@promptbook/legacy-documents 0.94.0 → 0.95.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. package/README.md +2 -10
  2. package/esm/index.es.js +45 -45
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/types.index.d.ts +2 -2
  5. package/esm/typings/src/_packages/{wizzard.index.d.ts → wizard.index.d.ts} +2 -2
  6. package/esm/typings/src/cli/cli-commands/prettify.d.ts +1 -1
  7. package/esm/typings/src/cli/cli-commands/test-command.d.ts +1 -1
  8. package/esm/typings/src/conversion/archive/loadArchive.d.ts +1 -1
  9. package/esm/typings/src/conversion/archive/saveArchive.d.ts +2 -2
  10. package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +1 -1
  11. package/esm/typings/src/dialogs/callback/CallbackInterfaceTools.d.ts +1 -1
  12. package/esm/typings/src/execution/AbstractTaskResult.d.ts +2 -2
  13. package/esm/typings/src/execution/createPipelineExecutor/00-CreatePipelineExecutorOptions.d.ts +1 -1
  14. package/esm/typings/src/execution/execution-report/ExecutionPromptReportJson.d.ts +2 -2
  15. package/esm/typings/src/execution/translation/automatic-translate/translateMessages.d.ts +1 -1
  16. package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForWizzardOrCli.d.ts → $provideLlmToolsForWizardOrCli.d.ts} +2 -2
  17. package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -1
  18. package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -1
  19. package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -1
  20. package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -1
  21. package/esm/typings/src/llm-providers/deepseek/register-configuration.d.ts +1 -1
  22. package/esm/typings/src/llm-providers/deepseek/register-constructor.d.ts +1 -1
  23. package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -1
  24. package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -1
  25. package/esm/typings/src/llm-providers/ollama/register-configuration.d.ts +1 -1
  26. package/esm/typings/src/llm-providers/ollama/register-constructor.d.ts +1 -1
  27. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +1 -1
  28. package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -2
  29. package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -2
  30. package/esm/typings/src/remote-server/socket-types/listModels/PromptbookServer_ListModels_Request.d.ts +1 -1
  31. package/esm/typings/src/scrapers/_boilerplate/createBoilerplateScraper.d.ts +1 -1
  32. package/esm/typings/src/scrapers/_boilerplate/register-constructor.d.ts +1 -1
  33. package/esm/typings/src/scrapers/_boilerplate/register-metadata.d.ts +2 -2
  34. package/esm/typings/src/scrapers/_common/prepareKnowledgePieces.d.ts +1 -1
  35. package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +1 -1
  36. package/esm/typings/src/scrapers/document/createDocumentScraper.d.ts +1 -1
  37. package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -1
  38. package/esm/typings/src/scrapers/document/register-metadata.d.ts +2 -2
  39. package/esm/typings/src/scrapers/document-legacy/createLegacyDocumentScraper.d.ts +1 -1
  40. package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -1
  41. package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +2 -2
  42. package/esm/typings/src/scrapers/markdown/createMarkdownScraper.d.ts +1 -4
  43. package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -1
  44. package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +2 -2
  45. package/esm/typings/src/scrapers/markitdown/createMarkitdownScraper.d.ts +1 -1
  46. package/esm/typings/src/scrapers/markitdown/register-constructor.d.ts +1 -1
  47. package/esm/typings/src/scrapers/markitdown/register-metadata.d.ts +2 -2
  48. package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
  49. package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -1
  50. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -2
  51. package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
  52. package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -1
  53. package/esm/typings/src/scrapers/website/register-metadata.d.ts +2 -2
  54. package/esm/typings/src/types/typeAliases.d.ts +1 -1
  55. package/esm/typings/src/utils/files/listAllFiles.d.ts +1 -1
  56. package/esm/typings/src/version.d.ts +1 -1
  57. package/esm/typings/src/{wizzard → wizard}/$getCompiledBook.d.ts +2 -2
  58. package/esm/typings/src/{wizzard/wizzard.d.ts → wizard/wizard.d.ts} +6 -6
  59. package/package.json +2 -14
  60. package/umd/index.umd.js +45 -45
  61. package/umd/index.umd.js.map +1 -1
@@ -10,7 +10,7 @@ export declare const websiteScraperMetadata: import("type-fest/source/readonly-d
10
10
  className: string;
11
11
  mimeTypes: string[];
12
12
  documentationUrl: "https://github.com/webgptorg/promptbook/discussions/@@";
13
- isAvilableInBrowser: false;
13
+ isAvailableInBrowser: false;
14
14
  requiredExecutables: never[];
15
15
  }>;
16
16
  /**
@@ -19,7 +19,7 @@ export declare const websiteScraperMetadata: import("type-fest/source/readonly-d
19
19
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
20
20
  *
21
21
  * @public exported from `@promptbook/core`
22
- * @public exported from `@promptbook/wizzard`
22
+ * @public exported from `@promptbook/wizard`
23
23
  * @public exported from `@promptbook/cli`
24
24
  */
25
25
  export declare const _WebsiteScraperMetadataRegistration: Registration;
@@ -658,7 +658,7 @@ export type number_seed = number_percent;
658
658
  * - ❤ is equivalent to more than 1
659
659
  */
660
660
  export type number_likeness = number;
661
- export type number_miliseconds = number_integer;
661
+ export type number_milliseconds = number_integer;
662
662
  export type number_seconds = number;
663
663
  export type number_minutes = number;
664
664
  export type number_hours = number;
@@ -11,7 +11,7 @@ import type { string_filename } from '../../types/typeAliases';
11
11
  */
12
12
  export declare function listAllFiles(path: string_dirname, isRecursive: boolean, fs: FilesystemTools): Promise<Array<string_filename>>;
13
13
  /**
14
- * TODO: [😶] Unite floder listing
14
+ * TODO: [😶] Unite folder listing
15
15
  * Note: Not [~🟢~] because it is not directly dependent on `fs
16
16
  * TODO: [🖇] What about symlinks?
17
17
  */
@@ -15,7 +15,7 @@ export declare const BOOK_LANGUAGE_VERSION: string_semantic_version;
15
15
  export declare const PROMPTBOOK_ENGINE_VERSION: string_promptbook_version;
16
16
  /**
17
17
  * Represents the version string of the Promptbook engine.
18
- * It follows semantic versioning (e.g., `0.94.0-16`).
18
+ * It follows semantic versioning (e.g., `0.94.0`).
19
19
  *
20
20
  * @generated
21
21
  */
@@ -5,9 +5,9 @@ import type { PrepareAndScrapeOptions } from '../prepare/PrepareAndScrapeOptions
5
5
  import type { string_filename } from '../types/typeAliases';
6
6
  import type { string_pipeline_url } from '../types/typeAliases';
7
7
  /**
8
- * @see ./wizzard.ts `getPipeline` method
8
+ * @see ./wizard.ts `getPipeline` method
9
9
  *
10
- * @private usable through `ptbk run` and `@prompbook/wizzard`
10
+ * @private usable through `ptbk run` and `@promptbook/wizard`
11
11
  */
12
12
  export declare function $getCompiledBook(tools: Required<Pick<ExecutionTools, 'fs' | 'fetch'>>, pipelineSource: string_filename | string_pipeline_url | PipelineString, options?: PrepareAndScrapeOptions): Promise<PipelineJson>;
13
13
  /**
@@ -7,14 +7,14 @@ import type { string_filename } from '../types/typeAliases';
7
7
  import type { string_parameter_value } from '../types/typeAliases';
8
8
  import type { string_pipeline_url } from '../types/typeAliases';
9
9
  /**
10
- * Wizzard for simple usage of the Promptbook
11
- * Look at `wizzard` for more details
10
+ * Wizard for simple usage of the Promptbook
11
+ * Look at `wizard` for more details
12
12
  *
13
13
  * Note: This works only in Node.js environment and looks for the configuration, environment, tools and cache in the Node.js environment
14
14
  *
15
15
  * @private just for single instance
16
16
  */
17
- declare class Wizzard {
17
+ declare class Wizard {
18
18
  /**
19
19
  * Run the book
20
20
  *
@@ -53,14 +53,14 @@ declare class Wizzard {
53
53
  getCompiledBook(pipelineSource: string_filename | string_pipeline_url | PipelineString): Promise<PipelineJson>;
54
54
  }
55
55
  /**
56
- * Wizzard for simple usage of the Promptbook
56
+ * Wizard for simple usage of the Promptbook
57
57
  *
58
58
  * Note: This works only in Node.js environment and looks for the configuration, environment, tools and cache in the Node.js environment
59
59
  *
60
60
  * @singleton
61
- * @public exported from `@promptbook/wizzard`
61
+ * @public exported from `@promptbook/wizard`
62
62
  */
63
- export declare const wizzard: Wizzard;
63
+ export declare const wizard: Wizard;
64
64
  export {};
65
65
  /**
66
66
  * TODO: [🧠] Maybe some way how to handle the progress and streaming?
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@promptbook/legacy-documents",
3
- "version": "0.94.0",
3
+ "version": "0.95.0",
4
4
  "description": "Promptbook: Run AI apps in plain human language across multiple models and platforms",
5
5
  "private": false,
6
6
  "sideEffects": false,
@@ -70,23 +70,11 @@
70
70
  "node": ">=16.0.0",
71
71
  "npm": ">=8.0.0"
72
72
  },
73
- "cspell": {
74
- "version": "0.2",
75
- "language": "en",
76
- "ignorePaths": [
77
- "node_modules",
78
- ".next",
79
- "coverage",
80
- "dist",
81
- ".git"
82
- ],
83
- "words": []
84
- },
85
73
  "main": "./umd/index.umd.js",
86
74
  "module": "./esm/index.es.js",
87
75
  "typings": "./esm/typings/src/_packages/legacy-documents.index.d.ts",
88
76
  "peerDependencies": {
89
- "@promptbook/core": "0.94.0"
77
+ "@promptbook/core": "0.95.0"
90
78
  },
91
79
  "dependencies": {
92
80
  "colors": "1.4.0",
package/umd/index.umd.js CHANGED
@@ -26,7 +26,7 @@
26
26
  * @generated
27
27
  * @see https://github.com/webgptorg/promptbook
28
28
  */
29
- const PROMPTBOOK_ENGINE_VERSION = '0.94.0';
29
+ const PROMPTBOOK_ENGINE_VERSION = '0.95.0';
30
30
  /**
31
31
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
32
32
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -1052,7 +1052,7 @@
1052
1052
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
1053
1053
  */
1054
1054
 
1055
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
1055
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
1056
1056
 
1057
1057
  /**
1058
1058
  * Checks if value is valid email
@@ -1209,7 +1209,7 @@
1209
1209
  });
1210
1210
  }
1211
1211
  catch (error) {
1212
- // TODO: [🟥] Detect browser / node and make it colorfull
1212
+ // TODO: [🟥] Detect browser / node and make it colorful
1213
1213
  console.error('There was an error with prettifying the markdown, using the original as the fallback', {
1214
1214
  error,
1215
1215
  html: content,
@@ -1491,7 +1491,7 @@
1491
1491
  else {
1492
1492
  for (const [subName, subValue] of Object.entries(value)) {
1493
1493
  if (subValue === undefined) {
1494
- // Note: undefined in object is serializable - it is just omited
1494
+ // Note: undefined in object is serializable - it is just omitted
1495
1495
  continue;
1496
1496
  }
1497
1497
  checkSerializableAsJson({ name: `${name}.${subName}`, value: subValue, message });
@@ -2181,7 +2181,7 @@
2181
2181
 
2182
2182
  Note: You have probably forgotten to run "ptbk make" to update the collection
2183
2183
  Note: Pipelines with the same URL are not allowed
2184
- Only exepction is when the pipelines are identical
2184
+ Only exception is when the pipelines are identical
2185
2185
 
2186
2186
  `));
2187
2187
  }
@@ -2931,12 +2931,12 @@
2931
2931
  get title() {
2932
2932
  return `${llmTools.title} (+usage)`;
2933
2933
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2934
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2934
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2935
2935
  },
2936
2936
  get description() {
2937
2937
  return `${llmTools.description} (+usage)`;
2938
2938
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2939
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2939
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2940
2940
  },
2941
2941
  checkConfiguration() {
2942
2942
  return /* not await */ llmTools.checkConfiguration();
@@ -3163,13 +3163,13 @@
3163
3163
 
3164
3164
  Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
3165
3165
  `);
3166
- // TODO: [🟥] Detect browser / node and make it colorfull
3166
+ // TODO: [🟥] Detect browser / node and make it colorful
3167
3167
  console.warn(warningMessage);
3168
3168
  // <- TODO: [🏮] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
3169
3169
  /*
3170
3170
  return {
3171
3171
  async listModels() {
3172
- // TODO: [🟥] Detect browser / node and make it colorfull
3172
+ // TODO: [🟥] Detect browser / node and make it colorful
3173
3173
  console.warn(
3174
3174
  spaceTrim(
3175
3175
  (block) => `
@@ -3445,17 +3445,17 @@
3445
3445
  * Mixes registered scrapers from $scrapersMetadataRegister and $scrapersRegister
3446
3446
  */
3447
3447
  const all = [];
3448
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersMetadataRegister.list()) {
3448
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersMetadataRegister.list()) {
3449
3449
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3450
3450
  continue;
3451
3451
  }
3452
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3452
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3453
3453
  }
3454
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersRegister.list()) {
3454
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersRegister.list()) {
3455
3455
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3456
3456
  continue;
3457
3457
  }
3458
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3458
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3459
3459
  }
3460
3460
  for (const { metadata } of availableScrapers) {
3461
3461
  all.push(metadata);
@@ -3467,8 +3467,8 @@
3467
3467
  const isInstalled = $scrapersRegister
3468
3468
  .list()
3469
3469
  .find(({ packageName, className }) => metadata.packageName === packageName && metadata.className === className);
3470
- const isAvilableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3471
- return { ...metadata, isMetadataAviailable, isInstalled, isAvilableInTools };
3470
+ const isAvailableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3471
+ return { ...metadata, isMetadataAviailable, isInstalled, isAvailableInTools };
3472
3472
  });
3473
3473
  if (metadata.length === 0) {
3474
3474
  return spaceTrim__default["default"](`
@@ -3481,7 +3481,7 @@
3481
3481
  return spaceTrim__default["default"]((block) => `
3482
3482
  Available scrapers are:
3483
3483
  ${block(metadata
3484
- .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvilableInBrowser, isAvilableInTools, }, i) => {
3484
+ .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvailableInBrowser, isAvailableInTools, }, i) => {
3485
3485
  const more = [];
3486
3486
  // TODO: [🧠] Maybe use `documentationUrl`
3487
3487
  if (isMetadataAviailable) {
@@ -3490,16 +3490,16 @@
3490
3490
  if (isInstalled) {
3491
3491
  more.push(`🟩 Installed`);
3492
3492
  } // not else
3493
- if (isAvilableInTools) {
3493
+ if (isAvailableInTools) {
3494
3494
  more.push(`🟦 Available in tools`);
3495
3495
  } // not else
3496
3496
  if (!isMetadataAviailable && isInstalled) {
3497
3497
  more.push(`When no metadata registered but scraper is installed, it is an unexpected behavior`);
3498
3498
  } // not else
3499
- if (!isInstalled && isAvilableInTools) {
3499
+ if (!isInstalled && isAvailableInTools) {
3500
3500
  more.push(`When the scraper is not installed but available in tools, it is an unexpected compatibility behavior`);
3501
3501
  } // not else
3502
- if (!isAvilableInBrowser) {
3502
+ if (!isAvailableInBrowser) {
3503
3503
  more.push(`Not usable in browser`);
3504
3504
  }
3505
3505
  const moreText = more.length === 0 ? '' : ` *(${more.join('; ')})*`;
@@ -3829,7 +3829,7 @@
3829
3829
  /**
3830
3830
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
3831
3831
  * Put `knowledgePieces` into `PrepareKnowledgeOptions`
3832
- * TODO: [🪂] More than max things can run in parallel by acident [1,[2a,2b,_],[3a,3b,_]]
3832
+ * TODO: [🪂] More than max things can run in parallel by accident [1,[2a,2b,_],[3a,3b,_]]
3833
3833
  * TODO: [🧠][❎] Do here proper M:N mapping
3834
3834
  * [x] One source can make multiple pieces
3835
3835
  * [ ] One piece can have multiple sources
@@ -5501,10 +5501,10 @@
5501
5501
  */
5502
5502
  async function getKnowledgeForTask(options) {
5503
5503
  const { tools, preparedPipeline, task, parameters } = options;
5504
- const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5505
- const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5504
+ const firstKnowledgePiece = preparedPipeline.knowledgePieces[0];
5505
+ const firstKnowledgeIndex = firstKnowledgePiece === null || firstKnowledgePiece === void 0 ? void 0 : firstKnowledgePiece.index[0];
5506
5506
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5507
- if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5507
+ if (firstKnowledgePiece === undefined || firstKnowledgeIndex === undefined) {
5508
5508
  return ''; // <- Note: Np knowledge present, return empty string
5509
5509
  }
5510
5510
  try {
@@ -5515,7 +5515,7 @@
5515
5515
  title: 'Knowledge Search',
5516
5516
  modelRequirements: {
5517
5517
  modelVariant: 'EMBEDDING',
5518
- modelName: firstKnowlegeIndex.modelName,
5518
+ modelName: firstKnowledgeIndex.modelName,
5519
5519
  },
5520
5520
  content: task.content,
5521
5521
  parameters,
@@ -5523,7 +5523,7 @@
5523
5523
  const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5524
5524
  const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5525
5525
  const { index } = knowledgePiece;
5526
- const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5526
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowledgeIndex.modelName);
5527
5527
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5528
5528
  if (knowledgePieceIndex === undefined) {
5529
5529
  return {
@@ -5544,8 +5544,8 @@
5544
5544
  task,
5545
5545
  taskEmbeddingPrompt,
5546
5546
  taskEmbeddingResult,
5547
- firstKnowlegePiece,
5548
- firstKnowlegeIndex,
5547
+ firstKnowledgePiece,
5548
+ firstKnowledgeIndex,
5549
5549
  knowledgePiecesWithRelevance,
5550
5550
  knowledgePiecesSorted,
5551
5551
  knowledgePiecesLimited,
@@ -5614,7 +5614,7 @@
5614
5614
  * @private internal utility of `createPipelineExecutor`
5615
5615
  */
5616
5616
  async function executeTask(options) {
5617
- const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSupressed, } = options;
5617
+ const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSuppressed, } = options;
5618
5618
  const priority = preparedPipeline.tasks.length - preparedPipeline.tasks.indexOf(currentTask);
5619
5619
  // Note: Check consistency of used and dependent parameters which was also done in `validatePipeline`, but it’s good to doublecheck
5620
5620
  const usedParameterNames = extractParameterNamesFromTask(currentTask);
@@ -5702,7 +5702,7 @@
5702
5702
  cacheDirname,
5703
5703
  intermediateFilesStrategy,
5704
5704
  isAutoInstalled,
5705
- isNotPreparedWarningSupressed,
5705
+ isNotPreparedWarningSuppressed,
5706
5706
  });
5707
5707
  await onProgress({
5708
5708
  outputParameters: {
@@ -5797,7 +5797,7 @@
5797
5797
  }
5798
5798
  return exportJson({
5799
5799
  name: `executionReport`,
5800
- message: `Unuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5800
+ message: `Unsuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5801
5801
  order: [],
5802
5802
  value: {
5803
5803
  isSuccessful: false,
@@ -5834,7 +5834,7 @@
5834
5834
  return exportJson({
5835
5835
  name: 'pipelineExecutorResult',
5836
5836
  message: spaceTrim.spaceTrim((block) => `
5837
- Unuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5837
+ Unsuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5838
5838
 
5839
5839
  ${block(pipelineIdentification)}
5840
5840
  `),
@@ -5975,7 +5975,7 @@
5975
5975
  }
5976
5976
  return exportJson({
5977
5977
  name: 'pipelineExecutorResult',
5978
- message: `Unuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5978
+ message: `Unsuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5979
5979
  order: [],
5980
5980
  value: {
5981
5981
  isSuccessful: false,
@@ -6026,7 +6026,7 @@
6026
6026
  * @public exported from `@promptbook/core`
6027
6027
  */
6028
6028
  function createPipelineExecutor(options) {
6029
- const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSupressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
6029
+ const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSuppressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
6030
6030
  validatePipeline(pipeline);
6031
6031
  const pipelineIdentification = (() => {
6032
6032
  // Note: This is a 😐 implementation of [🚞]
@@ -6043,7 +6043,7 @@
6043
6043
  if (isPipelinePrepared(pipeline)) {
6044
6044
  preparedPipeline = pipeline;
6045
6045
  }
6046
- else if (isNotPreparedWarningSupressed !== true) {
6046
+ else if (isNotPreparedWarningSuppressed !== true) {
6047
6047
  console.warn(spaceTrim.spaceTrim((block) => `
6048
6048
  Pipeline is not prepared
6049
6049
 
@@ -6076,7 +6076,7 @@
6076
6076
  maxParallelCount,
6077
6077
  csvSettings,
6078
6078
  isVerbose,
6079
- isNotPreparedWarningSupressed,
6079
+ isNotPreparedWarningSuppressed,
6080
6080
  rootDirname,
6081
6081
  cacheDirname,
6082
6082
  intermediateFilesStrategy,
@@ -6085,7 +6085,7 @@
6085
6085
  assertsError(error);
6086
6086
  return exportJson({
6087
6087
  name: 'pipelineExecutorResult',
6088
- message: `Unuccessful PipelineExecutorResult, last catch`,
6088
+ message: `Unsuccessful PipelineExecutorResult, last catch`,
6089
6089
  order: [],
6090
6090
  value: {
6091
6091
  isSuccessful: false,
@@ -6123,7 +6123,7 @@
6123
6123
  className: 'MarkdownScraper',
6124
6124
  mimeTypes: ['text/markdown', 'text/plain'],
6125
6125
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6126
- isAvilableInBrowser: true,
6126
+ isAvailableInBrowser: true,
6127
6127
  // <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6128
6128
  requiredExecutables: [],
6129
6129
  }); /* <- Note: [🤛] */
@@ -6133,7 +6133,7 @@
6133
6133
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6134
6134
  *
6135
6135
  * @public exported from `@promptbook/core`
6136
- * @public exported from `@promptbook/wizzard`
6136
+ * @public exported from `@promptbook/wizard`
6137
6137
  * @public exported from `@promptbook/cli`
6138
6138
  */
6139
6139
  $scrapersMetadataRegister.register(markdownScraperMetadata);
@@ -6232,7 +6232,7 @@
6232
6232
  }
6233
6233
  // ---
6234
6234
  if (!llmTools.callEmbeddingModel) {
6235
- // TODO: [🟥] Detect browser / node and make it colorfull
6235
+ // TODO: [🟥] Detect browser / node and make it colorful
6236
6236
  console.error('No callEmbeddingModel function provided');
6237
6237
  }
6238
6238
  else {
@@ -6258,7 +6258,7 @@
6258
6258
  if (!(error instanceof PipelineExecutionError)) {
6259
6259
  throw error;
6260
6260
  }
6261
- // TODO: [🟥] Detect browser / node and make it colorfull
6261
+ // TODO: [🟥] Detect browser / node and make it colorful
6262
6262
  console.error(error, "<- Note: This error is not critical to prepare the pipeline, just knowledge pieces won't have embeddings");
6263
6263
  }
6264
6264
  return {
@@ -6289,7 +6289,7 @@
6289
6289
  className: 'DocumentScraper',
6290
6290
  mimeTypes: ['application/vnd.openxmlformats-officedocument.wordprocessingml.document'],
6291
6291
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6292
- isAvilableInBrowser: false,
6292
+ isAvailableInBrowser: false,
6293
6293
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6294
6294
  requiredExecutables: ['Pandoc'],
6295
6295
  }); /* <- Note: [🤛] */
@@ -6299,7 +6299,7 @@
6299
6299
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6300
6300
  *
6301
6301
  * @public exported from `@promptbook/core`
6302
- * @public exported from `@promptbook/wizzard`
6302
+ * @public exported from `@promptbook/wizard`
6303
6303
  * @public exported from `@promptbook/cli`
6304
6304
  */
6305
6305
  $scrapersMetadataRegister.register(documentScraperMetadata);
@@ -6425,7 +6425,7 @@
6425
6425
  className: 'LegacyDocumentScraper',
6426
6426
  mimeTypes: ['application/msword', 'text/rtf'],
6427
6427
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6428
- isAvilableInBrowser: false,
6428
+ isAvailableInBrowser: false,
6429
6429
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6430
6430
  requiredExecutables: [
6431
6431
  'Pandoc',
@@ -6439,7 +6439,7 @@
6439
6439
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6440
6440
  *
6441
6441
  * @public exported from `@promptbook/core`
6442
- * @public exported from `@promptbook/wizzard`
6442
+ * @public exported from `@promptbook/wizard`
6443
6443
  * @public exported from `@promptbook/cli`
6444
6444
  */
6445
6445
  $scrapersMetadataRegister.register(legacyDocumentScraperMetadata);
@@ -6600,7 +6600,7 @@
6600
6600
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6601
6601
  *
6602
6602
  * @public exported from `@promptbook/legacy-documents`
6603
- * @public exported from `@promptbook/wizzard`
6603
+ * @public exported from `@promptbook/wizard`
6604
6604
  * @public exported from `@promptbook/cli`
6605
6605
  */
6606
6606
  const _LegacyDocumentScraperRegistration = $scrapersRegister.register(createLegacyDocumentScraper);