@promptbook/legacy-documents 0.94.0 → 0.98.0-10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/README.md +6 -2
  2. package/esm/index.es.js +228 -167
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/anthropic-claude.index.d.ts +2 -2
  5. package/esm/typings/src/_packages/cli.index.d.ts +4 -0
  6. package/esm/typings/src/_packages/core.index.d.ts +2 -0
  7. package/esm/typings/src/_packages/openai.index.d.ts +10 -0
  8. package/esm/typings/src/_packages/types.index.d.ts +14 -4
  9. package/esm/typings/src/_packages/{wizzard.index.d.ts → wizard.index.d.ts} +6 -2
  10. package/esm/typings/src/cli/cli-commands/prettify.d.ts +1 -1
  11. package/esm/typings/src/cli/cli-commands/test-command.d.ts +1 -1
  12. package/esm/typings/src/config.d.ts +1 -1
  13. package/esm/typings/src/conversion/archive/loadArchive.d.ts +1 -1
  14. package/esm/typings/src/conversion/archive/saveArchive.d.ts +2 -2
  15. package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +1 -1
  16. package/esm/typings/src/dialogs/callback/CallbackInterfaceTools.d.ts +1 -1
  17. package/esm/typings/src/execution/AbstractTaskResult.d.ts +2 -2
  18. package/esm/typings/src/execution/createPipelineExecutor/$OngoingTaskResult.d.ts +8 -0
  19. package/esm/typings/src/execution/createPipelineExecutor/00-CreatePipelineExecutorOptions.d.ts +1 -1
  20. package/esm/typings/src/execution/execution-report/ExecutionPromptReportJson.d.ts +2 -2
  21. package/esm/typings/src/execution/translation/automatic-translate/translateMessages.d.ts +1 -1
  22. package/esm/typings/src/execution/utils/validatePromptResult.d.ts +53 -0
  23. package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForWizzardOrCli.d.ts → $provideLlmToolsForWizardOrCli.d.ts} +2 -2
  24. package/esm/typings/src/llm-providers/anthropic-claude/AnthropicClaudeExecutionTools.d.ts +3 -3
  25. package/esm/typings/src/llm-providers/anthropic-claude/AnthropicClaudeExecutionToolsOptions.d.ts +2 -2
  26. package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -1
  27. package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -1
  28. package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -1
  29. package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -1
  30. package/esm/typings/src/llm-providers/deepseek/register-configuration.d.ts +1 -1
  31. package/esm/typings/src/llm-providers/deepseek/register-constructor.d.ts +1 -1
  32. package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -1
  33. package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -1
  34. package/esm/typings/src/llm-providers/ollama/register-configuration.d.ts +1 -1
  35. package/esm/typings/src/llm-providers/ollama/register-constructor.d.ts +1 -1
  36. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +1 -1
  37. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionToolsOptions.d.ts +2 -2
  38. package/esm/typings/src/llm-providers/openai/OpenAiCompatibleExecutionTools.d.ts +4 -4
  39. package/esm/typings/src/llm-providers/openai/OpenAiCompatibleExecutionToolsOptions.d.ts +52 -0
  40. package/esm/typings/src/llm-providers/openai/OpenAiExecutionToolsOptions.d.ts +3 -5
  41. package/esm/typings/src/llm-providers/openai/createOpenAiCompatibleExecutionTools.d.ts +74 -0
  42. package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +13 -2
  43. package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +16 -2
  44. package/esm/typings/src/remote-server/socket-types/listModels/PromptbookServer_ListModels_Request.d.ts +1 -1
  45. package/esm/typings/src/scrapers/_boilerplate/createBoilerplateScraper.d.ts +1 -1
  46. package/esm/typings/src/scrapers/_boilerplate/register-constructor.d.ts +1 -1
  47. package/esm/typings/src/scrapers/_boilerplate/register-metadata.d.ts +2 -2
  48. package/esm/typings/src/scrapers/_common/prepareKnowledgePieces.d.ts +1 -1
  49. package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +1 -1
  50. package/esm/typings/src/scrapers/document/createDocumentScraper.d.ts +1 -1
  51. package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -1
  52. package/esm/typings/src/scrapers/document/register-metadata.d.ts +2 -2
  53. package/esm/typings/src/scrapers/document-legacy/createLegacyDocumentScraper.d.ts +1 -1
  54. package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -1
  55. package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +2 -2
  56. package/esm/typings/src/scrapers/markdown/createMarkdownScraper.d.ts +1 -4
  57. package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -1
  58. package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +2 -2
  59. package/esm/typings/src/scrapers/markitdown/createMarkitdownScraper.d.ts +1 -1
  60. package/esm/typings/src/scrapers/markitdown/register-constructor.d.ts +1 -1
  61. package/esm/typings/src/scrapers/markitdown/register-metadata.d.ts +2 -2
  62. package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
  63. package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -1
  64. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -2
  65. package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
  66. package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -1
  67. package/esm/typings/src/scrapers/website/register-metadata.d.ts +2 -2
  68. package/esm/typings/src/types/typeAliases.d.ts +1 -1
  69. package/esm/typings/src/utils/files/listAllFiles.d.ts +1 -1
  70. package/esm/typings/src/version.d.ts +1 -1
  71. package/esm/typings/src/{wizzard → wizard}/$getCompiledBook.d.ts +2 -2
  72. package/esm/typings/src/{wizzard/wizzard.d.ts → wizard/wizard.d.ts} +6 -6
  73. package/package.json +2 -14
  74. package/umd/index.umd.js +228 -167
  75. package/umd/index.umd.js.map +1 -1
package/umd/index.umd.js CHANGED
@@ -26,7 +26,7 @@
26
26
  * @generated
27
27
  * @see https://github.com/webgptorg/promptbook
28
28
  */
29
- const PROMPTBOOK_ENGINE_VERSION = '0.94.0';
29
+ const PROMPTBOOK_ENGINE_VERSION = '0.98.0-10';
30
30
  /**
31
31
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
32
32
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -175,7 +175,7 @@
175
175
  *
176
176
  * @public exported from `@promptbook/core`
177
177
  */
178
- const DEFAULT_MAX_EXECUTION_ATTEMPTS = 10; // <- TODO: [🤹‍♂️]
178
+ const DEFAULT_MAX_EXECUTION_ATTEMPTS = 7; // <- TODO: [🤹‍♂️]
179
179
  // <- TODO: [🕝] Make also `BOOKS_DIRNAME_ALTERNATIVES`
180
180
  // TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
181
181
  /**
@@ -1052,7 +1052,7 @@
1052
1052
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
1053
1053
  */
1054
1054
 
1055
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
1055
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
1056
1056
 
1057
1057
  /**
1058
1058
  * Checks if value is valid email
@@ -1209,7 +1209,7 @@
1209
1209
  });
1210
1210
  }
1211
1211
  catch (error) {
1212
- // TODO: [🟥] Detect browser / node and make it colorfull
1212
+ // TODO: [🟥] Detect browser / node and make it colorful
1213
1213
  console.error('There was an error with prettifying the markdown, using the original as the fallback', {
1214
1214
  error,
1215
1215
  html: content,
@@ -1491,7 +1491,7 @@
1491
1491
  else {
1492
1492
  for (const [subName, subValue] of Object.entries(value)) {
1493
1493
  if (subValue === undefined) {
1494
- // Note: undefined in object is serializable - it is just omited
1494
+ // Note: undefined in object is serializable - it is just omitted
1495
1495
  continue;
1496
1496
  }
1497
1497
  checkSerializableAsJson({ name: `${name}.${subName}`, value: subValue, message });
@@ -2181,7 +2181,7 @@
2181
2181
 
2182
2182
  Note: You have probably forgotten to run "ptbk make" to update the collection
2183
2183
  Note: Pipelines with the same URL are not allowed
2184
- Only exepction is when the pipelines are identical
2184
+ Only exception is when the pipelines are identical
2185
2185
 
2186
2186
  `));
2187
2187
  }
@@ -2560,7 +2560,7 @@
2560
2560
  throw new Error(spaceTrim__default["default"]((block) => `
2561
2561
  ${block(error.message)}
2562
2562
 
2563
- The JSON text:
2563
+ The expected JSON text:
2564
2564
  ${block(value)}
2565
2565
  `));
2566
2566
  }
@@ -2931,12 +2931,12 @@
2931
2931
  get title() {
2932
2932
  return `${llmTools.title} (+usage)`;
2933
2933
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2934
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2934
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2935
2935
  },
2936
2936
  get description() {
2937
2937
  return `${llmTools.description} (+usage)`;
2938
2938
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2939
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2939
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2940
2940
  },
2941
2941
  checkConfiguration() {
2942
2942
  return /* not await */ llmTools.checkConfiguration();
@@ -3163,13 +3163,13 @@
3163
3163
 
3164
3164
  Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
3165
3165
  `);
3166
- // TODO: [🟥] Detect browser / node and make it colorfull
3166
+ // TODO: [🟥] Detect browser / node and make it colorful
3167
3167
  console.warn(warningMessage);
3168
3168
  // <- TODO: [🏮] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
3169
3169
  /*
3170
3170
  return {
3171
3171
  async listModels() {
3172
- // TODO: [🟥] Detect browser / node and make it colorfull
3172
+ // TODO: [🟥] Detect browser / node and make it colorful
3173
3173
  console.warn(
3174
3174
  spaceTrim(
3175
3175
  (block) => `
@@ -3445,17 +3445,17 @@
3445
3445
  * Mixes registered scrapers from $scrapersMetadataRegister and $scrapersRegister
3446
3446
  */
3447
3447
  const all = [];
3448
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersMetadataRegister.list()) {
3448
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersMetadataRegister.list()) {
3449
3449
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3450
3450
  continue;
3451
3451
  }
3452
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3452
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3453
3453
  }
3454
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersRegister.list()) {
3454
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersRegister.list()) {
3455
3455
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3456
3456
  continue;
3457
3457
  }
3458
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3458
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3459
3459
  }
3460
3460
  for (const { metadata } of availableScrapers) {
3461
3461
  all.push(metadata);
@@ -3467,8 +3467,8 @@
3467
3467
  const isInstalled = $scrapersRegister
3468
3468
  .list()
3469
3469
  .find(({ packageName, className }) => metadata.packageName === packageName && metadata.className === className);
3470
- const isAvilableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3471
- return { ...metadata, isMetadataAviailable, isInstalled, isAvilableInTools };
3470
+ const isAvailableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3471
+ return { ...metadata, isMetadataAviailable, isInstalled, isAvailableInTools };
3472
3472
  });
3473
3473
  if (metadata.length === 0) {
3474
3474
  return spaceTrim__default["default"](`
@@ -3481,7 +3481,7 @@
3481
3481
  return spaceTrim__default["default"]((block) => `
3482
3482
  Available scrapers are:
3483
3483
  ${block(metadata
3484
- .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvilableInBrowser, isAvilableInTools, }, i) => {
3484
+ .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvailableInBrowser, isAvailableInTools, }, i) => {
3485
3485
  const more = [];
3486
3486
  // TODO: [🧠] Maybe use `documentationUrl`
3487
3487
  if (isMetadataAviailable) {
@@ -3490,16 +3490,16 @@
3490
3490
  if (isInstalled) {
3491
3491
  more.push(`🟩 Installed`);
3492
3492
  } // not else
3493
- if (isAvilableInTools) {
3493
+ if (isAvailableInTools) {
3494
3494
  more.push(`🟦 Available in tools`);
3495
3495
  } // not else
3496
3496
  if (!isMetadataAviailable && isInstalled) {
3497
3497
  more.push(`When no metadata registered but scraper is installed, it is an unexpected behavior`);
3498
3498
  } // not else
3499
- if (!isInstalled && isAvilableInTools) {
3499
+ if (!isInstalled && isAvailableInTools) {
3500
3500
  more.push(`When the scraper is not installed but available in tools, it is an unexpected compatibility behavior`);
3501
3501
  } // not else
3502
- if (!isAvilableInBrowser) {
3502
+ if (!isAvailableInBrowser) {
3503
3503
  more.push(`Not usable in browser`);
3504
3504
  }
3505
3505
  const moreText = more.length === 0 ? '' : ` *(${more.join('; ')})*`;
@@ -3829,7 +3829,7 @@
3829
3829
  /**
3830
3830
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
3831
3831
  * Put `knowledgePieces` into `PrepareKnowledgeOptions`
3832
- * TODO: [🪂] More than max things can run in parallel by acident [1,[2a,2b,_],[3a,3b,_]]
3832
+ * TODO: [🪂] More than max things can run in parallel by accident [1,[2a,2b,_],[3a,3b,_]]
3833
3833
  * TODO: [🧠][❎] Do here proper M:N mapping
3834
3834
  * [x] One source can make multiple pieces
3835
3835
  * [ ] One piece can have multiple sources
@@ -4637,6 +4637,77 @@
4637
4637
  return mappedParameters;
4638
4638
  }
4639
4639
 
4640
+ /**
4641
+ * Replaces parameters in template with values from parameters object
4642
+ *
4643
+ * Note: This function is not places strings into string,
4644
+ * It's more complex and can handle this operation specifically for LLM models
4645
+ *
4646
+ * @param template the template with parameters in {curly} braces
4647
+ * @param parameters the object with parameters
4648
+ * @returns the template with replaced parameters
4649
+ * @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
4650
+ * @public exported from `@promptbook/utils`
4651
+ */
4652
+ function templateParameters(template, parameters) {
4653
+ for (const [parameterName, parameterValue] of Object.entries(parameters)) {
4654
+ if (parameterValue === RESERVED_PARAMETER_MISSING_VALUE) {
4655
+ throw new UnexpectedError(`Parameter \`{${parameterName}}\` has missing value`);
4656
+ }
4657
+ else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
4658
+ // TODO: [🍵]
4659
+ throw new UnexpectedError(`Parameter \`{${parameterName}}\` is restricted to use`);
4660
+ }
4661
+ }
4662
+ let replacedTemplates = template;
4663
+ let match;
4664
+ let loopLimit = LOOP_LIMIT;
4665
+ while ((match = /^(?<precol>.*){(?<parameterName>\w+)}(.*)/m /* <- Not global */
4666
+ .exec(replacedTemplates))) {
4667
+ if (loopLimit-- < 0) {
4668
+ throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
4669
+ }
4670
+ const precol = match.groups.precol;
4671
+ const parameterName = match.groups.parameterName;
4672
+ if (parameterName === '') {
4673
+ // Note: Skip empty placeholders. It's used to avoid confusion with JSON-like strings
4674
+ continue;
4675
+ }
4676
+ if (parameterName.indexOf('{') !== -1 || parameterName.indexOf('}') !== -1) {
4677
+ throw new PipelineExecutionError('Parameter is already opened or not closed');
4678
+ }
4679
+ if (parameters[parameterName] === undefined) {
4680
+ throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
4681
+ }
4682
+ let parameterValue = parameters[parameterName];
4683
+ if (parameterValue === undefined) {
4684
+ throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
4685
+ }
4686
+ parameterValue = valueToString(parameterValue);
4687
+ // Escape curly braces in parameter values to prevent prompt-injection
4688
+ parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
4689
+ if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
4690
+ parameterValue = parameterValue
4691
+ .split('\n')
4692
+ .map((line, index) => (index === 0 ? line : `${precol}${line}`))
4693
+ .join('\n');
4694
+ }
4695
+ replacedTemplates =
4696
+ replacedTemplates.substring(0, match.index + precol.length) +
4697
+ parameterValue +
4698
+ replacedTemplates.substring(match.index + precol.length + parameterName.length + 2);
4699
+ }
4700
+ // [💫] Check if there are parameters that are not closed properly
4701
+ if (/{\w+$/.test(replacedTemplates)) {
4702
+ throw new PipelineExecutionError('Parameter is not closed');
4703
+ }
4704
+ // [💫] Check if there are parameters that are not opened properly
4705
+ if (/^\w+}/.test(replacedTemplates)) {
4706
+ throw new PipelineExecutionError('Parameter is not opened');
4707
+ }
4708
+ return replacedTemplates;
4709
+ }
4710
+
4640
4711
  /**
4641
4712
  * Extracts all code blocks from markdown.
4642
4713
  *
@@ -4739,77 +4810,6 @@
4739
4810
  * TODO: [🏢] Make this logic part of `JsonFormatParser` or `isValidJsonString`
4740
4811
  */
4741
4812
 
4742
- /**
4743
- * Replaces parameters in template with values from parameters object
4744
- *
4745
- * Note: This function is not places strings into string,
4746
- * It's more complex and can handle this operation specifically for LLM models
4747
- *
4748
- * @param template the template with parameters in {curly} braces
4749
- * @param parameters the object with parameters
4750
- * @returns the template with replaced parameters
4751
- * @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
4752
- * @public exported from `@promptbook/utils`
4753
- */
4754
- function templateParameters(template, parameters) {
4755
- for (const [parameterName, parameterValue] of Object.entries(parameters)) {
4756
- if (parameterValue === RESERVED_PARAMETER_MISSING_VALUE) {
4757
- throw new UnexpectedError(`Parameter \`{${parameterName}}\` has missing value`);
4758
- }
4759
- else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
4760
- // TODO: [🍵]
4761
- throw new UnexpectedError(`Parameter \`{${parameterName}}\` is restricted to use`);
4762
- }
4763
- }
4764
- let replacedTemplates = template;
4765
- let match;
4766
- let loopLimit = LOOP_LIMIT;
4767
- while ((match = /^(?<precol>.*){(?<parameterName>\w+)}(.*)/m /* <- Not global */
4768
- .exec(replacedTemplates))) {
4769
- if (loopLimit-- < 0) {
4770
- throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
4771
- }
4772
- const precol = match.groups.precol;
4773
- const parameterName = match.groups.parameterName;
4774
- if (parameterName === '') {
4775
- // Note: Skip empty placeholders. It's used to avoid confusion with JSON-like strings
4776
- continue;
4777
- }
4778
- if (parameterName.indexOf('{') !== -1 || parameterName.indexOf('}') !== -1) {
4779
- throw new PipelineExecutionError('Parameter is already opened or not closed');
4780
- }
4781
- if (parameters[parameterName] === undefined) {
4782
- throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
4783
- }
4784
- let parameterValue = parameters[parameterName];
4785
- if (parameterValue === undefined) {
4786
- throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
4787
- }
4788
- parameterValue = valueToString(parameterValue);
4789
- // Escape curly braces in parameter values to prevent prompt-injection
4790
- parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
4791
- if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
4792
- parameterValue = parameterValue
4793
- .split('\n')
4794
- .map((line, index) => (index === 0 ? line : `${precol}${line}`))
4795
- .join('\n');
4796
- }
4797
- replacedTemplates =
4798
- replacedTemplates.substring(0, match.index + precol.length) +
4799
- parameterValue +
4800
- replacedTemplates.substring(match.index + precol.length + parameterName.length + 2);
4801
- }
4802
- // [💫] Check if there are parameters that are not closed properly
4803
- if (/{\w+$/.test(replacedTemplates)) {
4804
- throw new PipelineExecutionError('Parameter is not closed');
4805
- }
4806
- // [💫] Check if there are parameters that are not opened properly
4807
- if (/^\w+}/.test(replacedTemplates)) {
4808
- throw new PipelineExecutionError('Parameter is not opened');
4809
- }
4810
- return replacedTemplates;
4811
- }
4812
-
4813
4813
  /**
4814
4814
  * Counts number of characters in the text
4815
4815
  *
@@ -4970,6 +4970,68 @@
4970
4970
  * Note: [💝] and [🤠] are interconnected together
4971
4971
  */
4972
4972
 
4973
+ /**
4974
+ * Validates a prompt result against expectations and format requirements.
4975
+ * This function provides a common abstraction for result validation that can be used
4976
+ * by both execution logic and caching logic to ensure consistency.
4977
+ *
4978
+ * @param options - The validation options including result string, expectations, and format
4979
+ * @returns Validation result with processed string and validity status
4980
+ * @private internal function of `createPipelineExecutor` and `cacheLlmTools`
4981
+ */
4982
+ function validatePromptResult(options) {
4983
+ const { resultString, expectations, format } = options;
4984
+ let processedResultString = resultString;
4985
+ let validationError;
4986
+ try {
4987
+ // TODO: [💝] Unite object for expecting amount and format
4988
+ if (format) {
4989
+ if (format === 'JSON') {
4990
+ if (!isValidJsonString(processedResultString)) {
4991
+ // TODO: [🏢] Do more universally via `FormatParser`
4992
+ try {
4993
+ processedResultString = extractJsonBlock(processedResultString);
4994
+ }
4995
+ catch (error) {
4996
+ keepUnused(error);
4997
+ throw new ExpectError(spaceTrim.spaceTrim((block) => `
4998
+ Expected valid JSON string
4999
+
5000
+ The expected JSON text:
5001
+ ${block(processedResultString)}
5002
+ `));
5003
+ }
5004
+ }
5005
+ }
5006
+ else {
5007
+ throw new UnexpectedError(`Unknown format "${format}"`);
5008
+ }
5009
+ }
5010
+ // TODO: [💝] Unite object for expecting amount and format
5011
+ if (expectations) {
5012
+ checkExpectations(expectations, processedResultString);
5013
+ }
5014
+ return {
5015
+ isValid: true,
5016
+ processedResultString,
5017
+ };
5018
+ }
5019
+ catch (error) {
5020
+ if (error instanceof ExpectError) {
5021
+ validationError = error;
5022
+ }
5023
+ else {
5024
+ // Re-throw non-ExpectError errors (like UnexpectedError)
5025
+ throw error;
5026
+ }
5027
+ return {
5028
+ isValid: false,
5029
+ processedResultString,
5030
+ error: validationError,
5031
+ };
5032
+ }
5033
+ }
5034
+
4973
5035
  /**
4974
5036
  * Executes a pipeline task with multiple attempts, including joker and retry logic. Handles different task types
4975
5037
  * (prompt, script, dialog, etc.), applies postprocessing, checks expectations, and updates the execution report.
@@ -4987,17 +5049,18 @@
4987
5049
  $resultString: null,
4988
5050
  $expectError: null,
4989
5051
  $scriptPipelineExecutionErrors: [],
5052
+ $failedResults: [], // Track all failed attempts
4990
5053
  };
4991
5054
  // TODO: [🚐] Make arrayable LLMs -> single LLM DRY
4992
5055
  const _llms = arrayableToArray(tools.llm);
4993
5056
  const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
4994
- attempts: for (let attempt = -jokerParameterNames.length; attempt < maxAttempts; attempt++) {
4995
- const isJokerAttempt = attempt < 0;
4996
- const jokerParameterName = jokerParameterNames[jokerParameterNames.length + attempt];
5057
+ attempts: for (let attemptIndex = -jokerParameterNames.length; attemptIndex < maxAttempts; attemptIndex++) {
5058
+ const isJokerAttempt = attemptIndex < 0;
5059
+ const jokerParameterName = jokerParameterNames[jokerParameterNames.length + attemptIndex];
4997
5060
  // TODO: [🧠][🍭] JOKERS, EXPECTATIONS, POSTPROCESSING and FOREACH
4998
5061
  if (isJokerAttempt && !jokerParameterName) {
4999
5062
  throw new UnexpectedError(spaceTrim.spaceTrim((block) => `
5000
- Joker not found in attempt ${attempt}
5063
+ Joker not found in attempt ${attemptIndex}
5001
5064
 
5002
5065
  ${block(pipelineIdentification)}
5003
5066
  `));
@@ -5195,35 +5258,18 @@
5195
5258
  }
5196
5259
  }
5197
5260
  // TODO: [💝] Unite object for expecting amount and format
5198
- if (task.format) {
5199
- if (task.format === 'JSON') {
5200
- if (!isValidJsonString($ongoingTaskResult.$resultString || '')) {
5201
- // TODO: [🏢] Do more universally via `FormatParser`
5202
- try {
5203
- $ongoingTaskResult.$resultString = extractJsonBlock($ongoingTaskResult.$resultString || '');
5204
- }
5205
- catch (error) {
5206
- keepUnused(error);
5207
- throw new ExpectError(spaceTrim.spaceTrim((block) => `
5208
- Expected valid JSON string
5209
-
5210
- ${block(
5211
- /*<- Note: No need for `pipelineIdentification`, it will be catched and added later */ '')}
5212
- `));
5213
- }
5214
- }
5215
- }
5216
- else {
5217
- throw new UnexpectedError(spaceTrim.spaceTrim((block) => `
5218
- Unknown format "${task.format}"
5219
-
5220
- ${block(pipelineIdentification)}
5221
- `));
5261
+ // Use the common validation function for both format and expectations
5262
+ if (task.format || task.expectations) {
5263
+ const validationResult = validatePromptResult({
5264
+ resultString: $ongoingTaskResult.$resultString || '',
5265
+ expectations: task.expectations,
5266
+ format: task.format,
5267
+ });
5268
+ if (!validationResult.isValid) {
5269
+ throw validationResult.error;
5222
5270
  }
5223
- }
5224
- // TODO: [💝] Unite object for expecting amount and format
5225
- if (task.expectations) {
5226
- checkExpectations(task.expectations, $ongoingTaskResult.$resultString || '');
5271
+ // Update the result string in case format processing modified it (e.g., JSON extraction)
5272
+ $ongoingTaskResult.$resultString = validationResult.processedResultString;
5227
5273
  }
5228
5274
  break attempts;
5229
5275
  }
@@ -5232,6 +5278,15 @@
5232
5278
  throw error;
5233
5279
  }
5234
5280
  $ongoingTaskResult.$expectError = error;
5281
+ // Store each failed attempt
5282
+ if (!Array.isArray($ongoingTaskResult.$failedResults)) {
5283
+ $ongoingTaskResult.$failedResults = [];
5284
+ }
5285
+ $ongoingTaskResult.$failedResults.push({
5286
+ attemptIndex,
5287
+ result: $ongoingTaskResult.$resultString,
5288
+ error: error,
5289
+ });
5235
5290
  }
5236
5291
  finally {
5237
5292
  if (!isJokerAttempt &&
@@ -5253,35 +5308,41 @@
5253
5308
  });
5254
5309
  }
5255
5310
  }
5256
- if ($ongoingTaskResult.$expectError !== null && attempt === maxAttempts - 1) {
5311
+ if ($ongoingTaskResult.$expectError !== null && attemptIndex === maxAttempts - 1) {
5312
+ // Note: Create a summary of all failures
5313
+ const failuresSummary = $ongoingTaskResult.$failedResults
5314
+ .map((failure) => spaceTrim.spaceTrim((block) => {
5315
+ var _a, _b;
5316
+ return `
5317
+ Attempt ${failure.attemptIndex + 1}:
5318
+ Error ${((_a = failure.error) === null || _a === void 0 ? void 0 : _a.name) || ''}:
5319
+ ${block((_b = failure.error) === null || _b === void 0 ? void 0 : _b.message.split('\n').map((line) => `> ${line}`).join('\n'))}
5320
+
5321
+ Result:
5322
+ ${block(failure.result === null
5323
+ ? 'null'
5324
+ : spaceTrim.spaceTrim(failure.result)
5325
+ .split('\n')
5326
+ .map((line) => `> ${line}`)
5327
+ .join('\n'))}
5328
+ `;
5329
+ }))
5330
+ .join('\n\n---\n\n');
5257
5331
  throw new PipelineExecutionError(spaceTrim.spaceTrim((block) => {
5258
- var _a, _b, _c;
5332
+ var _a;
5259
5333
  return `
5260
5334
  LLM execution failed ${maxExecutionAttempts}x
5261
5335
 
5262
5336
  ${block(pipelineIdentification)}
5263
5337
 
5264
- ---
5265
5338
  The Prompt:
5266
5339
  ${block((((_a = $ongoingTaskResult.$prompt) === null || _a === void 0 ? void 0 : _a.content) || '')
5267
5340
  .split('\n')
5268
5341
  .map((line) => `> ${line}`)
5269
5342
  .join('\n'))}
5270
5343
 
5271
- Last error ${((_b = $ongoingTaskResult.$expectError) === null || _b === void 0 ? void 0 : _b.name) || ''}:
5272
- ${block((((_c = $ongoingTaskResult.$expectError) === null || _c === void 0 ? void 0 : _c.message) || '')
5273
- .split('\n')
5274
- .map((line) => `> ${line}`)
5275
- .join('\n'))}
5276
-
5277
- Last result:
5278
- ${block($ongoingTaskResult.$resultString === null
5279
- ? 'null'
5280
- : spaceTrim.spaceTrim($ongoingTaskResult.$resultString)
5281
- .split('\n')
5282
- .map((line) => `> ${line}`)
5283
- .join('\n'))}
5284
- ---
5344
+ All Failed Attempts:
5345
+ ${block(failuresSummary)}
5285
5346
  `;
5286
5347
  }));
5287
5348
  }
@@ -5501,10 +5562,10 @@
5501
5562
  */
5502
5563
  async function getKnowledgeForTask(options) {
5503
5564
  const { tools, preparedPipeline, task, parameters } = options;
5504
- const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5505
- const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5565
+ const firstKnowledgePiece = preparedPipeline.knowledgePieces[0];
5566
+ const firstKnowledgeIndex = firstKnowledgePiece === null || firstKnowledgePiece === void 0 ? void 0 : firstKnowledgePiece.index[0];
5506
5567
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5507
- if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5568
+ if (firstKnowledgePiece === undefined || firstKnowledgeIndex === undefined) {
5508
5569
  return ''; // <- Note: Np knowledge present, return empty string
5509
5570
  }
5510
5571
  try {
@@ -5515,7 +5576,7 @@
5515
5576
  title: 'Knowledge Search',
5516
5577
  modelRequirements: {
5517
5578
  modelVariant: 'EMBEDDING',
5518
- modelName: firstKnowlegeIndex.modelName,
5579
+ modelName: firstKnowledgeIndex.modelName,
5519
5580
  },
5520
5581
  content: task.content,
5521
5582
  parameters,
@@ -5523,7 +5584,7 @@
5523
5584
  const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5524
5585
  const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5525
5586
  const { index } = knowledgePiece;
5526
- const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5587
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowledgeIndex.modelName);
5527
5588
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5528
5589
  if (knowledgePieceIndex === undefined) {
5529
5590
  return {
@@ -5544,8 +5605,8 @@
5544
5605
  task,
5545
5606
  taskEmbeddingPrompt,
5546
5607
  taskEmbeddingResult,
5547
- firstKnowlegePiece,
5548
- firstKnowlegeIndex,
5608
+ firstKnowledgePiece,
5609
+ firstKnowledgeIndex,
5549
5610
  knowledgePiecesWithRelevance,
5550
5611
  knowledgePiecesSorted,
5551
5612
  knowledgePiecesLimited,
@@ -5614,7 +5675,7 @@
5614
5675
  * @private internal utility of `createPipelineExecutor`
5615
5676
  */
5616
5677
  async function executeTask(options) {
5617
- const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSupressed, } = options;
5678
+ const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSuppressed, } = options;
5618
5679
  const priority = preparedPipeline.tasks.length - preparedPipeline.tasks.indexOf(currentTask);
5619
5680
  // Note: Check consistency of used and dependent parameters which was also done in `validatePipeline`, but it’s good to doublecheck
5620
5681
  const usedParameterNames = extractParameterNamesFromTask(currentTask);
@@ -5702,7 +5763,7 @@
5702
5763
  cacheDirname,
5703
5764
  intermediateFilesStrategy,
5704
5765
  isAutoInstalled,
5705
- isNotPreparedWarningSupressed,
5766
+ isNotPreparedWarningSuppressed,
5706
5767
  });
5707
5768
  await onProgress({
5708
5769
  outputParameters: {
@@ -5797,7 +5858,7 @@
5797
5858
  }
5798
5859
  return exportJson({
5799
5860
  name: `executionReport`,
5800
- message: `Unuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5861
+ message: `Unsuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5801
5862
  order: [],
5802
5863
  value: {
5803
5864
  isSuccessful: false,
@@ -5834,7 +5895,7 @@
5834
5895
  return exportJson({
5835
5896
  name: 'pipelineExecutorResult',
5836
5897
  message: spaceTrim.spaceTrim((block) => `
5837
- Unuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5898
+ Unsuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5838
5899
 
5839
5900
  ${block(pipelineIdentification)}
5840
5901
  `),
@@ -5975,7 +6036,7 @@
5975
6036
  }
5976
6037
  return exportJson({
5977
6038
  name: 'pipelineExecutorResult',
5978
- message: `Unuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
6039
+ message: `Unsuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5979
6040
  order: [],
5980
6041
  value: {
5981
6042
  isSuccessful: false,
@@ -6026,7 +6087,7 @@
6026
6087
  * @public exported from `@promptbook/core`
6027
6088
  */
6028
6089
  function createPipelineExecutor(options) {
6029
- const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSupressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
6090
+ const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSuppressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
6030
6091
  validatePipeline(pipeline);
6031
6092
  const pipelineIdentification = (() => {
6032
6093
  // Note: This is a 😐 implementation of [🚞]
@@ -6043,7 +6104,7 @@
6043
6104
  if (isPipelinePrepared(pipeline)) {
6044
6105
  preparedPipeline = pipeline;
6045
6106
  }
6046
- else if (isNotPreparedWarningSupressed !== true) {
6107
+ else if (isNotPreparedWarningSuppressed !== true) {
6047
6108
  console.warn(spaceTrim.spaceTrim((block) => `
6048
6109
  Pipeline is not prepared
6049
6110
 
@@ -6076,7 +6137,7 @@
6076
6137
  maxParallelCount,
6077
6138
  csvSettings,
6078
6139
  isVerbose,
6079
- isNotPreparedWarningSupressed,
6140
+ isNotPreparedWarningSuppressed,
6080
6141
  rootDirname,
6081
6142
  cacheDirname,
6082
6143
  intermediateFilesStrategy,
@@ -6085,7 +6146,7 @@
6085
6146
  assertsError(error);
6086
6147
  return exportJson({
6087
6148
  name: 'pipelineExecutorResult',
6088
- message: `Unuccessful PipelineExecutorResult, last catch`,
6149
+ message: `Unsuccessful PipelineExecutorResult, last catch`,
6089
6150
  order: [],
6090
6151
  value: {
6091
6152
  isSuccessful: false,
@@ -6123,7 +6184,7 @@
6123
6184
  className: 'MarkdownScraper',
6124
6185
  mimeTypes: ['text/markdown', 'text/plain'],
6125
6186
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6126
- isAvilableInBrowser: true,
6187
+ isAvailableInBrowser: true,
6127
6188
  // <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6128
6189
  requiredExecutables: [],
6129
6190
  }); /* <- Note: [🤛] */
@@ -6133,7 +6194,7 @@
6133
6194
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6134
6195
  *
6135
6196
  * @public exported from `@promptbook/core`
6136
- * @public exported from `@promptbook/wizzard`
6197
+ * @public exported from `@promptbook/wizard`
6137
6198
  * @public exported from `@promptbook/cli`
6138
6199
  */
6139
6200
  $scrapersMetadataRegister.register(markdownScraperMetadata);
@@ -6232,7 +6293,7 @@
6232
6293
  }
6233
6294
  // ---
6234
6295
  if (!llmTools.callEmbeddingModel) {
6235
- // TODO: [🟥] Detect browser / node and make it colorfull
6296
+ // TODO: [🟥] Detect browser / node and make it colorful
6236
6297
  console.error('No callEmbeddingModel function provided');
6237
6298
  }
6238
6299
  else {
@@ -6258,7 +6319,7 @@
6258
6319
  if (!(error instanceof PipelineExecutionError)) {
6259
6320
  throw error;
6260
6321
  }
6261
- // TODO: [🟥] Detect browser / node and make it colorfull
6322
+ // TODO: [🟥] Detect browser / node and make it colorful
6262
6323
  console.error(error, "<- Note: This error is not critical to prepare the pipeline, just knowledge pieces won't have embeddings");
6263
6324
  }
6264
6325
  return {
@@ -6289,7 +6350,7 @@
6289
6350
  className: 'DocumentScraper',
6290
6351
  mimeTypes: ['application/vnd.openxmlformats-officedocument.wordprocessingml.document'],
6291
6352
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6292
- isAvilableInBrowser: false,
6353
+ isAvailableInBrowser: false,
6293
6354
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6294
6355
  requiredExecutables: ['Pandoc'],
6295
6356
  }); /* <- Note: [🤛] */
@@ -6299,7 +6360,7 @@
6299
6360
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6300
6361
  *
6301
6362
  * @public exported from `@promptbook/core`
6302
- * @public exported from `@promptbook/wizzard`
6363
+ * @public exported from `@promptbook/wizard`
6303
6364
  * @public exported from `@promptbook/cli`
6304
6365
  */
6305
6366
  $scrapersMetadataRegister.register(documentScraperMetadata);
@@ -6425,7 +6486,7 @@
6425
6486
  className: 'LegacyDocumentScraper',
6426
6487
  mimeTypes: ['application/msword', 'text/rtf'],
6427
6488
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6428
- isAvilableInBrowser: false,
6489
+ isAvailableInBrowser: false,
6429
6490
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6430
6491
  requiredExecutables: [
6431
6492
  'Pandoc',
@@ -6439,7 +6500,7 @@
6439
6500
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6440
6501
  *
6441
6502
  * @public exported from `@promptbook/core`
6442
- * @public exported from `@promptbook/wizzard`
6503
+ * @public exported from `@promptbook/wizard`
6443
6504
  * @public exported from `@promptbook/cli`
6444
6505
  */
6445
6506
  $scrapersMetadataRegister.register(legacyDocumentScraperMetadata);
@@ -6600,7 +6661,7 @@
6600
6661
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6601
6662
  *
6602
6663
  * @public exported from `@promptbook/legacy-documents`
6603
- * @public exported from `@promptbook/wizzard`
6664
+ * @public exported from `@promptbook/wizard`
6604
6665
  * @public exported from `@promptbook/cli`
6605
6666
  */
6606
6667
  const _LegacyDocumentScraperRegistration = $scrapersRegister.register(createLegacyDocumentScraper);