/src/commands/SECTION/SectionCommand.d.ts +1 -1
- package/esm/typings/src/commands/_common/types/CommandParser.d.ts +0 -2
- package/esm/typings/src/config.d.ts +34 -2
- package/esm/typings/src/conversion/pipelineJsonToString.d.ts +1 -1
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +2 -2
- package/esm/typings/src/conversion/utils/extractParameterNamesFromTask.d.ts +3 -3
- package/esm/typings/src/conversion/utils/renameParameter.d.ts +2 -2
- package/esm/typings/src/dialogs/simple-prompt/SimplePromptInterfaceTools.d.ts +1 -1
- package/esm/typings/src/execution/ScriptExecutionTools.d.ts +1 -1
- package/esm/typings/src/formfactors/_boilerplate/BoilerplateFormfactorDefinition.d.ts +2 -2
- package/esm/typings/src/formfactors/_common/AbstractFormfactorDefinition.d.ts +3 -0
- package/esm/typings/src/formfactors/chatbot/ChatbotFormfactorDefinition.d.ts +32 -2
- package/esm/typings/src/formfactors/generator/GeneratorFormfactorDefinition.d.ts +14 -0
- package/esm/typings/src/formfactors/generic/GenericFormfactorDefinition.d.ts +2 -2
- package/esm/typings/src/formfactors/index.d.ts +72 -10
- package/esm/typings/src/formfactors/matcher/MatcherFormfactorDefinition.d.ts +2 -2
- package/esm/typings/src/formfactors/sheets/SheetsFormfactorDefinition.d.ts +12 -2
- package/esm/typings/src/formfactors/translator/TranslatorFormfactorDefinition.d.ts +12 -2
- package/esm/typings/src/pipeline/PipelineInterface/PipelineInterface.d.ts +5 -4
- package/esm/typings/src/pipeline/PipelineInterface/constants.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/{TaskJsonCommon.d.ts → CommonTaskJson.d.ts} +13 -13
- package/esm/typings/src/pipeline/PipelineJson/DialogTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/ParameterJson.d.ts +2 -0
- package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +1 -1
- package/esm/typings/src/pipeline/PipelineJson/PipelineJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/PromptTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/ScriptTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/SimpleTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/TaskJson.d.ts +1 -1
- package/esm/typings/src/pipeline/PipelineString.d.ts +1 -1
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +1 -1
- package/esm/typings/src/prepare/prepareTasks.d.ts +5 -5
- package/esm/typings/src/types/Prompt.d.ts +3 -3
- package/esm/typings/src/types/SectionType.d.ts +21 -0
- package/esm/typings/src/types/TaskProgress.d.ts +1 -1
- package/esm/typings/src/types/TaskType.d.ts +15 -0
- package/esm/typings/src/types/typeAliases.d.ts +1 -1
- package/esm/typings/src/utils/organization/TODO_remove_as.d.ts +6 -0
- package/esm/typings/src/utils/organization/spaceTrim.d.ts +11 -0
- package/esm/typings/src/utils/parameters/extractParameterNames.d.ts +1 -1
- package/esm/typings/src/version.d.ts +1 -1
- package/package.json +1 -1
- package/umd/index.umd.js +46 -46
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/commands/SECTION/SectionType.d.ts +0 -13
- /package/esm/typings/{promptbook-collection → books}/index.d.ts +0 -0
package/README.md
CHANGED
|
@@ -2,8 +2,6 @@
|
|
|
2
2
|
|
|
3
3
|
#  Promptbook
|
|
4
4
|
|
|
5
|
-
Build responsible, controlled and transparent applications on top of LLM models!
|
|
6
|
-
|
|
7
5
|
|
|
8
6
|
|
|
9
7
|
|
|
@@ -25,10 +23,6 @@ Build responsible, controlled and transparent applications on top of LLM models!
|
|
|
25
23
|
|
|
26
24
|
|
|
27
25
|
|
|
28
|
-
<blockquote style="color: #ff8811">
|
|
29
|
-
<b>⚠ Warning:</b> This is a pre-release version of the library. It is not yet ready for production use. Please look at <a href="https://www.npmjs.com/package/@promptbook/core?activeTab=versions">latest stable release</a>.
|
|
30
|
-
</blockquote>
|
|
31
|
-
|
|
32
26
|
## 📦 Package `@promptbook/markdown-utils`
|
|
33
27
|
|
|
34
28
|
- Promptbooks are [divided into several](#-packages) packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
|
|
@@ -51,28 +45,33 @@ Utility functions used for processing markdown. Its part of the larger [`@prompt
|
|
|
51
45
|
|
|
52
46
|
Rest of the documentation is common for **entire promptbook ecosystem**:
|
|
53
47
|
|
|
54
|
-
## 🤍 The Promptbook Whitepaper
|
|
55
48
|
|
|
56
|
-
If you have a simple, single prompt for ChatGPT, GPT-4, Anthropic Claude, Google Gemini, Llama 3, or whatever, it doesn't matter how you integrate it. Whether it's calling a REST API directly, using the SDK, hardcoding the prompt into the source code, or importing a text file, the process remains the same.
|
|
57
49
|
|
|
58
|
-
But often you will struggle with the **limitations of LLMs**, such as **hallucinations, off-topic responses, poor quality output, language and prompt drift, word repetition repetition repetition repetition or misuse, lack of context, or just plain w𝒆𝐢rd resp0nses**. When this happens, you generally have three options:
|
|
59
50
|
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
51
|
+
## 🤍 The Book Abstract
|
|
52
|
+
|
|
53
|
+
**It's time for a paradigm shift! The future of software is in plain English, French or Latin.**
|
|
54
|
+
|
|
55
|
+
During the computer revolution, we have seen [multiple generations of computer languages](https://github.com/webgptorg/promptbook/discussions/180), from the physical rewiring of the vacuum tubes through low-level machine code to the high-level languages like Python or JavaScript. And now, we're on the edge of the **next revolution**!
|
|
56
|
+
|
|
57
|
+
It's a revolution of writing software in plain human language that is understandable and executable by both humans and machines – and it's going to change everything!
|
|
58
|
+
|
|
59
|
+
The incredible growth in power of microprocessors and the Moore's Law have been the driving force behind the ever-more powerful languages, and it's been an amazing journey! Similarly, the large language models (like GPT or Claude) are the next big thing in language technology, and they're set to transform the way we interact with computers.
|
|
63
60
|
|
|
64
|
-
|
|
61
|
+
This shift is going to happen, whether we are ready for it or not. Our mission is to make it excellently, not just good.
|
|
65
62
|
|
|
66
|
-
|
|
67
|
-
- Book allows you to **focus on the business** logic without having to write code or deal with the technicalities of LLMs.
|
|
68
|
-
- **Forget** about **low-level details** like choosing the right model, tokens, context size, `temperature`, `top-k`, `top-p`, or kernel sampling. **Just write your intent** and [**persona**](https://github.com/webgptorg/promptbook/discussions/22) who should be responsible for the task and let the library do the rest.
|
|
69
|
-
- We have built-in **orchestration** of [pipeline](https://github.com/webgptorg/promptbook/discussions/64) execution and many tools to make the process easier, more reliable, and more efficient, such as caching, [compilation+preparation](https://github.com/webgptorg/promptbook/discussions/78), [just-in-time fine-tuning](https://github.com/webgptorg/promptbook/discussions/33), [expectation-aware generation](https://github.com/webgptorg/promptbook/discussions/37), [agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39), and more.
|
|
70
|
-
- Sometimes even the best prompts with the best framework like Promptbook `:)` can't avoid the problems. In this case, the library has built-in **[anomaly detection](https://github.com/webgptorg/promptbook/discussions/40) and logging** to help you find and fix the problems.
|
|
71
|
-
- Versioning is build in. You can test multiple **A/B versions** of pipelines and see which one works best.
|
|
72
|
-
- Promptbook is designed to use [**RAG** (Retrieval-Augmented Generation)](https://github.com/webgptorg/promptbook/discussions/41) and other advanced techniques to bring the context of your business to generic LLM. You can use **knowledge** to improve the quality of the output.
|
|
63
|
+
**Join us in this journey!**
|
|
73
64
|
|
|
74
65
|
|
|
75
66
|
|
|
67
|
+
## 🚀 Get started
|
|
68
|
+
|
|
69
|
+
Take a look at the simple starter kit with books integrated into the **Hello World** sample applications:
|
|
70
|
+
|
|
71
|
+
- [Hello Book](https://github.com/webgptorg/hello-world)
|
|
72
|
+
- [Hello Book in Node.js](https://github.com/webgptorg/hello-world-node-js)
|
|
73
|
+
- [Hello Book in Next.js](https://github.com/webgptorg/hello-world-next-js)
|
|
74
|
+
|
|
76
75
|
|
|
77
76
|
|
|
78
77
|
|
|
@@ -91,7 +90,7 @@ Promptbook project is ecosystem of multiple projects and tools, following is a l
|
|
|
91
90
|
<tbody>
|
|
92
91
|
<tr>
|
|
93
92
|
<td>Core</td>
|
|
94
|
-
<td>Promptbook
|
|
93
|
+
<td>Promptbook Core is a description and documentation of the basic concepts, ideas and inner workings of how Promptbook should be implemented, and defines what features must be describable by book language.</td>
|
|
95
94
|
<td rowspan=2>https://ptbk.io<br/>https://github.com/webgptorg/book</td>
|
|
96
95
|
</tr>
|
|
97
96
|
<tr>
|
|
@@ -102,17 +101,23 @@ Promptbook project is ecosystem of multiple projects and tools, following is a l
|
|
|
102
101
|
</tr>
|
|
103
102
|
<tr>
|
|
104
103
|
<td>Promptbook typescript project</td>
|
|
105
|
-
<td>
|
|
104
|
+
<td>Promptbook implementation in TypeScript released as multiple NPM packages</td>
|
|
106
105
|
<td>https://github.com/webgptorg/promptbook + Multiple packages on NPM</td>
|
|
107
106
|
</tr>
|
|
108
107
|
<tr>
|
|
109
108
|
<td>Promptbook studio</td>
|
|
110
|
-
<td>
|
|
111
|
-
<td
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
<td>
|
|
109
|
+
<td>Studio to write Books and instantly publish them as miniapps</td>
|
|
110
|
+
<td>
|
|
111
|
+
https://promptbook.studio<br/>
|
|
112
|
+
https://github.com/hejny/promptbook-studio</td>
|
|
113
|
+
</tr><tr>
|
|
114
|
+
<td>Hello World</td>
|
|
115
|
+
<td>Simple starter kit with Books integrated into the sample applications</td>
|
|
116
|
+
<td>
|
|
117
|
+
https://github.com/webgptorg/hello-world<br/>
|
|
118
|
+
https://github.com/webgptorg/hello-world-node-js<br/>
|
|
119
|
+
https://github.com/webgptorg/hello-world-next-js
|
|
120
|
+
</td>
|
|
116
121
|
</tr>
|
|
117
122
|
</tbody>
|
|
118
123
|
</table>
|
|
@@ -181,7 +186,9 @@ Reserved words:
|
|
|
181
186
|
|
|
182
187
|
#### Parameter notation
|
|
183
188
|
|
|
184
|
-
###
|
|
189
|
+
### Task
|
|
190
|
+
|
|
191
|
+
### Task type
|
|
185
192
|
|
|
186
193
|
Todo todo
|
|
187
194
|
|
|
@@ -242,6 +249,11 @@ Or you can install them separately:
|
|
|
242
249
|
|
|
243
250
|
## 📚 Dictionary
|
|
244
251
|
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
|
|
245
257
|
### 📚 Dictionary
|
|
246
258
|
|
|
247
259
|
The following glossary is used to clarify certain concepts:
|
|
@@ -257,6 +269,8 @@ The following glossary is used to clarify certain concepts:
|
|
|
257
269
|
- **Retrieval-augmented generation** is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
|
|
258
270
|
- **Longtail** refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.
|
|
259
271
|
|
|
272
|
+
|
|
273
|
+
|
|
260
274
|
_Note: Thos section is not complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
|
|
261
275
|
|
|
262
276
|
#### Promptbook core
|
|
@@ -293,7 +307,7 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
|
|
|
293
307
|
|
|
294
308
|
- [📚 Collection of pipelines](https://github.com/webgptorg/promptbook/discussions/65)
|
|
295
309
|
- [📯 Pipeline](https://github.com/webgptorg/promptbook/discussions/64)
|
|
296
|
-
- [
|
|
310
|
+
- [🙇♂️ Tasks and pipeline sections](https://github.com/webgptorg/promptbook/discussions/88)
|
|
297
311
|
- [🤼 Personas](https://github.com/webgptorg/promptbook/discussions/22)
|
|
298
312
|
- [⭕ Parameters](https://github.com/webgptorg/promptbook/discussions/83)
|
|
299
313
|
- [🚀 Pipeline execution](https://github.com/webgptorg/promptbook/discussions/84)
|
|
@@ -317,6 +331,8 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
|
|
|
317
331
|
- [👮 Agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39)
|
|
318
332
|
- [view more](https://github.com/webgptorg/promptbook/discussions/categories/concepts)
|
|
319
333
|
|
|
334
|
+
|
|
335
|
+
|
|
320
336
|
### Terms specific to Promptbook TypeScript implementation
|
|
321
337
|
|
|
322
338
|
- Anonymous mode
|
package/esm/index.es.js
CHANGED
|
@@ -20,7 +20,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
20
20
|
*
|
|
21
21
|
* @see https://github.com/webgptorg/promptbook
|
|
22
22
|
*/
|
|
23
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.75.0
|
|
23
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.75.0';
|
|
24
24
|
/**
|
|
25
25
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
26
26
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -269,7 +269,7 @@ function extractAllBlocksFromMarkdown(markdown) {
|
|
|
269
269
|
function extractOneBlockFromMarkdown(markdown) {
|
|
270
270
|
var codeBlocks = extractAllBlocksFromMarkdown(markdown);
|
|
271
271
|
if (codeBlocks.length !== 1) {
|
|
272
|
-
throw new ParseError(spaceTrim(function (block) { return "\n There should be exactly 1 code block in
|
|
272
|
+
throw new ParseError(spaceTrim(function (block) { return "\n There should be exactly 1 code block in task section, found ".concat(codeBlocks.length, " code blocks\n\n ").concat(block(codeBlocks.map(function (block, i) { return "Block ".concat(i + 1, ":\n").concat(block.content); }).join('\n\n\n')), "\n "); }));
|
|
273
273
|
}
|
|
274
274
|
return codeBlocks[0];
|
|
275
275
|
}
|
|
@@ -356,7 +356,7 @@ function extractJsonBlock(markdown) {
|
|
|
356
356
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
357
357
|
*/
|
|
358
358
|
|
|
359
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./
|
|
359
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-persona.book.md"}];
|
|
360
360
|
|
|
361
361
|
/**
|
|
362
362
|
* Prettify the html code
|
|
@@ -422,7 +422,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
422
422
|
return isInput;
|
|
423
423
|
})), _h = _g.next(); !_h.done; _h = _g.next()) {
|
|
424
424
|
var parameter = _h.value;
|
|
425
|
-
commands.push("INPUT PARAMETER ".concat(
|
|
425
|
+
commands.push("INPUT PARAMETER ".concat(taskParameterJsonToString(parameter)));
|
|
426
426
|
}
|
|
427
427
|
}
|
|
428
428
|
catch (e_1_1) { e_1 = { error: e_1_1 }; }
|
|
@@ -438,7 +438,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
438
438
|
return isOutput;
|
|
439
439
|
})), _k = _j.next(); !_k.done; _k = _j.next()) {
|
|
440
440
|
var parameter = _k.value;
|
|
441
|
-
commands.push("OUTPUT PARAMETER ".concat(
|
|
441
|
+
commands.push("OUTPUT PARAMETER ".concat(taskParameterJsonToString(parameter)));
|
|
442
442
|
}
|
|
443
443
|
}
|
|
444
444
|
catch (e_2_1) { e_2 = { error: e_2_1 }; }
|
|
@@ -452,12 +452,12 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
452
452
|
pipelineString += commands.map(function (command) { return "- ".concat(command); }).join('\n');
|
|
453
453
|
try {
|
|
454
454
|
for (var tasks_1 = __values(tasks), tasks_1_1 = tasks_1.next(); !tasks_1_1.done; tasks_1_1 = tasks_1.next()) {
|
|
455
|
-
var
|
|
455
|
+
var task = tasks_1_1.value;
|
|
456
456
|
var
|
|
457
457
|
/* Note: Not using:> name, */
|
|
458
|
-
title_1 =
|
|
458
|
+
title_1 = task.title, description_1 = task.description,
|
|
459
459
|
/* Note: dependentParameterNames, */
|
|
460
|
-
jokers =
|
|
460
|
+
jokers = task.jokerParameterNames, taskType = task.taskType, content = task.content, postprocessing = task.postprocessingFunctionNames, expectations = task.expectations, format = task.format, resultingParameterName = task.resultingParameterName;
|
|
461
461
|
pipelineString += '\n\n';
|
|
462
462
|
pipelineString += "## ".concat(title_1);
|
|
463
463
|
if (description_1) {
|
|
@@ -467,9 +467,10 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
467
467
|
var commands_1 = [];
|
|
468
468
|
var contentLanguage = 'text';
|
|
469
469
|
if (taskType === 'PROMPT_TASK') {
|
|
470
|
-
var modelRequirements =
|
|
470
|
+
var modelRequirements = task.modelRequirements;
|
|
471
471
|
var _l = modelRequirements || {}, modelName = _l.modelName, modelVariant = _l.modelVariant;
|
|
472
|
-
|
|
472
|
+
// Note: Do nothing, it is default
|
|
473
|
+
// commands.push(`PROMPT`);
|
|
473
474
|
if (modelVariant) {
|
|
474
475
|
commands_1.push("MODEL VARIANT ".concat(capitalize(modelVariant)));
|
|
475
476
|
}
|
|
@@ -482,16 +483,16 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
482
483
|
// Note: Nothing special here
|
|
483
484
|
}
|
|
484
485
|
else if (taskType === 'SCRIPT_TASK') {
|
|
485
|
-
commands_1.push("SCRIPT
|
|
486
|
-
if (
|
|
487
|
-
contentLanguage =
|
|
486
|
+
commands_1.push("SCRIPT");
|
|
487
|
+
if (task.contentLanguage) {
|
|
488
|
+
contentLanguage = task.contentLanguage;
|
|
488
489
|
}
|
|
489
490
|
else {
|
|
490
491
|
contentLanguage = '';
|
|
491
492
|
}
|
|
492
493
|
}
|
|
493
494
|
else if (taskType === 'DIALOG_TASK') {
|
|
494
|
-
commands_1.push("DIALOG
|
|
495
|
+
commands_1.push("DIALOG");
|
|
495
496
|
// Note: Nothing special here
|
|
496
497
|
} // <- }else if([🅱]
|
|
497
498
|
if (jokers) {
|
|
@@ -566,7 +567,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
566
567
|
pipelineString += '\n';
|
|
567
568
|
pipelineString += '```';
|
|
568
569
|
pipelineString += '\n\n';
|
|
569
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!! If the parameter here has description, add it and use
|
|
570
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!! If the parameter here has description, add it and use taskParameterJsonToString
|
|
570
571
|
}
|
|
571
572
|
}
|
|
572
573
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -581,8 +582,8 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
581
582
|
/**
|
|
582
583
|
* @private internal utility of `pipelineJsonToString`
|
|
583
584
|
*/
|
|
584
|
-
function
|
|
585
|
-
var name =
|
|
585
|
+
function taskParameterJsonToString(taskParameterJson) {
|
|
586
|
+
var name = taskParameterJson.name, description = taskParameterJson.description;
|
|
586
587
|
var parameterString = "{".concat(name, "}");
|
|
587
588
|
if (description) {
|
|
588
589
|
parameterString = "".concat(parameterString, " ").concat(description);
|
|
@@ -590,7 +591,7 @@ function templateParameterJsonToString(templateParameterJson) {
|
|
|
590
591
|
return parameterString;
|
|
591
592
|
}
|
|
592
593
|
/**
|
|
593
|
-
* TODO: [🛋] Implement new features and commands into `pipelineJsonToString` + `
|
|
594
|
+
* TODO: [🛋] Implement new features and commands into `pipelineJsonToString` + `taskParameterJsonToString` , use `stringifyCommand`
|
|
594
595
|
* TODO: [🧠] Is there a way to auto-detect missing features in pipelineJsonToString
|
|
595
596
|
* TODO: [🏛] Maybe make some markdown builder
|
|
596
597
|
* TODO: [🏛] Escape all
|
|
@@ -816,7 +817,6 @@ function $asDeeplyFrozenSerializableJson(name, objectValue) {
|
|
|
816
817
|
* @private within the repository
|
|
817
818
|
*/
|
|
818
819
|
var GENERATOR_WARNING = "\u26A0\uFE0F WARNING: This code has been generated so that any manual changes will be overwritten";
|
|
819
|
-
// <- TODO: [🐊] Pick the best claim
|
|
820
820
|
/**
|
|
821
821
|
* When the title is not provided, the default title is used
|
|
822
822
|
*
|
|
@@ -1288,20 +1288,20 @@ function validatePipelineCore(pipeline) {
|
|
|
1288
1288
|
}
|
|
1289
1289
|
finally { if (e_3) throw e_3.error; }
|
|
1290
1290
|
}
|
|
1291
|
-
var
|
|
1291
|
+
var unresovedTasks = __spreadArray([], __read(pipeline.tasks), false);
|
|
1292
1292
|
var loopLimit = LOOP_LIMIT;
|
|
1293
1293
|
var _loop_3 = function () {
|
|
1294
1294
|
if (loopLimit-- < 0) {
|
|
1295
1295
|
// Note: Really UnexpectedError not LimitReachedError - this should not happen and be caught below
|
|
1296
1296
|
throw new UnexpectedError(spaceTrim$1(function (block) { return "\n Loop limit reached during detection of circular dependencies in `validatePipeline`\n\n ".concat(block(pipelineIdentification), "\n "); }));
|
|
1297
1297
|
}
|
|
1298
|
-
var
|
|
1298
|
+
var currentlyResovedTasks = unresovedTasks.filter(function (task) {
|
|
1299
1299
|
return task.dependentParameterNames.every(function (name) { return resovedParameters.includes(name); });
|
|
1300
1300
|
});
|
|
1301
|
-
if (
|
|
1301
|
+
if (currentlyResovedTasks.length === 0) {
|
|
1302
1302
|
throw new PipelineLogicError(
|
|
1303
1303
|
// TODO: [🐎] DRY
|
|
1304
|
-
spaceTrim$1(function (block) { return "\n\n Can not resolve some parameters:\n Either you are using a parameter that is not defined, or there are some circular dependencies.\n\n ".concat(block(pipelineIdentification), "\n\n **Can not resolve:**\n ").concat(block(
|
|
1304
|
+
spaceTrim$1(function (block) { return "\n\n Can not resolve some parameters:\n Either you are using a parameter that is not defined, or there are some circular dependencies.\n\n ".concat(block(pipelineIdentification), "\n\n **Can not resolve:**\n ").concat(block(unresovedTasks
|
|
1305
1305
|
.map(function (_a) {
|
|
1306
1306
|
var resultingParameterName = _a.resultingParameterName, dependentParameterNames = _a.dependentParameterNames;
|
|
1307
1307
|
return "- Parameter `{".concat(resultingParameterName, "}` which depends on ").concat(dependentParameterNames
|
|
@@ -1320,13 +1320,13 @@ function validatePipelineCore(pipeline) {
|
|
|
1320
1320
|
.map(function (name) { return "- Parameter `{".concat(name, "}`"); })
|
|
1321
1321
|
.join('\n')), "\n\n\n "); }));
|
|
1322
1322
|
}
|
|
1323
|
-
resovedParameters = __spreadArray(__spreadArray([], __read(resovedParameters), false), __read(
|
|
1323
|
+
resovedParameters = __spreadArray(__spreadArray([], __read(resovedParameters), false), __read(currentlyResovedTasks.map(function (_a) {
|
|
1324
1324
|
var resultingParameterName = _a.resultingParameterName;
|
|
1325
1325
|
return resultingParameterName;
|
|
1326
1326
|
})), false);
|
|
1327
|
-
|
|
1327
|
+
unresovedTasks = unresovedTasks.filter(function (task) { return !currentlyResovedTasks.includes(task); });
|
|
1328
1328
|
};
|
|
1329
|
-
while (
|
|
1329
|
+
while (unresovedTasks.length > 0) {
|
|
1330
1330
|
_loop_3();
|
|
1331
1331
|
}
|
|
1332
1332
|
// TODO: !!!!!! Test that pipeline interface implements declared formfactor interface
|
|
@@ -1388,7 +1388,7 @@ var PipelineUrlError = /** @class */ (function (_super) {
|
|
|
1388
1388
|
/**
|
|
1389
1389
|
* Parses the task and returns the list of all parameter names
|
|
1390
1390
|
*
|
|
1391
|
-
* @param template the
|
|
1391
|
+
* @param template the string template with parameters in {curly} braces
|
|
1392
1392
|
* @returns the list of parameter names
|
|
1393
1393
|
* @public exported from `@promptbook/utils`
|
|
1394
1394
|
*/
|
|
@@ -1422,13 +1422,13 @@ function unpreparePipeline(pipeline) {
|
|
|
1422
1422
|
var personas = pipeline.personas, knowledgeSources = pipeline.knowledgeSources, tasks = pipeline.tasks;
|
|
1423
1423
|
personas = personas.map(function (persona) { return (__assign(__assign({}, persona), { modelRequirements: undefined, preparationIds: undefined })); });
|
|
1424
1424
|
knowledgeSources = knowledgeSources.map(function (knowledgeSource) { return (__assign(__assign({}, knowledgeSource), { preparationIds: undefined })); });
|
|
1425
|
-
tasks = tasks.map(function (
|
|
1426
|
-
var dependentParameterNames =
|
|
1427
|
-
var parameterNames = extractParameterNames(
|
|
1425
|
+
tasks = tasks.map(function (task) {
|
|
1426
|
+
var dependentParameterNames = task.dependentParameterNames;
|
|
1427
|
+
var parameterNames = extractParameterNames(task.preparedContent || '');
|
|
1428
1428
|
dependentParameterNames = dependentParameterNames.filter(function (dependentParameterName) { return !parameterNames.has(dependentParameterName); });
|
|
1429
|
-
var
|
|
1430
|
-
delete
|
|
1431
|
-
return
|
|
1429
|
+
var taskUnprepared = __assign(__assign({}, task), { dependentParameterNames: dependentParameterNames });
|
|
1430
|
+
delete taskUnprepared.preparedContent;
|
|
1431
|
+
return taskUnprepared;
|
|
1432
1432
|
});
|
|
1433
1433
|
return $asDeeplyFrozenSerializableJson('Unprepared PipelineJson', __assign(__assign({}, pipeline), { tasks: tasks, knowledgeSources: knowledgeSources, knowledgePieces: [], personas: personas, preparations: [] }));
|
|
1434
1434
|
}
|
|
@@ -2142,7 +2142,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
2142
2142
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2143
2143
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2144
2144
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
2145
|
-
* - [🏍] ? Is context in each
|
|
2145
|
+
* - [🏍] ? Is context in each task
|
|
2146
2146
|
* - [♨] Are examples prepared
|
|
2147
2147
|
* - [♨] Are tasks prepared
|
|
2148
2148
|
*/
|
|
@@ -3516,10 +3516,10 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3516
3516
|
_a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a;
|
|
3517
3517
|
tasks = pipeline.tasks, pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
|
|
3518
3518
|
tasksPrepared = new Array(tasks.length);
|
|
3519
|
-
return [4 /*yield*/, forEachAsync(tasks, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (
|
|
3520
|
-
var dependentParameterNames, preparedContent,
|
|
3519
|
+
return [4 /*yield*/, forEachAsync(tasks, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (task, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3520
|
+
var dependentParameterNames, preparedContent, preparedTask;
|
|
3521
3521
|
return __generator(this, function (_a) {
|
|
3522
|
-
dependentParameterNames =
|
|
3522
|
+
dependentParameterNames = task.dependentParameterNames;
|
|
3523
3523
|
preparedContent = undefined;
|
|
3524
3524
|
if (knowledgePiecesCount > 0 && !dependentParameterNames.includes('knowledge')) {
|
|
3525
3525
|
preparedContent = spaceTrim$1("\n {content}\n\n ## Knowledge\n\n {knowledge}\n ");
|
|
@@ -3528,8 +3528,8 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3528
3528
|
'knowledge',
|
|
3529
3529
|
], false);
|
|
3530
3530
|
}
|
|
3531
|
-
|
|
3532
|
-
tasksPrepared[index] =
|
|
3531
|
+
preparedTask = __assign(__assign({}, task), { dependentParameterNames: dependentParameterNames, preparedContent: preparedContent });
|
|
3532
|
+
tasksPrepared[index] = preparedTask;
|
|
3533
3533
|
return [2 /*return*/];
|
|
3534
3534
|
});
|
|
3535
3535
|
}); })];
|
|
@@ -3541,8 +3541,8 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3541
3541
|
});
|
|
3542
3542
|
}
|
|
3543
3543
|
/**
|
|
3544
|
-
* TODO: [🧠] Add context to each
|
|
3545
|
-
* TODO: [🧠] What is better name `
|
|
3544
|
+
* TODO: [🧠] Add context to each task (if missing)
|
|
3545
|
+
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3546
3546
|
* TODO: [♨][main] !!! Prepare index the examples and maybe tasks
|
|
3547
3547
|
* TODO: Write tests for `preparePipeline`
|
|
3548
3548
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
@@ -3628,7 +3628,7 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3628
3628
|
})];
|
|
3629
3629
|
case 3:
|
|
3630
3630
|
tasksPrepared = (_c.sent()).tasksPrepared;
|
|
3631
|
-
// ----- /
|
|
3631
|
+
// ----- /Tasks preparation -----
|
|
3632
3632
|
// Note: Count total usage
|
|
3633
3633
|
currentPreparation.usage = llmToolsWithUsage.getTotalUsage();
|
|
3634
3634
|
return [2 /*return*/, $asDeeplyFrozenSerializableJson('Prepared PipelineJson', __assign(__assign({}, clonePipeline(pipeline)), { tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
@@ -3697,16 +3697,16 @@ function extractVariables(script) {
|
|
|
3697
3697
|
*/
|
|
3698
3698
|
|
|
3699
3699
|
/**
|
|
3700
|
-
* Parses the
|
|
3700
|
+
* Parses the task and returns the set of all used parameters
|
|
3701
3701
|
*
|
|
3702
|
-
* @param
|
|
3702
|
+
* @param task the task with used parameters
|
|
3703
3703
|
* @returns the set of parameter names
|
|
3704
3704
|
* @throws {ParseError} if the script is invalid
|
|
3705
3705
|
* @public exported from `@promptbook/utils`
|
|
3706
3706
|
*/
|
|
3707
|
-
function extractParameterNamesFromTask(
|
|
3707
|
+
function extractParameterNamesFromTask(task) {
|
|
3708
3708
|
var e_1, _a, e_2, _b, e_3, _c, e_4, _d;
|
|
3709
|
-
var title =
|
|
3709
|
+
var title = task.title, description = task.description, taskType = task.taskType, content = task.content, preparedContent = task.preparedContent, jokerParameterNames = task.jokerParameterNames, foreach = task.foreach;
|
|
3710
3710
|
var parameterNames = new Set();
|
|
3711
3711
|
try {
|
|
3712
3712
|
for (var _e = __values(__spreadArray(__spreadArray(__spreadArray(__spreadArray([], __read(extractParameterNames(title)), false), __read(extractParameterNames(description || '')), false), __read(extractParameterNames(content)), false), __read(extractParameterNames(preparedContent || '')), false)), _f = _e.next(); !_f.done; _f = _e.next()) {
|