@promptbook/markdown-utils 0.74.0-11 → 0.74.0-13
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -10
- package/esm/index.es.js +21 -19
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/cli/promptbookCli.d.ts +1 -1
- package/esm/typings/src/collection/collectionToJson.test.d.ts +1 -1
- package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +1 -1
- package/esm/typings/src/commands/BOOK_VERSION/BookVersionCommand.d.ts +1 -1
- package/esm/typings/src/commands/FOREACH/foreachCommandParser.d.ts +2 -2
- package/esm/typings/src/commands/_BOILERPLATE/boilerplateCommandParser.d.ts +1 -1
- package/esm/typings/src/conversion/pipelineJsonToString.d.ts +3 -3
- package/esm/typings/src/conversion/pipelineStringToJson.d.ts +2 -2
- package/esm/typings/src/conversion/pipelineStringToJsonSync.d.ts +2 -2
- package/esm/typings/src/conversion/utils/stringifyPipelineJson.d.ts +1 -1
- package/esm/typings/src/conversion/validation/_importPipeline.d.ts +7 -7
- package/esm/typings/src/formats/_common/FormatDefinition.d.ts +1 -1
- package/esm/typings/src/formats/_common/FormatSubvalueDefinition.d.ts +1 -1
- package/esm/typings/src/types/PipelineJson/PipelineJson.d.ts +6 -4
- package/esm/typings/src/types/PipelineJson/PreparationJson.d.ts +1 -1
- package/esm/typings/src/types/Prompt.d.ts +1 -1
- package/esm/typings/src/types/typeAliases.d.ts +2 -2
- package/package.json +1 -1
- package/umd/index.umd.js +21 -19
- package/umd/index.umd.js.map +1 -1
package/README.md
CHANGED
|
@@ -148,7 +148,7 @@ Following is the documentation and blueprint of the Book language.
|
|
|
148
148
|
|
|
149
149
|
File is designed to be easy to read and write. It is strict subset of markdown. It is designed to be understandable by both humans and machines and without specific knowledge of the language.
|
|
150
150
|
|
|
151
|
-
It has file with `.
|
|
151
|
+
It has file with `.book.md` or `.book` extension with `UTF-8` non BOM encoding.
|
|
152
152
|
|
|
153
153
|
As it is source code, it can leverage all the features of version control systems like git and does not suffer from the problems of binary formats, proprietary formats, or no-code solutions.
|
|
154
154
|
|
|
@@ -241,11 +241,6 @@ Or you can install them separately:
|
|
|
241
241
|
|
|
242
242
|
## 📚 Dictionary
|
|
243
243
|
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
244
|
### 📚 Dictionary
|
|
250
245
|
|
|
251
246
|
The following glossary is used to clarify certain concepts:
|
|
@@ -261,8 +256,6 @@ The following glossary is used to clarify certain concepts:
|
|
|
261
256
|
- **Retrieval-augmented generation** is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
|
|
262
257
|
- **Longtail** refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.
|
|
263
258
|
|
|
264
|
-
|
|
265
|
-
|
|
266
259
|
_Note: Thos section is not complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
|
|
267
260
|
|
|
268
261
|
#### Promptbook core
|
|
@@ -323,8 +316,6 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
|
|
|
323
316
|
- [👮 Agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39)
|
|
324
317
|
- [view more](https://github.com/webgptorg/promptbook/discussions/categories/concepts)
|
|
325
318
|
|
|
326
|
-
|
|
327
|
-
|
|
328
319
|
### Terms specific to Promptbook TypeScript implementation
|
|
329
320
|
|
|
330
321
|
- Anonymous mode
|
package/esm/index.es.js
CHANGED
|
@@ -20,7 +20,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
20
20
|
*
|
|
21
21
|
* @see https://github.com/webgptorg/promptbook
|
|
22
22
|
*/
|
|
23
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.74.0-
|
|
23
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.74.0-12';
|
|
24
24
|
/**
|
|
25
25
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
26
26
|
*/
|
|
@@ -355,7 +355,7 @@ function extractJsonBlock(markdown) {
|
|
|
355
355
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
356
356
|
*/
|
|
357
357
|
|
|
358
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.
|
|
358
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.book.md"}];
|
|
359
359
|
|
|
360
360
|
/**
|
|
361
361
|
* Prettify the html code
|
|
@@ -394,13 +394,13 @@ function prettifyMarkdown(content) {
|
|
|
394
394
|
/**
|
|
395
395
|
* Converts promptbook in JSON format to string format
|
|
396
396
|
*
|
|
397
|
-
* @param pipelineJson Promptbook in JSON format (.
|
|
398
|
-
* @returns Promptbook in string format (.
|
|
397
|
+
* @param pipelineJson Promptbook in JSON format (.book.json)
|
|
398
|
+
* @returns Promptbook in string format (.book.md)
|
|
399
399
|
* @public exported from `@promptbook/core`
|
|
400
400
|
*/
|
|
401
401
|
function pipelineJsonToString(pipelineJson) {
|
|
402
402
|
var e_1, _a, e_2, _b, e_3, _c, e_4, _d, e_5, _e, e_6, _f;
|
|
403
|
-
var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl,
|
|
403
|
+
var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, bookVersion = pipelineJson.bookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
|
|
404
404
|
var pipelineString = "# ".concat(title);
|
|
405
405
|
if (description) {
|
|
406
406
|
pipelineString += '\n\n';
|
|
@@ -410,8 +410,10 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
410
410
|
if (pipelineUrl) {
|
|
411
411
|
commands.push("PIPELINE URL ".concat(pipelineUrl));
|
|
412
412
|
}
|
|
413
|
-
|
|
414
|
-
|
|
413
|
+
if (bookVersion !== "undefined") {
|
|
414
|
+
commands.push("BOOK VERSION ".concat(bookVersion));
|
|
415
|
+
}
|
|
416
|
+
// TODO: [main] !!!!!! This increase size of the bundle and is probbably not necessary
|
|
415
417
|
pipelineString = prettifyMarkdown(pipelineString);
|
|
416
418
|
try {
|
|
417
419
|
for (var _g = __values(parameters.filter(function (_a) {
|
|
@@ -591,7 +593,7 @@ function templateParameterJsonToString(templateParameterJson) {
|
|
|
591
593
|
* TODO: [🧠] Is there a way to auto-detect missing features in pipelineJsonToString
|
|
592
594
|
* TODO: [🏛] Maybe make some markdown builder
|
|
593
595
|
* TODO: [🏛] Escape all
|
|
594
|
-
* TODO: [🧠] Should be in generated .
|
|
596
|
+
* TODO: [🧠] Should be in generated .book.md file GENERATOR_WARNING
|
|
595
597
|
*/
|
|
596
598
|
|
|
597
599
|
/**
|
|
@@ -1065,7 +1067,7 @@ function isValidPipelineUrl(url) {
|
|
|
1065
1067
|
if (!url.startsWith('https://')) {
|
|
1066
1068
|
return false;
|
|
1067
1069
|
}
|
|
1068
|
-
if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.
|
|
1070
|
+
if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
|
|
1069
1071
|
return false;
|
|
1070
1072
|
}
|
|
1071
1073
|
if (url.includes('#')) {
|
|
@@ -1134,9 +1136,9 @@ function validatePipelineCore(pipeline) {
|
|
|
1134
1136
|
// <- Note: [🚲]
|
|
1135
1137
|
throw new PipelineLogicError(spaceTrim$1(function (block) { return "\n Invalid promptbook URL \"".concat(pipeline.pipelineUrl, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
|
|
1136
1138
|
}
|
|
1137
|
-
if (pipeline.
|
|
1139
|
+
if (pipeline.bookVersion !== undefined && !isValidPromptbookVersion(pipeline.bookVersion)) {
|
|
1138
1140
|
// <- Note: [🚲]
|
|
1139
|
-
throw new PipelineLogicError(spaceTrim$1(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.
|
|
1141
|
+
throw new PipelineLogicError(spaceTrim$1(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.bookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
|
|
1140
1142
|
}
|
|
1141
1143
|
// TODO: [🧠] Maybe do here some propper JSON-schema / ZOD checking
|
|
1142
1144
|
if (!Array.isArray(pipeline.parameters)) {
|
|
@@ -2785,7 +2787,7 @@ function preparePersona(personaDescription, tools, options) {
|
|
|
2785
2787
|
collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
|
|
2786
2788
|
_b = createPipelineExecutor;
|
|
2787
2789
|
_c = {};
|
|
2788
|
-
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.
|
|
2790
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book.md')];
|
|
2789
2791
|
case 1:
|
|
2790
2792
|
preparePersonaExecutor = _b.apply(void 0, [(_c.pipeline = _d.sent(),
|
|
2791
2793
|
_c.tools = tools,
|
|
@@ -3457,12 +3459,12 @@ TODO: [🧊] This is how it can look in future
|
|
|
3457
3459
|
*/
|
|
3458
3460
|
function clonePipeline(pipeline) {
|
|
3459
3461
|
// Note: Not using spread operator (...) because @@@
|
|
3460
|
-
var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title,
|
|
3462
|
+
var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, bookVersion = pipeline.bookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
|
|
3461
3463
|
return {
|
|
3462
3464
|
pipelineUrl: pipelineUrl,
|
|
3463
3465
|
sourceFile: sourceFile,
|
|
3464
3466
|
title: title,
|
|
3465
|
-
|
|
3467
|
+
bookVersion: bookVersion,
|
|
3466
3468
|
description: description,
|
|
3467
3469
|
parameters: parameters,
|
|
3468
3470
|
templates: templates,
|
|
@@ -4573,7 +4575,7 @@ function executeAttempts(options) {
|
|
|
4573
4575
|
promptTitle: template.title,
|
|
4574
4576
|
promptMessage: replaceParameters(template.description || '', parameters),
|
|
4575
4577
|
defaultValue: replaceParameters(preparedContent, parameters),
|
|
4576
|
-
// TODO: [🧠] !! Figure out how to define placeholder in .
|
|
4578
|
+
// TODO: [🧠] !! Figure out how to define placeholder in .book.md file
|
|
4577
4579
|
placeholder: undefined,
|
|
4578
4580
|
priority: priority,
|
|
4579
4581
|
}))];
|
|
@@ -5139,7 +5141,7 @@ function executePipeline(options) {
|
|
|
5139
5141
|
pipelineUrl: preparedPipeline.pipelineUrl,
|
|
5140
5142
|
title: preparedPipeline.title,
|
|
5141
5143
|
promptbookUsedVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
5142
|
-
promptbookRequestedVersion: preparedPipeline.
|
|
5144
|
+
promptbookRequestedVersion: preparedPipeline.bookVersion,
|
|
5143
5145
|
description: preparedPipeline.description,
|
|
5144
5146
|
promptExecutions: [],
|
|
5145
5147
|
};
|
|
@@ -5535,7 +5537,7 @@ var MarkdownScraper = /** @class */ (function () {
|
|
|
5535
5537
|
collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
|
|
5536
5538
|
_d = createPipelineExecutor;
|
|
5537
5539
|
_g = {};
|
|
5538
|
-
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.
|
|
5540
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md')];
|
|
5539
5541
|
case 1:
|
|
5540
5542
|
prepareKnowledgeFromMarkdownExecutor = _d.apply(void 0, [(_g.pipeline = _k.sent(),
|
|
5541
5543
|
_g.tools = {
|
|
@@ -5544,7 +5546,7 @@ var MarkdownScraper = /** @class */ (function () {
|
|
|
5544
5546
|
_g)]);
|
|
5545
5547
|
_e = createPipelineExecutor;
|
|
5546
5548
|
_h = {};
|
|
5547
|
-
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.
|
|
5549
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.book.md')];
|
|
5548
5550
|
case 2:
|
|
5549
5551
|
prepareTitleExecutor = _e.apply(void 0, [(_h.pipeline = _k.sent(),
|
|
5550
5552
|
_h.tools = {
|
|
@@ -5553,7 +5555,7 @@ var MarkdownScraper = /** @class */ (function () {
|
|
|
5553
5555
|
_h)]);
|
|
5554
5556
|
_f = createPipelineExecutor;
|
|
5555
5557
|
_j = {};
|
|
5556
|
-
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.
|
|
5558
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md')];
|
|
5557
5559
|
case 3:
|
|
5558
5560
|
prepareKeywordsExecutor = _f.apply(void 0, [(_j.pipeline = _k.sent(),
|
|
5559
5561
|
_j.tools = {
|