@promptbook/legacy-documents 0.92.0-5 → 0.92.0-7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/esm/index.es.js CHANGED
@@ -28,7 +28,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
28
28
  * @generated
29
29
  * @see https://github.com/webgptorg/promptbook
30
30
  */
31
- const PROMPTBOOK_ENGINE_VERSION = '0.92.0-5';
31
+ const PROMPTBOOK_ENGINE_VERSION = '0.92.0-7';
32
32
  /**
33
33
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
34
34
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -2298,6 +2298,45 @@ function isPipelinePrepared(pipeline) {
2298
2298
  * - [♨] Are tasks prepared
2299
2299
  */
2300
2300
 
2301
+ /**
2302
+ * Converts a JavaScript Object Notation (JSON) string into an object.
2303
+ *
2304
+ * Note: This is wrapper around `JSON.parse()` with better error and type handling
2305
+ *
2306
+ * @public exported from `@promptbook/utils`
2307
+ */
2308
+ function jsonParse(value) {
2309
+ if (value === undefined) {
2310
+ throw new Error(`Can not parse JSON from undefined value.`);
2311
+ }
2312
+ else if (typeof value !== 'string') {
2313
+ console.error('Can not parse JSON from non-string value.', { text: value });
2314
+ throw new Error(spaceTrim$1(`
2315
+ Can not parse JSON from non-string value.
2316
+
2317
+ The value type: ${typeof value}
2318
+ See more in console.
2319
+ `));
2320
+ }
2321
+ try {
2322
+ return JSON.parse(value);
2323
+ }
2324
+ catch (error) {
2325
+ if (!(error instanceof Error)) {
2326
+ throw error;
2327
+ }
2328
+ throw new Error(spaceTrim$1((block) => `
2329
+ ${block(error.message)}
2330
+
2331
+ The JSON text:
2332
+ ${block(value)}
2333
+ `));
2334
+ }
2335
+ }
2336
+ /**
2337
+ * TODO: !!!! Use in Promptbook.studio
2338
+ */
2339
+
2301
2340
  /**
2302
2341
  * Recursively converts JSON strings to JSON objects
2303
2342
 
@@ -2316,7 +2355,7 @@ function jsonStringsToJsons(object) {
2316
2355
  const newObject = { ...object };
2317
2356
  for (const [key, value] of Object.entries(object)) {
2318
2357
  if (typeof value === 'string' && isValidJsonString(value)) {
2319
- newObject[key] = JSON.parse(value);
2358
+ newObject[key] = jsonParse(value);
2320
2359
  }
2321
2360
  else {
2322
2361
  newObject[key] = jsonStringsToJsons(value);
@@ -3163,18 +3202,26 @@ async function preparePersona(personaDescription, tools, options) {
3163
3202
  }).asPromise();
3164
3203
  const { outputParameters } = result;
3165
3204
  const { modelsRequirements: modelsRequirementsJson } = outputParameters;
3166
- const modelsRequirementsUnchecked = JSON.parse(modelsRequirementsJson);
3205
+ let modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
3167
3206
  if (isVerbose) {
3168
3207
  console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
3169
3208
  }
3170
3209
  if (!Array.isArray(modelsRequirementsUnchecked)) {
3171
- throw new UnexpectedError(spaceTrim$1((block) => `
3210
+ // <- TODO: Book should have syntax and system to enforce shape of JSON
3211
+ modelsRequirementsUnchecked = [modelsRequirementsUnchecked];
3212
+ /*
3213
+ throw new UnexpectedError(
3214
+ spaceTrim(
3215
+ (block) => `
3172
3216
  Invalid \`modelsRequirements\`:
3173
3217
 
3174
3218
  \`\`\`json
3175
3219
  ${block(JSON.stringify(modelsRequirementsUnchecked, null, 4))}
3176
3220
  \`\`\`
3177
- `));
3221
+ `,
3222
+ ),
3223
+ );
3224
+ */
3178
3225
  }
3179
3226
  const modelsRequirements = modelsRequirementsUnchecked.map((modelRequirements) => ({
3180
3227
  modelVariant: 'CHAT',
@@ -3609,7 +3656,7 @@ async function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
3609
3656
  > },
3610
3657
  */
3611
3658
  async asJson() {
3612
- return JSON.parse(await tools.fs.readFile(filename, 'utf-8'));
3659
+ return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
3613
3660
  },
3614
3661
  async asText() {
3615
3662
  return await tools.fs.readFile(filename, 'utf-8');
@@ -5296,13 +5343,79 @@ async function getExamplesForTask(task) {
5296
5343
  /**
5297
5344
  * @@@
5298
5345
  *
5346
+ * Here is the place where RAG (retrieval-augmented generation) happens
5347
+ *
5299
5348
  * @private internal utility of `createPipelineExecutor`
5300
5349
  */
5301
5350
  async function getKnowledgeForTask(options) {
5302
- const { preparedPipeline, task } = options;
5303
- return preparedPipeline.knowledgePieces.map(({ content }) => `- ${content}`).join('\n');
5351
+ const { tools, preparedPipeline, task } = options;
5352
+ const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5353
+ const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5354
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5355
+ if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5356
+ return 'No knowledge pieces found';
5357
+ }
5358
+ // TODO: [🚐] Make arrayable LLMs -> single LLM DRY
5359
+ const _llms = arrayableToArray(tools.llm);
5360
+ const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
5361
+ const taskEmbeddingPrompt = {
5362
+ title: 'Knowledge Search',
5363
+ modelRequirements: {
5364
+ modelVariant: 'EMBEDDING',
5365
+ modelName: firstKnowlegeIndex.modelName,
5366
+ },
5367
+ content: task.content,
5368
+ parameters: {
5369
+ /* !!!!!!!! */
5370
+ },
5371
+ };
5372
+ const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5373
+ const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5374
+ const { index } = knowledgePiece;
5375
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5376
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5377
+ if (knowledgePieceIndex === undefined) {
5378
+ return {
5379
+ content: knowledgePiece.content,
5380
+ relevance: 0,
5381
+ };
5382
+ }
5383
+ const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
5384
+ return {
5385
+ content: knowledgePiece.content,
5386
+ relevance,
5387
+ };
5388
+ });
5389
+ const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
5390
+ const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
5391
+ console.log('!!! Embedding', {
5392
+ task,
5393
+ taskEmbeddingPrompt,
5394
+ taskEmbeddingResult,
5395
+ firstKnowlegePiece,
5396
+ firstKnowlegeIndex,
5397
+ knowledgePiecesWithRelevance,
5398
+ knowledgePiecesSorted,
5399
+ knowledgePiecesLimited,
5400
+ });
5401
+ return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
5304
5402
  // <- TODO: [🧠] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
5305
5403
  }
5404
+ // TODO: !!!!!! Annotate + to new file
5405
+ function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
5406
+ if (embeddingVector1.length !== embeddingVector2.length) {
5407
+ throw new TypeError('Embedding vectors must have the same length');
5408
+ }
5409
+ const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
5410
+ const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
5411
+ const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
5412
+ return 1 - dotProduct / (magnitude1 * magnitude2);
5413
+ }
5414
+ /**
5415
+ * TODO: !!!! Verify if this is working
5416
+ * TODO: [♨] Implement Better - use keyword search
5417
+ * TODO: [♨] Examples of values
5418
+ */
5306
5419
 
5307
5420
  /**
5308
5421
  * @@@
@@ -5310,9 +5423,9 @@ async function getKnowledgeForTask(options) {
5310
5423
  * @private internal utility of `createPipelineExecutor`
5311
5424
  */
5312
5425
  async function getReservedParametersForTask(options) {
5313
- const { preparedPipeline, task, pipelineIdentification } = options;
5426
+ const { tools, preparedPipeline, task, pipelineIdentification } = options;
5314
5427
  const context = await getContextForTask(); // <- [🏍]
5315
- const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
5428
+ const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
5316
5429
  const examples = await getExamplesForTask();
5317
5430
  const currentDate = new Date().toISOString(); // <- TODO: [🧠][💩] Better
5318
5431
  const modelName = RESERVED_PARAMETER_MISSING_VALUE;
@@ -5374,6 +5487,7 @@ async function executeTask(options) {
5374
5487
  }
5375
5488
  const definedParameters = Object.freeze({
5376
5489
  ...(await getReservedParametersForTask({
5490
+ tools,
5377
5491
  preparedPipeline,
5378
5492
  task: currentTask,
5379
5493
  pipelineIdentification,