@promptbook/markdown-utils 0.72.0 → 0.74.0-0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -18,10 +18,16 @@ Build responsible, controlled and transparent applications on top of LLM models!
18
18
 
19
19
  ## ✨ New Features
20
20
 
21
+ - 💙 Working on [the **Book** language v1](https://github.com/webgptorg/book)
22
+ - 📚 Support of `.docx`, `.doc` and `.pdf` documents
21
23
  - ✨ **Support of [OpenAI o1 model](https://openai.com/o1/)**
22
24
 
23
25
 
24
26
 
27
+ <blockquote style="color: #ff8811">
28
+ <b>⚠ Warning:</b> This is a pre-release version of the library. It is not yet ready for production use. Please look at <a href="https://www.npmjs.com/package/@promptbook/core?activeTab=versions">latest stable release</a>.
29
+ </blockquote>
30
+
25
31
  ## 📦 Package `@promptbook/markdown-utils`
26
32
 
27
33
  - Promptbooks are [divided into several](#-packages) packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
@@ -50,7 +56,7 @@ Rest of the documentation is common for **entire promptbook ecosystem**:
50
56
 
51
57
  If you have a simple, single prompt for ChatGPT, GPT-4, Anthropic Claude, Google Gemini, Llama 3, or whatever, it doesn't matter how you integrate it. Whether it's calling a REST API directly, using the SDK, hardcoding the prompt into the source code, or importing a text file, the process remains the same.
52
58
 
53
- But often you will struggle with the **limitations of LLMs**, such as **hallucinations, off-topic responses, poor quality output, language and prompt drift, word repetition repetition repetition repetition or misuse, lack of context, or just plain w𝒆𝐢rd responses**. When this happens, you generally have three options:
59
+ But often you will struggle with the **limitations of LLMs**, such as **hallucinations, off-topic responses, poor quality output, language and prompt drift, word repetition repetition repetition repetition or misuse, lack of context, or just plain w𝒆𝐢rd resp0nses**. When this happens, you generally have three options:
54
60
 
55
61
  1. **Fine-tune** the model to your specifications or even train your own.
56
62
  2. **Prompt-engineer** the prompt to the best shape you can achieve.
@@ -58,248 +64,87 @@ But often you will struggle with the **limitations of LLMs**, such as **hallucin
58
64
 
59
65
  In all of these situations, but especially in 3., the **✨ Promptbook can make your life waaaaaaaaaay easier**.
60
66
 
61
- - [**Separates concerns**](https://github.com/webgptorg/promptbook/discussions/32) between prompt-engineer and programmer, between code files and prompt files, and between prompts and their execution logic.
62
- - Establishes a [**common format `.ptbk.md`**](https://github.com/webgptorg/promptbook/discussions/85) that can be used to describe your prompt business logic without having to write code or deal with the technicalities of LLMs.
63
- - **Forget** about **low-level details** like choosing the right model, tokens, context size, temperature, top-k, top-p, or kernel sampling. **Just write your intent** and [**persona**](https://github.com/webgptorg/promptbook/discussions/22) who should be responsible for the task and let the library do the rest.
64
- - Has built-in **orchestration** of [pipeline](https://github.com/webgptorg/promptbook/discussions/64) execution and many tools to make the process easier, more reliable, and more efficient, such as caching, [compilation+preparation](https://github.com/webgptorg/promptbook/discussions/78), [just-in-time fine-tuning](https://github.com/webgptorg/promptbook/discussions/33), [expectation-aware generation](https://github.com/webgptorg/promptbook/discussions/37), [agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39), and more.
67
+ - [**Separates concerns**](https://github.com/webgptorg/promptbook/discussions/32) between prompt-engineer and programmer, between code files and prompt files, and between prompts and their execution logic. For this purpose, it introduces a new language called [the **💙 Book**](https://github.com/webgptorg/book).
68
+ - Book allows you to **focus on the business** logic without having to write code or deal with the technicalities of LLMs.
69
+ - **Forget** about **low-level details** like choosing the right model, tokens, context size, `temperature`, `top-k`, `top-p`, or kernel sampling. **Just write your intent** and [**persona**](https://github.com/webgptorg/promptbook/discussions/22) who should be responsible for the task and let the library do the rest.
70
+ - We have built-in **orchestration** of [pipeline](https://github.com/webgptorg/promptbook/discussions/64) execution and many tools to make the process easier, more reliable, and more efficient, such as caching, [compilation+preparation](https://github.com/webgptorg/promptbook/discussions/78), [just-in-time fine-tuning](https://github.com/webgptorg/promptbook/discussions/33), [expectation-aware generation](https://github.com/webgptorg/promptbook/discussions/37), [agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39), and more.
65
71
  - Sometimes even the best prompts with the best framework like Promptbook `:)` can't avoid the problems. In this case, the library has built-in **[anomaly detection](https://github.com/webgptorg/promptbook/discussions/40) and logging** to help you find and fix the problems.
66
- - Promptbook has built in versioning. You can test multiple **A/B versions** of pipelines and see which one works best.
67
- - Promptbook is designed to do [**RAG** (Retrieval-Augmented Generation)](https://github.com/webgptorg/promptbook/discussions/41) and other advanced techniques. You can use **knowledge** to improve the quality of the output.
68
-
69
-
70
-
71
- ## 🧔 Pipeline _(for prompt-engeneers)_
72
-
73
- **P**romp**t** **b**oo**k** markdown file (or `.ptbk.md` file) is document that describes a **pipeline** - a series of prompts that are chained together to form somewhat reciepe for transforming natural language input.
74
-
75
- - Multiple pipelines forms a **collection** which will handle core **know-how of your LLM application**.
76
- - Theese pipelines are designed such as they **can be written by non-programmers**.
77
-
78
-
79
-
80
- ### Sample:
81
-
82
- File `write-website-content.ptbk.md`:
83
-
84
-
85
-
86
-
87
-
88
- > # 🌍 Create website content
89
- >
90
- > Instructions for creating web page content.
91
- >
92
- > - PIPELINE URL https://promptbook.studio/webgpt/write-website-content.ptbk.md
93
- > - INPUT  PARAM `{rawTitle}` Automatically suggested a site name or empty text
94
- > - INPUT  PARAM `{rawAssigment}` Automatically generated site entry from image recognition
95
- > - OUTPUT PARAM `{websiteContent}` Web content
96
- > - OUTPUT PARAM `{keywords}` Keywords
97
- >
98
- > ## 👤 Specifying the assigment
99
- >
100
- > What is your web about?
101
- >
102
- > - DIALOG TEMPLATE
103
- >
104
- > ```
105
- > {rawAssigment}
106
- > ```
107
- >
108
- > `-> {assigment}` Website assignment and specification
109
- >
110
- > ## ✨ Improving the title
111
- >
112
- > - PERSONA Jane, Copywriter and Marketing Specialist.
113
- >
114
- > ```
115
- > As an experienced marketing specialist, you have been entrusted with improving the name of your client's business.
116
- >
117
- > A suggested name from a client:
118
- > "{rawTitle}"
119
- >
120
- > Assignment from customer:
121
- >
122
- > > {assigment}
123
- >
124
- > ## Instructions:
125
- >
126
- > - Write only one name suggestion
127
- > - The name will be used on the website, business cards, visuals, etc.
128
- > ```
129
- >
130
- > `-> {enhancedTitle}` Enhanced title
131
- >
132
- > ## 👤 Website title approval
133
- >
134
- > Is the title for your website okay?
135
- >
136
- > - DIALOG TEMPLATE
137
- >
138
- > ```
139
- > {enhancedTitle}
140
- > ```
141
- >
142
- > `-> {title}` Title for the website
143
- >
144
- > ## 🐰 Cunning subtitle
145
- >
146
- > - PERSONA Josh, a copywriter, tasked with creating a claim for the website.
147
- >
148
- > ```
149
- > As an experienced copywriter, you have been entrusted with creating a claim for the "{title}" web page.
150
- >
151
- > A website assignment from a customer:
152
- >
153
- > > {assigment}
154
- >
155
- > ## Instructions:
156
- >
157
- > - Write only one name suggestion
158
- > - Claim will be used on website, business cards, visuals, etc.
159
- > - Claim should be punchy, funny, original
160
- > ```
161
- >
162
- > `-> {claim}` Claim for the web
163
- >
164
- > ## 🚦 Keyword analysis
165
- >
166
- > - PERSONA Paul, extremely creative SEO specialist.
167
- >
168
- > ```
169
- > As an experienced SEO specialist, you have been entrusted with creating keywords for the website "{title}".
170
- >
171
- > Website assignment from the customer:
172
- >
173
- > > {assigment}
174
- >
175
- > ## Instructions:
176
- >
177
- > - Write a list of keywords
178
- > - Keywords are in basic form
179
- >
180
- > ## Example:
181
- >
182
- > - Ice cream
183
- > - Olomouc
184
- > - Quality
185
- > - Family
186
- > - Tradition
187
- > - Italy
188
- > - Craft
189
- >
190
- > ```
191
- >
192
- > `-> {keywords}` Keywords
193
- >
194
- > ## 🔗 Combine the beginning
195
- >
196
- > - SIMPLE TEMPLATE
197
- >
198
- > ```
199
- >
200
- > # {title}
201
- >
202
- > > {claim}
203
- >
204
- > ```
205
- >
206
- > `-> {contentBeginning}` Beginning of web content
207
- >
208
- > ## 🖋 Write the content
209
- >
210
- > - PERSONA Jane
211
- >
212
- > ```
213
- > As an experienced copywriter and web designer, you have been entrusted with creating text for a new website {title}.
214
- >
215
- > A website assignment from a customer:
216
- >
217
- > > {assigment}
218
- >
219
- > ## Instructions:
220
- >
221
- > - Text formatting is in Markdown
222
- > - Be concise and to the point
223
- > - Use keywords, but they should be naturally in the text
224
- > - This is the complete content of the page, so don't forget all the important information and elements the page should contain
225
- > - Use headings, bullets, text formatting
226
- >
227
- > ## Keywords:
228
- >
229
- > {keywords}
230
- >
231
- > ## Web Content:
232
- >
233
- > {contentBeginning}
234
- > ```
235
- >
236
- > `-> {contentBody}` Middle of the web content
237
- >
238
- > ## 🔗 Combine the content
239
- >
240
- > - SIMPLE TEMPLATE
241
- >
242
- > ```markdown
243
- > {contentBeginning}
244
- >
245
- > {contentBody}
246
- > ```
247
- >
248
- > `-> {websiteContent}`
249
-
250
-
251
-
252
- Following is the scheme how the promptbook above is executed:
253
-
254
- ```mermaid
255
- %% 🔮 Tip: Open this on GitHub or in the VSCode website to see the Mermaid graph visually
256
-
257
- flowchart LR
258
- subgraph "🌍 Create website content"
259
-
260
- direction TB
261
-
262
- input((Input)):::input
263
- templateSpecifyingTheAssigment(👤 Specifying the assigment)
264
- input--"{rawAssigment}"-->templateSpecifyingTheAssigment
265
- templateImprovingTheTitle(✨ Improving the title)
266
- input--"{rawTitle}"-->templateImprovingTheTitle
267
- templateSpecifyingTheAssigment--"{assigment}"-->templateImprovingTheTitle
268
- templateWebsiteTitleApproval(👤 Website title approval)
269
- templateImprovingTheTitle--"{enhancedTitle}"-->templateWebsiteTitleApproval
270
- templateCunningSubtitle(🐰 Cunning subtitle)
271
- templateWebsiteTitleApproval--"{title}"-->templateCunningSubtitle
272
- templateSpecifyingTheAssigment--"{assigment}"-->templateCunningSubtitle
273
- templateKeywordAnalysis(🚦 Keyword analysis)
274
- templateWebsiteTitleApproval--"{title}"-->templateKeywordAnalysis
275
- templateSpecifyingTheAssigment--"{assigment}"-->templateKeywordAnalysis
276
- templateCombineTheBeginning(🔗 Combine the beginning)
277
- templateWebsiteTitleApproval--"{title}"-->templateCombineTheBeginning
278
- templateCunningSubtitle--"{claim}"-->templateCombineTheBeginning
279
- templateWriteTheContent(🖋 Write the content)
280
- templateWebsiteTitleApproval--"{title}"-->templateWriteTheContent
281
- templateSpecifyingTheAssigment--"{assigment}"-->templateWriteTheContent
282
- templateKeywordAnalysis--"{keywords}"-->templateWriteTheContent
283
- templateCombineTheBeginning--"{contentBeginning}"-->templateWriteTheContent
284
- templateCombineTheContent(🔗 Combine the content)
285
- templateCombineTheBeginning--"{contentBeginning}"-->templateCombineTheContent
286
- templateWriteTheContent--"{contentBody}"-->templateCombineTheContent
287
-
288
- templateCombineTheContent--"{websiteContent}"-->output
289
- output((Output)):::output
290
-
291
- classDef input color: grey;
292
- classDef output color: grey;
293
-
294
- end;
295
- ```
72
+ - Versioning is build in. You can test multiple **A/B versions** of pipelines and see which one works best.
73
+ - Promptbook is designed to use [**RAG** (Retrieval-Augmented Generation)](https://github.com/webgptorg/promptbook/discussions/41) and other advanced techniques to bring the context of your business to generic LLM. You can use **knowledge** to improve the quality of the output.
74
+
75
+
76
+
77
+ ## 💜 The Promptbook Project
78
+
79
+
80
+
81
+ <table>
82
+ <tbody>
83
+ <tr>
84
+ <td>Promptbook whitepaper</td>
85
+ <td>Basic motivations and problems which we are trying to solve</td>
86
+ <td rowspan=3>https://github.com/webgptorg/book</td>
87
+ </tr>
88
+ <tr>
89
+ <td>Promptbook <i>(system)</i></td>
90
+ <td>Promptbook ...</td>
91
+ </tr>
92
+ <tr>
93
+ <td>Book language</td>
94
+ <td>
95
+ Book is a markdown-like language to define projects, pipelines, knowledge,... in the Promptbook system. It is designed to be understandable by non-programmers and non-technical people
96
+ </td>
97
+ </tr>
98
+ <tr>
99
+ <td>Promptbook typescript project</td>
100
+ <td>Implementation of Promptbook in TypeScript published into multiple packages to NPM</td>
101
+ <td>https://github.com/webgptorg/promptbook</td>
102
+ </tr>
103
+ <tr>
104
+ <td>Promptbook studio</td>
105
+ <td>Promptbook studio</td>
106
+ <td rowspan=2>https://github.com/hejny/promptbook-studio</td>
107
+ </tr>
108
+ <tr>
109
+ <td>Promptbook miniapps</td>
110
+ <td>Promptbook miniapps</td>
111
+ </tr>
112
+ </tbody>
113
+ </table>
114
+
115
+ ## 💙 Book language _(for prompt-engineer)_
116
+
117
+ Promptbook [pipelines](https://github.com/webgptorg/promptbook/discussions/64) are written in markdown-like language called [Book](https://github.com/webgptorg/book). It is designed to be understandable by non-programmers and non-technical people.
118
+
296
119
 
297
- - [More template samples](./samples/pipelines/)
298
- - [Read more about `.ptbk.md` file format here](https://github.com/webgptorg/promptbook/discussions/categories/concepts?discussions_q=is%3Aopen+label%3A.ptbk.md+category%3AConcepts)
299
120
 
300
- _Note: We are using [postprocessing functions](#postprocessing-functions) like `unwrapResult` that can be used to postprocess the result._
121
+ ```markdown
122
+ # 🌟 My first Book
301
123
 
302
- ## 📦 Packages
124
+ - INPUT PARAMETER {subject}
125
+ - OUTPUT PARAMETER {article}
126
+
127
+ ## Sample subject
128
+
129
+ > Promptbook
130
+
131
+ -> {subject}
132
+
133
+ ## Write an article
134
+
135
+ - PERSONA Jane, marketing specialist with prior experience in writing articles about technology and artificial intelligence
136
+ - KNOWLEDGE https://ptbk.io
137
+ - KNOWLEDGE ./promptbook.pdf
138
+ - EXPECT MIN 1 Sentence
139
+ - EXPECT MAX 1 Paragraph
140
+
141
+ > Write an article about the future of artificial intelligence in the next 10 years and how metalanguages will change the way AI is used in the world.
142
+ > Look specifically at the impact of {subject} on the AI industry.
143
+
144
+ -> {article}
145
+ ```
146
+
147
+ ## 📦 Packages _(for developers)_
303
148
 
304
149
  This library is divided into several packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
305
150
  You can install all of them at once:
@@ -341,6 +186,8 @@ Or you can install them separately:
341
186
 
342
187
  The following glossary is used to clarify certain concepts:
343
188
 
189
+ ### Basic terms
190
+
344
191
 
345
192
 
346
193
  ### Core concepts
@@ -373,8 +220,8 @@ The following glossary is used to clarify certain concepts:
373
220
 
374
221
  ## 🔌 Usage in Typescript / Javascript
375
222
 
376
- - [Simple usage](./samples/usage/simple-script)
377
- - [Usage with client and remote server](./samples/usage/remote)
223
+ - [Simple usage](./examples/usage/simple-script)
224
+ - [Usage with client and remote server](./examples/usage/remote)
378
225
 
379
226
  ## ➕➖ When to use Promptbook?
380
227
 
package/esm/index.es.js CHANGED
@@ -12,7 +12,7 @@ import { unparse, parse } from 'papaparse';
12
12
  /**
13
13
  * The version of the Promptbook library
14
14
  */
15
- var PROMPTBOOK_VERSION = '0.72.0-34';
15
+ var PROMPTBOOK_VERSION = '0.73.0';
16
16
  // TODO: [main] !!!! List here all the versions and annotate + put into script
17
17
 
18
18
  /*! *****************************************************************************
@@ -362,7 +362,7 @@ function TODO_USE() {
362
362
  }
363
363
  }
364
364
 
365
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
365
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
366
366
 
367
367
  /**
368
368
  * Prettify the html code
@@ -861,10 +861,10 @@ var RESERVED_PARAMETER_NAMES = $asDeeplyFrozenSerializableJson('RESERVED_PARAMET
861
861
  'content',
862
862
  'context',
863
863
  'knowledge',
864
- 'samples',
864
+ 'examples',
865
865
  'modelName',
866
866
  'currentDate',
867
- // <- TODO: !!!!! list here all command names
867
+ // <- TODO: list here all command names
868
868
  // <- TODO: Add more like 'date', 'modelName',...
869
869
  // <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
870
870
  ]);
@@ -1317,7 +1317,7 @@ function validatePipelineCore(pipeline) {
1317
1317
  }
1318
1318
  }
1319
1319
  /**
1320
- * TODO: !!!!! [🧞‍♀️] Do not allow joker + foreach
1320
+ * TODO: !! [🧞‍♀️] Do not allow joker + foreach
1321
1321
  * TODO: [🧠] Work with promptbookVersion
1322
1322
  * TODO: Use here some json-schema, Zod or something similar and change it to:
1323
1323
  * > /**
@@ -1329,7 +1329,7 @@ function validatePipelineCore(pipeline) {
1329
1329
  * > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
1330
1330
  */
1331
1331
  /**
1332
- * TODO: [🧳][main] !!!! Validate that all samples match expectations
1332
+ * TODO: [🧳][main] !!!! Validate that all examples match expectations
1333
1333
  * TODO: [🧳][🐝][main] !!!! Validate that knowledge is valid (non-void)
1334
1334
  * TODO: [🧳][main] !!!! Validate that persona can be used only with CHAT variant
1335
1335
  * TODO: [🧳][main] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
@@ -2117,12 +2117,12 @@ function isPipelinePrepared(pipeline) {
2117
2117
  return true;
2118
2118
  }
2119
2119
  /**
2120
- * TODO: [🔃][main] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
2120
+ * TODO: [🔃][main] !! If the pipeline was prepared with different version or different set of models, prepare it once again
2121
2121
  * TODO: [🐠] Maybe base this on `makeValidator`
2122
2122
  * TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
2123
2123
  * TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
2124
2124
  * - [🏍] ? Is context in each template
2125
- * - [♨] Are samples prepared
2125
+ * - [♨] Are examples prepared
2126
2126
  * - [♨] Are templates prepared
2127
2127
  */
2128
2128
 
@@ -2827,7 +2827,7 @@ function preparePersona(personaDescription, tools, options) {
2827
2827
  });
2828
2828
  }
2829
2829
  /**
2830
- * TODO: [🔃][main] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
2830
+ * TODO: [🔃][main] !! If the persona was prepared with different version or different set of models, prepare it once again
2831
2831
  * TODO: [🏢] !! Check validity of `modelName` in pipeline
2832
2832
  * TODO: [🏢] !! Check validity of `systemMessage` in pipeline
2833
2833
  * TODO: [🏢] !! Check validity of `temperature` in pipeline
@@ -3493,7 +3493,7 @@ function prepareTemplates(pipeline, tools, options) {
3493
3493
  case 0:
3494
3494
  _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a;
3495
3495
  templates = pipeline.templates, parameters = pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
3496
- // TODO: [main] !!!!! Apply samples to each template (if missing and is for the template defined)
3496
+ // TODO: [main] !! Apply examples to each template (if missing and is for the template defined)
3497
3497
  TODO_USE(parameters);
3498
3498
  templatesPrepared = new Array(templates.length);
3499
3499
  return [4 /*yield*/, forEachAsync(templates, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (template, index) { return __awaiter(_this, void 0, void 0, function () {
@@ -3523,7 +3523,7 @@ function prepareTemplates(pipeline, tools, options) {
3523
3523
  /**
3524
3524
  * TODO: [🧠] Add context to each template (if missing)
3525
3525
  * TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
3526
- * TODO: [♨][main] !!! Prepare index the samples and maybe templates
3526
+ * TODO: [♨][main] !!! Prepare index the examples and maybe templates
3527
3527
  * TODO: Write tests for `preparePipeline`
3528
3528
  * TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
3529
3529
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
@@ -4916,7 +4916,7 @@ function getKnowledgeForTemplate(options) {
4916
4916
  var preparedPipeline, template;
4917
4917
  return __generator(this, function (_a) {
4918
4918
  preparedPipeline = options.preparedPipeline, template = options.template;
4919
- // TODO: [♨] Implement Better - use real index and keyword search from `template` and {samples}
4919
+ // TODO: [♨] Implement Better - use real index and keyword search from `template` and {examples}
4920
4920
  TODO_USE(template);
4921
4921
  return [2 /*return*/, preparedPipeline.knowledgePieces.map(function (_a) {
4922
4922
  var content = _a.content;
@@ -4931,7 +4931,7 @@ function getKnowledgeForTemplate(options) {
4931
4931
  *
4932
4932
  * @private internal utility of `createPipelineExecutor`
4933
4933
  */
4934
- function getSamplesForTemplate(template) {
4934
+ function getExamplesForTemplate(template) {
4935
4935
  return __awaiter(this, void 0, void 0, function () {
4936
4936
  return __generator(this, function (_a) {
4937
4937
  // TODO: [♨] Implement Better - use real index and keyword search
@@ -4948,7 +4948,7 @@ function getSamplesForTemplate(template) {
4948
4948
  */
4949
4949
  function getReservedParametersForTemplate(options) {
4950
4950
  return __awaiter(this, void 0, void 0, function () {
4951
- var preparedPipeline, template, pipelineIdentification, context, knowledge, samples, currentDate, modelName, reservedParameters, _loop_1, RESERVED_PARAMETER_NAMES_1, RESERVED_PARAMETER_NAMES_1_1, parameterName;
4951
+ var preparedPipeline, template, pipelineIdentification, context, knowledge, examples, currentDate, modelName, reservedParameters, _loop_1, RESERVED_PARAMETER_NAMES_1, RESERVED_PARAMETER_NAMES_1_1, parameterName;
4952
4952
  var e_1, _a;
4953
4953
  return __generator(this, function (_b) {
4954
4954
  switch (_b.label) {
@@ -4960,16 +4960,16 @@ function getReservedParametersForTemplate(options) {
4960
4960
  return [4 /*yield*/, getKnowledgeForTemplate({ preparedPipeline: preparedPipeline, template: template })];
4961
4961
  case 2:
4962
4962
  knowledge = _b.sent();
4963
- return [4 /*yield*/, getSamplesForTemplate(template)];
4963
+ return [4 /*yield*/, getExamplesForTemplate(template)];
4964
4964
  case 3:
4965
- samples = _b.sent();
4965
+ examples = _b.sent();
4966
4966
  currentDate = new Date().toISOString();
4967
4967
  modelName = RESERVED_PARAMETER_MISSING_VALUE;
4968
4968
  reservedParameters = {
4969
4969
  content: RESERVED_PARAMETER_RESTRICTED,
4970
4970
  context: context,
4971
4971
  knowledge: knowledge,
4972
- samples: samples,
4972
+ examples: examples,
4973
4973
  currentDate: currentDate,
4974
4974
  modelName: modelName,
4975
4975
  };
@@ -5628,7 +5628,7 @@ var MarkdownScraper = /** @class */ (function () {
5628
5628
  outputParameters = result.outputParameters;
5629
5629
  knowledgePiecesRaw = outputParameters.knowledgePieces;
5630
5630
  knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
5631
- // <- TODO: [main] !!!!! Smarter split and filter out empty pieces
5631
+ // <- TODO: [main] !! Smarter split and filter out empty pieces
5632
5632
  if (isVerbose) {
5633
5633
  console.info('knowledgeTextPieces:', knowledgeTextPieces);
5634
5634
  }