@promptbook/legacy-documents 0.92.0-4 → 0.92.0-6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +114 -8
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +4 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +1 -1
- package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
- package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
- package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
- package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
- package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
- package/esm/typings/src/remote-server/openapi.d.ts +397 -3
- package/package.json +2 -2
- package/umd/index.umd.js +114 -8
- package/umd/index.umd.js.map +1 -1
package/umd/index.umd.js
CHANGED
|
@@ -26,7 +26,7 @@
|
|
|
26
26
|
* @generated
|
|
27
27
|
* @see https://github.com/webgptorg/promptbook
|
|
28
28
|
*/
|
|
29
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-
|
|
29
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-6';
|
|
30
30
|
/**
|
|
31
31
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
32
32
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -2296,6 +2296,45 @@
|
|
|
2296
2296
|
* - [♨] Are tasks prepared
|
|
2297
2297
|
*/
|
|
2298
2298
|
|
|
2299
|
+
/**
|
|
2300
|
+
* Converts a JavaScript Object Notation (JSON) string into an object.
|
|
2301
|
+
*
|
|
2302
|
+
* Note: This is wrapper around `JSON.parse()` with better error and type handling
|
|
2303
|
+
*
|
|
2304
|
+
* @public exported from `@promptbook/utils`
|
|
2305
|
+
*/
|
|
2306
|
+
function jsonParse(value) {
|
|
2307
|
+
if (value === undefined) {
|
|
2308
|
+
throw new Error(`Can not parse JSON from undefined value.`);
|
|
2309
|
+
}
|
|
2310
|
+
else if (typeof value !== 'string') {
|
|
2311
|
+
console.error('Can not parse JSON from non-string value.', { text: value });
|
|
2312
|
+
throw new Error(spaceTrim__default["default"](`
|
|
2313
|
+
Can not parse JSON from non-string value.
|
|
2314
|
+
|
|
2315
|
+
The value type: ${typeof value}
|
|
2316
|
+
See more in console.
|
|
2317
|
+
`));
|
|
2318
|
+
}
|
|
2319
|
+
try {
|
|
2320
|
+
return JSON.parse(value);
|
|
2321
|
+
}
|
|
2322
|
+
catch (error) {
|
|
2323
|
+
if (!(error instanceof Error)) {
|
|
2324
|
+
throw error;
|
|
2325
|
+
}
|
|
2326
|
+
throw new Error(spaceTrim__default["default"]((block) => `
|
|
2327
|
+
${block(error.message)}
|
|
2328
|
+
|
|
2329
|
+
The JSON text:
|
|
2330
|
+
${block(value)}
|
|
2331
|
+
`));
|
|
2332
|
+
}
|
|
2333
|
+
}
|
|
2334
|
+
/**
|
|
2335
|
+
* TODO: !!!! Use in Promptbook.studio
|
|
2336
|
+
*/
|
|
2337
|
+
|
|
2299
2338
|
/**
|
|
2300
2339
|
* Recursively converts JSON strings to JSON objects
|
|
2301
2340
|
|
|
@@ -2314,7 +2353,7 @@
|
|
|
2314
2353
|
const newObject = { ...object };
|
|
2315
2354
|
for (const [key, value] of Object.entries(object)) {
|
|
2316
2355
|
if (typeof value === 'string' && isValidJsonString(value)) {
|
|
2317
|
-
newObject[key] =
|
|
2356
|
+
newObject[key] = jsonParse(value);
|
|
2318
2357
|
}
|
|
2319
2358
|
else {
|
|
2320
2359
|
newObject[key] = jsonStringsToJsons(value);
|
|
@@ -3161,7 +3200,7 @@
|
|
|
3161
3200
|
}).asPromise();
|
|
3162
3201
|
const { outputParameters } = result;
|
|
3163
3202
|
const { modelsRequirements: modelsRequirementsJson } = outputParameters;
|
|
3164
|
-
const modelsRequirementsUnchecked =
|
|
3203
|
+
const modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
|
|
3165
3204
|
if (isVerbose) {
|
|
3166
3205
|
console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
|
|
3167
3206
|
}
|
|
@@ -3607,7 +3646,7 @@
|
|
|
3607
3646
|
> },
|
|
3608
3647
|
*/
|
|
3609
3648
|
async asJson() {
|
|
3610
|
-
return
|
|
3649
|
+
return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
|
|
3611
3650
|
},
|
|
3612
3651
|
async asText() {
|
|
3613
3652
|
return await tools.fs.readFile(filename, 'utf-8');
|
|
@@ -5294,13 +5333,79 @@
|
|
|
5294
5333
|
/**
|
|
5295
5334
|
* @@@
|
|
5296
5335
|
*
|
|
5336
|
+
* Here is the place where RAG (retrieval-augmented generation) happens
|
|
5337
|
+
*
|
|
5297
5338
|
* @private internal utility of `createPipelineExecutor`
|
|
5298
5339
|
*/
|
|
5299
5340
|
async function getKnowledgeForTask(options) {
|
|
5300
|
-
const { preparedPipeline, task } = options;
|
|
5301
|
-
|
|
5341
|
+
const { tools, preparedPipeline, task } = options;
|
|
5342
|
+
const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
|
|
5343
|
+
const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
|
|
5344
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
|
|
5345
|
+
if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
|
|
5346
|
+
return 'No knowledge pieces found';
|
|
5347
|
+
}
|
|
5348
|
+
// TODO: [🚐] Make arrayable LLMs -> single LLM DRY
|
|
5349
|
+
const _llms = arrayableToArray(tools.llm);
|
|
5350
|
+
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
5351
|
+
const taskEmbeddingPrompt = {
|
|
5352
|
+
title: 'Knowledge Search',
|
|
5353
|
+
modelRequirements: {
|
|
5354
|
+
modelVariant: 'EMBEDDING',
|
|
5355
|
+
modelName: firstKnowlegeIndex.modelName,
|
|
5356
|
+
},
|
|
5357
|
+
content: task.content,
|
|
5358
|
+
parameters: {
|
|
5359
|
+
/* !!!!!!!! */
|
|
5360
|
+
},
|
|
5361
|
+
};
|
|
5362
|
+
const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
|
|
5363
|
+
const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
|
|
5364
|
+
const { index } = knowledgePiece;
|
|
5365
|
+
const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
|
|
5366
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model
|
|
5367
|
+
if (knowledgePieceIndex === undefined) {
|
|
5368
|
+
return {
|
|
5369
|
+
content: knowledgePiece.content,
|
|
5370
|
+
relevance: 0,
|
|
5371
|
+
};
|
|
5372
|
+
}
|
|
5373
|
+
const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
|
|
5374
|
+
return {
|
|
5375
|
+
content: knowledgePiece.content,
|
|
5376
|
+
relevance,
|
|
5377
|
+
};
|
|
5378
|
+
});
|
|
5379
|
+
const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
|
|
5380
|
+
const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
|
|
5381
|
+
console.log('!!! Embedding', {
|
|
5382
|
+
task,
|
|
5383
|
+
taskEmbeddingPrompt,
|
|
5384
|
+
taskEmbeddingResult,
|
|
5385
|
+
firstKnowlegePiece,
|
|
5386
|
+
firstKnowlegeIndex,
|
|
5387
|
+
knowledgePiecesWithRelevance,
|
|
5388
|
+
knowledgePiecesSorted,
|
|
5389
|
+
knowledgePiecesLimited,
|
|
5390
|
+
});
|
|
5391
|
+
return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
|
|
5302
5392
|
// <- TODO: [🧠] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
|
|
5303
5393
|
}
|
|
5394
|
+
// TODO: !!!!!! Annotate + to new file
|
|
5395
|
+
function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
|
|
5396
|
+
if (embeddingVector1.length !== embeddingVector2.length) {
|
|
5397
|
+
throw new TypeError('Embedding vectors must have the same length');
|
|
5398
|
+
}
|
|
5399
|
+
const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
|
|
5400
|
+
const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
|
|
5401
|
+
const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
|
|
5402
|
+
return 1 - dotProduct / (magnitude1 * magnitude2);
|
|
5403
|
+
}
|
|
5404
|
+
/**
|
|
5405
|
+
* TODO: !!!! Verify if this is working
|
|
5406
|
+
* TODO: [♨] Implement Better - use keyword search
|
|
5407
|
+
* TODO: [♨] Examples of values
|
|
5408
|
+
*/
|
|
5304
5409
|
|
|
5305
5410
|
/**
|
|
5306
5411
|
* @@@
|
|
@@ -5308,9 +5413,9 @@
|
|
|
5308
5413
|
* @private internal utility of `createPipelineExecutor`
|
|
5309
5414
|
*/
|
|
5310
5415
|
async function getReservedParametersForTask(options) {
|
|
5311
|
-
const { preparedPipeline, task, pipelineIdentification } = options;
|
|
5416
|
+
const { tools, preparedPipeline, task, pipelineIdentification } = options;
|
|
5312
5417
|
const context = await getContextForTask(); // <- [🏍]
|
|
5313
|
-
const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
|
|
5418
|
+
const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
|
|
5314
5419
|
const examples = await getExamplesForTask();
|
|
5315
5420
|
const currentDate = new Date().toISOString(); // <- TODO: [🧠][💩] Better
|
|
5316
5421
|
const modelName = RESERVED_PARAMETER_MISSING_VALUE;
|
|
@@ -5372,6 +5477,7 @@
|
|
|
5372
5477
|
}
|
|
5373
5478
|
const definedParameters = Object.freeze({
|
|
5374
5479
|
...(await getReservedParametersForTask({
|
|
5480
|
+
tools,
|
|
5375
5481
|
preparedPipeline,
|
|
5376
5482
|
task: currentTask,
|
|
5377
5483
|
pipelineIdentification,
|