@promptbook/legacy-documents 0.75.0-2 → 0.75.0-4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +27 -17
- package/esm/index.es.js +46 -45
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +10 -4
- package/esm/typings/src/_packages/types.index.d.ts +8 -6
- package/esm/typings/src/commands/EXPECT/ExpectCommand.d.ts +1 -1
- package/esm/typings/src/commands/SECTION/SectionCommand.d.ts +1 -1
- package/esm/typings/src/commands/_common/types/CommandParser.d.ts +0 -2
- package/esm/typings/src/config.d.ts +9 -2
- package/esm/typings/src/conversion/pipelineJsonToString.d.ts +1 -1
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +2 -2
- package/esm/typings/src/conversion/utils/extractParameterNamesFromTask.d.ts +3 -3
- package/esm/typings/src/conversion/utils/renameParameter.d.ts +2 -2
- package/esm/typings/src/dialogs/simple-prompt/SimplePromptInterfaceTools.d.ts +1 -1
- package/esm/typings/src/execution/ScriptExecutionTools.d.ts +1 -1
- package/esm/typings/src/formfactors/_boilerplate/BoilerplateFormfactorDefinition.d.ts +2 -2
- package/esm/typings/src/formfactors/_common/AbstractFormfactorDefinition.d.ts +3 -0
- package/esm/typings/src/formfactors/chatbot/ChatbotFormfactorDefinition.d.ts +32 -2
- package/esm/typings/src/formfactors/generator/GeneratorFormfactorDefinition.d.ts +14 -0
- package/esm/typings/src/formfactors/generic/GenericFormfactorDefinition.d.ts +2 -2
- package/esm/typings/src/formfactors/index.d.ts +72 -10
- package/esm/typings/src/formfactors/matcher/MatcherFormfactorDefinition.d.ts +2 -2
- package/esm/typings/src/formfactors/sheets/SheetsFormfactorDefinition.d.ts +12 -2
- package/esm/typings/src/formfactors/translator/TranslatorFormfactorDefinition.d.ts +12 -2
- package/esm/typings/src/pipeline/PipelineInterface/PipelineInterface.d.ts +5 -4
- package/esm/typings/src/pipeline/PipelineInterface/constants.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/{TaskJsonCommon.d.ts → CommonTaskJson.d.ts} +13 -13
- package/esm/typings/src/pipeline/PipelineJson/DialogTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/ParameterJson.d.ts +2 -0
- package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +1 -1
- package/esm/typings/src/pipeline/PipelineJson/PipelineJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/PromptTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/ScriptTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/SimpleTaskJson.d.ts +2 -2
- package/esm/typings/src/pipeline/PipelineJson/TaskJson.d.ts +1 -1
- package/esm/typings/src/pipeline/PipelineString.d.ts +1 -1
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +1 -1
- package/esm/typings/src/prepare/prepareTasks.d.ts +5 -5
- package/esm/typings/src/types/Prompt.d.ts +3 -3
- package/esm/typings/src/types/SectionType.d.ts +21 -0
- package/esm/typings/src/types/TaskProgress.d.ts +1 -1
- package/esm/typings/src/types/TaskType.d.ts +15 -0
- package/esm/typings/src/types/typeAliases.d.ts +1 -1
- package/esm/typings/src/utils/organization/TODO_remove_as.d.ts +6 -0
- package/esm/typings/src/utils/parameters/extractParameterNames.d.ts +1 -1
- package/package.json +2 -2
- package/umd/index.umd.js +46 -45
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/commands/SECTION/SectionType.d.ts +0 -13
- /package/esm/typings/{promptbook-collection → books}/index.d.ts +0 -0
package/README.md
CHANGED
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
#  Promptbook
|
|
4
4
|
|
|
5
|
-
|
|
5
|
+
It's time for a paradigm shift! The future of software is in plain English, French or Latin.
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
|
|
@@ -53,25 +53,24 @@ Read knowledge from legacy documents like `.doc`, `.rtf`,…
|
|
|
53
53
|
|
|
54
54
|
Rest of the documentation is common for **entire promptbook ecosystem**:
|
|
55
55
|
|
|
56
|
-
## 🤍 The Promptbook Whitepaper
|
|
57
56
|
|
|
58
|
-
If you have a simple, single prompt for ChatGPT, GPT-4, Anthropic Claude, Google Gemini, Llama 3, or whatever, it doesn't matter how you integrate it. Whether it's calling a REST API directly, using the SDK, hardcoding the prompt into the source code, or importing a text file, the process remains the same.
|
|
59
57
|
|
|
60
|
-
But often you will struggle with the **limitations of LLMs**, such as **hallucinations, off-topic responses, poor quality output, language and prompt drift, word repetition repetition repetition repetition or misuse, lack of context, or just plain w𝒆𝐢rd resp0nses**. When this happens, you generally have three options:
|
|
61
58
|
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
59
|
+
## 🤍 The Book Abstract
|
|
60
|
+
|
|
61
|
+
> It's time for a paradigm shift! **The future of software is in plain English**, French or Latin.
|
|
62
|
+
|
|
63
|
+
During the computer revolution, we have seen [multiple generations of computer languages](https://github.com/webgptorg/promptbook/discussions/180), from the physical rewiring of the vacuum tubes through low-level machine code to the high-level languages like Python or JavaScript. And now, we're on the edge of the **next revolution**!
|
|
64
|
+
|
|
65
|
+
It's a revolution of writing software in plain human language that is understandable and executable by both humans and machines – and it's going to change everything!
|
|
66
|
+
|
|
67
|
+
The incredible growth in power of microprocessors and the Moore's Law have been the driving force behind the ever-more powerful languages, and it's been an amazing journey! Similarly, the large language models (like GPT or Claude) are the next big thing in language technology, and they're set to transform the way we interact with computers.
|
|
68
|
+
|
|
69
|
+
This shift is going to happen, whether we are ready for it or not. Our mission is to make it excellently, not just good.
|
|
70
|
+
|
|
71
|
+
> **Join us in this journey!**
|
|
65
72
|
|
|
66
|
-
In all of these situations, but especially in 3., the **✨ Promptbook can make your life waaaaaaaaaay easier**.
|
|
67
73
|
|
|
68
|
-
- [**Separates concerns**](https://github.com/webgptorg/promptbook/discussions/32) between prompt-engineer and programmer, between code files and prompt files, and between prompts and their execution logic. For this purpose, it introduces a new language called [the **💙 Book**](https://github.com/webgptorg/book).
|
|
69
|
-
- Book allows you to **focus on the business** logic without having to write code or deal with the technicalities of LLMs.
|
|
70
|
-
- **Forget** about **low-level details** like choosing the right model, tokens, context size, `temperature`, `top-k`, `top-p`, or kernel sampling. **Just write your intent** and [**persona**](https://github.com/webgptorg/promptbook/discussions/22) who should be responsible for the task and let the library do the rest.
|
|
71
|
-
- We have built-in **orchestration** of [pipeline](https://github.com/webgptorg/promptbook/discussions/64) execution and many tools to make the process easier, more reliable, and more efficient, such as caching, [compilation+preparation](https://github.com/webgptorg/promptbook/discussions/78), [just-in-time fine-tuning](https://github.com/webgptorg/promptbook/discussions/33), [expectation-aware generation](https://github.com/webgptorg/promptbook/discussions/37), [agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39), and more.
|
|
72
|
-
- Sometimes even the best prompts with the best framework like Promptbook `:)` can't avoid the problems. In this case, the library has built-in **[anomaly detection](https://github.com/webgptorg/promptbook/discussions/40) and logging** to help you find and fix the problems.
|
|
73
|
-
- Versioning is build in. You can test multiple **A/B versions** of pipelines and see which one works best.
|
|
74
|
-
- Promptbook is designed to use [**RAG** (Retrieval-Augmented Generation)](https://github.com/webgptorg/promptbook/discussions/41) and other advanced techniques to bring the context of your business to generic LLM. You can use **knowledge** to improve the quality of the output.
|
|
75
74
|
|
|
76
75
|
|
|
77
76
|
|
|
@@ -183,7 +182,9 @@ Reserved words:
|
|
|
183
182
|
|
|
184
183
|
#### Parameter notation
|
|
185
184
|
|
|
186
|
-
###
|
|
185
|
+
### Task
|
|
186
|
+
|
|
187
|
+
### Task type
|
|
187
188
|
|
|
188
189
|
Todo todo
|
|
189
190
|
|
|
@@ -244,6 +245,11 @@ Or you can install them separately:
|
|
|
244
245
|
|
|
245
246
|
## 📚 Dictionary
|
|
246
247
|
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
|
|
247
253
|
### 📚 Dictionary
|
|
248
254
|
|
|
249
255
|
The following glossary is used to clarify certain concepts:
|
|
@@ -259,6 +265,8 @@ The following glossary is used to clarify certain concepts:
|
|
|
259
265
|
- **Retrieval-augmented generation** is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
|
|
260
266
|
- **Longtail** refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.
|
|
261
267
|
|
|
268
|
+
|
|
269
|
+
|
|
262
270
|
_Note: Thos section is not complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
|
|
263
271
|
|
|
264
272
|
#### Promptbook core
|
|
@@ -295,7 +303,7 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
|
|
|
295
303
|
|
|
296
304
|
- [📚 Collection of pipelines](https://github.com/webgptorg/promptbook/discussions/65)
|
|
297
305
|
- [📯 Pipeline](https://github.com/webgptorg/promptbook/discussions/64)
|
|
298
|
-
- [
|
|
306
|
+
- [🙇♂️ Tasks and pipeline sections](https://github.com/webgptorg/promptbook/discussions/88)
|
|
299
307
|
- [🤼 Personas](https://github.com/webgptorg/promptbook/discussions/22)
|
|
300
308
|
- [⭕ Parameters](https://github.com/webgptorg/promptbook/discussions/83)
|
|
301
309
|
- [🚀 Pipeline execution](https://github.com/webgptorg/promptbook/discussions/84)
|
|
@@ -319,6 +327,8 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
|
|
|
319
327
|
- [👮 Agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39)
|
|
320
328
|
- [view more](https://github.com/webgptorg/promptbook/discussions/categories/concepts)
|
|
321
329
|
|
|
330
|
+
|
|
331
|
+
|
|
322
332
|
### Terms specific to Promptbook TypeScript implementation
|
|
323
333
|
|
|
324
334
|
- Anonymous mode
|
package/esm/index.es.js
CHANGED
|
@@ -23,7 +23,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
23
23
|
*
|
|
24
24
|
* @see https://github.com/webgptorg/promptbook
|
|
25
25
|
*/
|
|
26
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.75.0-
|
|
26
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.75.0-3';
|
|
27
27
|
/**
|
|
28
28
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
29
29
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -400,7 +400,7 @@ var DEFAULT_MAX_EXECUTION_ATTEMPTS = 3; // <- TODO: [🤹♂️]
|
|
|
400
400
|
*
|
|
401
401
|
* @public exported from `@promptbook/core`
|
|
402
402
|
*/
|
|
403
|
-
var DEFAULT_SCRAPE_CACHE_DIRNAME = '
|
|
403
|
+
var DEFAULT_SCRAPE_CACHE_DIRNAME = './.promptbook/scrape-cache';
|
|
404
404
|
/**
|
|
405
405
|
* Nonce which is used for replacing things in strings
|
|
406
406
|
*
|
|
@@ -1231,7 +1231,7 @@ function getScraperIntermediateSource(source, options) {
|
|
|
1231
1231
|
* Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
|
|
1232
1232
|
*/
|
|
1233
1233
|
|
|
1234
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./
|
|
1234
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./books/prepare-persona.book.md"}];
|
|
1235
1235
|
|
|
1236
1236
|
/**
|
|
1237
1237
|
* Prettify the html code
|
|
@@ -1306,7 +1306,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1306
1306
|
return isInput;
|
|
1307
1307
|
})), _h = _g.next(); !_h.done; _h = _g.next()) {
|
|
1308
1308
|
var parameter = _h.value;
|
|
1309
|
-
commands.push("INPUT PARAMETER ".concat(
|
|
1309
|
+
commands.push("INPUT PARAMETER ".concat(taskParameterJsonToString(parameter)));
|
|
1310
1310
|
}
|
|
1311
1311
|
}
|
|
1312
1312
|
catch (e_1_1) { e_1 = { error: e_1_1 }; }
|
|
@@ -1322,7 +1322,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1322
1322
|
return isOutput;
|
|
1323
1323
|
})), _k = _j.next(); !_k.done; _k = _j.next()) {
|
|
1324
1324
|
var parameter = _k.value;
|
|
1325
|
-
commands.push("OUTPUT PARAMETER ".concat(
|
|
1325
|
+
commands.push("OUTPUT PARAMETER ".concat(taskParameterJsonToString(parameter)));
|
|
1326
1326
|
}
|
|
1327
1327
|
}
|
|
1328
1328
|
catch (e_2_1) { e_2 = { error: e_2_1 }; }
|
|
@@ -1336,12 +1336,12 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1336
1336
|
pipelineString += commands.map(function (command) { return "- ".concat(command); }).join('\n');
|
|
1337
1337
|
try {
|
|
1338
1338
|
for (var tasks_1 = __values(tasks), tasks_1_1 = tasks_1.next(); !tasks_1_1.done; tasks_1_1 = tasks_1.next()) {
|
|
1339
|
-
var
|
|
1339
|
+
var task = tasks_1_1.value;
|
|
1340
1340
|
var
|
|
1341
1341
|
/* Note: Not using:> name, */
|
|
1342
|
-
title_1 =
|
|
1342
|
+
title_1 = task.title, description_1 = task.description,
|
|
1343
1343
|
/* Note: dependentParameterNames, */
|
|
1344
|
-
jokers =
|
|
1344
|
+
jokers = task.jokerParameterNames, taskType = task.taskType, content = task.content, postprocessing = task.postprocessingFunctionNames, expectations = task.expectations, format = task.format, resultingParameterName = task.resultingParameterName;
|
|
1345
1345
|
pipelineString += '\n\n';
|
|
1346
1346
|
pipelineString += "## ".concat(title_1);
|
|
1347
1347
|
if (description_1) {
|
|
@@ -1351,9 +1351,10 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1351
1351
|
var commands_1 = [];
|
|
1352
1352
|
var contentLanguage = 'text';
|
|
1353
1353
|
if (taskType === 'PROMPT_TASK') {
|
|
1354
|
-
var modelRequirements =
|
|
1354
|
+
var modelRequirements = task.modelRequirements;
|
|
1355
1355
|
var _l = modelRequirements || {}, modelName = _l.modelName, modelVariant = _l.modelVariant;
|
|
1356
|
-
|
|
1356
|
+
// Note: Do nothing, it is default
|
|
1357
|
+
// commands.push(`PROMPT`);
|
|
1357
1358
|
if (modelVariant) {
|
|
1358
1359
|
commands_1.push("MODEL VARIANT ".concat(capitalize(modelVariant)));
|
|
1359
1360
|
}
|
|
@@ -1366,16 +1367,16 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1366
1367
|
// Note: Nothing special here
|
|
1367
1368
|
}
|
|
1368
1369
|
else if (taskType === 'SCRIPT_TASK') {
|
|
1369
|
-
commands_1.push("SCRIPT
|
|
1370
|
-
if (
|
|
1371
|
-
contentLanguage =
|
|
1370
|
+
commands_1.push("SCRIPT");
|
|
1371
|
+
if (task.contentLanguage) {
|
|
1372
|
+
contentLanguage = task.contentLanguage;
|
|
1372
1373
|
}
|
|
1373
1374
|
else {
|
|
1374
1375
|
contentLanguage = '';
|
|
1375
1376
|
}
|
|
1376
1377
|
}
|
|
1377
1378
|
else if (taskType === 'DIALOG_TASK') {
|
|
1378
|
-
commands_1.push("DIALOG
|
|
1379
|
+
commands_1.push("DIALOG");
|
|
1379
1380
|
// Note: Nothing special here
|
|
1380
1381
|
} // <- }else if([🅱]
|
|
1381
1382
|
if (jokers) {
|
|
@@ -1450,7 +1451,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1450
1451
|
pipelineString += '\n';
|
|
1451
1452
|
pipelineString += '```';
|
|
1452
1453
|
pipelineString += '\n\n';
|
|
1453
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!! If the parameter here has description, add it and use
|
|
1454
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!! If the parameter here has description, add it and use taskParameterJsonToString
|
|
1454
1455
|
}
|
|
1455
1456
|
}
|
|
1456
1457
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -1465,8 +1466,8 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
1465
1466
|
/**
|
|
1466
1467
|
* @private internal utility of `pipelineJsonToString`
|
|
1467
1468
|
*/
|
|
1468
|
-
function
|
|
1469
|
-
var name =
|
|
1469
|
+
function taskParameterJsonToString(taskParameterJson) {
|
|
1470
|
+
var name = taskParameterJson.name, description = taskParameterJson.description;
|
|
1470
1471
|
var parameterString = "{".concat(name, "}");
|
|
1471
1472
|
if (description) {
|
|
1472
1473
|
parameterString = "".concat(parameterString, " ").concat(description);
|
|
@@ -1474,7 +1475,7 @@ function templateParameterJsonToString(templateParameterJson) {
|
|
|
1474
1475
|
return parameterString;
|
|
1475
1476
|
}
|
|
1476
1477
|
/**
|
|
1477
|
-
* TODO: [🛋] Implement new features and commands into `pipelineJsonToString` + `
|
|
1478
|
+
* TODO: [🛋] Implement new features and commands into `pipelineJsonToString` + `taskParameterJsonToString` , use `stringifyCommand`
|
|
1478
1479
|
* TODO: [🧠] Is there a way to auto-detect missing features in pipelineJsonToString
|
|
1479
1480
|
* TODO: [🏛] Maybe make some markdown builder
|
|
1480
1481
|
* TODO: [🏛] Escape all
|
|
@@ -1843,20 +1844,20 @@ function validatePipelineCore(pipeline) {
|
|
|
1843
1844
|
}
|
|
1844
1845
|
finally { if (e_3) throw e_3.error; }
|
|
1845
1846
|
}
|
|
1846
|
-
var
|
|
1847
|
+
var unresovedTasks = __spreadArray([], __read(pipeline.tasks), false);
|
|
1847
1848
|
var loopLimit = LOOP_LIMIT;
|
|
1848
1849
|
var _loop_3 = function () {
|
|
1849
1850
|
if (loopLimit-- < 0) {
|
|
1850
1851
|
// Note: Really UnexpectedError not LimitReachedError - this should not happen and be caught below
|
|
1851
1852
|
throw new UnexpectedError(spaceTrim(function (block) { return "\n Loop limit reached during detection of circular dependencies in `validatePipeline`\n\n ".concat(block(pipelineIdentification), "\n "); }));
|
|
1852
1853
|
}
|
|
1853
|
-
var
|
|
1854
|
+
var currentlyResovedTasks = unresovedTasks.filter(function (task) {
|
|
1854
1855
|
return task.dependentParameterNames.every(function (name) { return resovedParameters.includes(name); });
|
|
1855
1856
|
});
|
|
1856
|
-
if (
|
|
1857
|
+
if (currentlyResovedTasks.length === 0) {
|
|
1857
1858
|
throw new PipelineLogicError(
|
|
1858
1859
|
// TODO: [🐎] DRY
|
|
1859
|
-
spaceTrim(function (block) { return "\n\n Can not resolve some parameters:\n Either you are using a parameter that is not defined, or there are some circular dependencies.\n\n ".concat(block(pipelineIdentification), "\n\n **Can not resolve:**\n ").concat(block(
|
|
1860
|
+
spaceTrim(function (block) { return "\n\n Can not resolve some parameters:\n Either you are using a parameter that is not defined, or there are some circular dependencies.\n\n ".concat(block(pipelineIdentification), "\n\n **Can not resolve:**\n ").concat(block(unresovedTasks
|
|
1860
1861
|
.map(function (_a) {
|
|
1861
1862
|
var resultingParameterName = _a.resultingParameterName, dependentParameterNames = _a.dependentParameterNames;
|
|
1862
1863
|
return "- Parameter `{".concat(resultingParameterName, "}` which depends on ").concat(dependentParameterNames
|
|
@@ -1875,13 +1876,13 @@ function validatePipelineCore(pipeline) {
|
|
|
1875
1876
|
.map(function (name) { return "- Parameter `{".concat(name, "}`"); })
|
|
1876
1877
|
.join('\n')), "\n\n\n "); }));
|
|
1877
1878
|
}
|
|
1878
|
-
resovedParameters = __spreadArray(__spreadArray([], __read(resovedParameters), false), __read(
|
|
1879
|
+
resovedParameters = __spreadArray(__spreadArray([], __read(resovedParameters), false), __read(currentlyResovedTasks.map(function (_a) {
|
|
1879
1880
|
var resultingParameterName = _a.resultingParameterName;
|
|
1880
1881
|
return resultingParameterName;
|
|
1881
1882
|
})), false);
|
|
1882
|
-
|
|
1883
|
+
unresovedTasks = unresovedTasks.filter(function (task) { return !currentlyResovedTasks.includes(task); });
|
|
1883
1884
|
};
|
|
1884
|
-
while (
|
|
1885
|
+
while (unresovedTasks.length > 0) {
|
|
1885
1886
|
_loop_3();
|
|
1886
1887
|
}
|
|
1887
1888
|
// TODO: !!!!!! Test that pipeline interface implements declared formfactor interface
|
|
@@ -1943,7 +1944,7 @@ var PipelineUrlError = /** @class */ (function (_super) {
|
|
|
1943
1944
|
/**
|
|
1944
1945
|
* Parses the task and returns the list of all parameter names
|
|
1945
1946
|
*
|
|
1946
|
-
* @param template the
|
|
1947
|
+
* @param template the string template with parameters in {curly} braces
|
|
1947
1948
|
* @returns the list of parameter names
|
|
1948
1949
|
* @public exported from `@promptbook/utils`
|
|
1949
1950
|
*/
|
|
@@ -1977,13 +1978,13 @@ function unpreparePipeline(pipeline) {
|
|
|
1977
1978
|
var personas = pipeline.personas, knowledgeSources = pipeline.knowledgeSources, tasks = pipeline.tasks;
|
|
1978
1979
|
personas = personas.map(function (persona) { return (__assign(__assign({}, persona), { modelRequirements: undefined, preparationIds: undefined })); });
|
|
1979
1980
|
knowledgeSources = knowledgeSources.map(function (knowledgeSource) { return (__assign(__assign({}, knowledgeSource), { preparationIds: undefined })); });
|
|
1980
|
-
tasks = tasks.map(function (
|
|
1981
|
-
var dependentParameterNames =
|
|
1982
|
-
var parameterNames = extractParameterNames(
|
|
1981
|
+
tasks = tasks.map(function (task) {
|
|
1982
|
+
var dependentParameterNames = task.dependentParameterNames;
|
|
1983
|
+
var parameterNames = extractParameterNames(task.preparedContent || '');
|
|
1983
1984
|
dependentParameterNames = dependentParameterNames.filter(function (dependentParameterName) { return !parameterNames.has(dependentParameterName); });
|
|
1984
|
-
var
|
|
1985
|
-
delete
|
|
1986
|
-
return
|
|
1985
|
+
var taskUnprepared = __assign(__assign({}, task), { dependentParameterNames: dependentParameterNames });
|
|
1986
|
+
delete taskUnprepared.preparedContent;
|
|
1987
|
+
return taskUnprepared;
|
|
1987
1988
|
});
|
|
1988
1989
|
return $asDeeplyFrozenSerializableJson('Unprepared PipelineJson', __assign(__assign({}, pipeline), { tasks: tasks, knowledgeSources: knowledgeSources, knowledgePieces: [], personas: personas, preparations: [] }));
|
|
1989
1990
|
}
|
|
@@ -2276,7 +2277,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
2276
2277
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2277
2278
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2278
2279
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
2279
|
-
* - [🏍] ? Is context in each
|
|
2280
|
+
* - [🏍] ? Is context in each task
|
|
2280
2281
|
* - [♨] Are examples prepared
|
|
2281
2282
|
* - [♨] Are tasks prepared
|
|
2282
2283
|
*/
|
|
@@ -3588,10 +3589,10 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3588
3589
|
_a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a;
|
|
3589
3590
|
tasks = pipeline.tasks, pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
|
|
3590
3591
|
tasksPrepared = new Array(tasks.length);
|
|
3591
|
-
return [4 /*yield*/, forEachAsync(tasks, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (
|
|
3592
|
-
var dependentParameterNames, preparedContent,
|
|
3592
|
+
return [4 /*yield*/, forEachAsync(tasks, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (task, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3593
|
+
var dependentParameterNames, preparedContent, preparedTask;
|
|
3593
3594
|
return __generator(this, function (_a) {
|
|
3594
|
-
dependentParameterNames =
|
|
3595
|
+
dependentParameterNames = task.dependentParameterNames;
|
|
3595
3596
|
preparedContent = undefined;
|
|
3596
3597
|
if (knowledgePiecesCount > 0 && !dependentParameterNames.includes('knowledge')) {
|
|
3597
3598
|
preparedContent = spaceTrim("\n {content}\n\n ## Knowledge\n\n {knowledge}\n ");
|
|
@@ -3600,8 +3601,8 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3600
3601
|
'knowledge',
|
|
3601
3602
|
], false);
|
|
3602
3603
|
}
|
|
3603
|
-
|
|
3604
|
-
tasksPrepared[index] =
|
|
3604
|
+
preparedTask = __assign(__assign({}, task), { dependentParameterNames: dependentParameterNames, preparedContent: preparedContent });
|
|
3605
|
+
tasksPrepared[index] = preparedTask;
|
|
3605
3606
|
return [2 /*return*/];
|
|
3606
3607
|
});
|
|
3607
3608
|
}); })];
|
|
@@ -3613,8 +3614,8 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3613
3614
|
});
|
|
3614
3615
|
}
|
|
3615
3616
|
/**
|
|
3616
|
-
* TODO: [🧠] Add context to each
|
|
3617
|
-
* TODO: [🧠] What is better name `
|
|
3617
|
+
* TODO: [🧠] Add context to each task (if missing)
|
|
3618
|
+
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3618
3619
|
* TODO: [♨][main] !!! Prepare index the examples and maybe tasks
|
|
3619
3620
|
* TODO: Write tests for `preparePipeline`
|
|
3620
3621
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
@@ -3700,7 +3701,7 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3700
3701
|
})];
|
|
3701
3702
|
case 3:
|
|
3702
3703
|
tasksPrepared = (_c.sent()).tasksPrepared;
|
|
3703
|
-
// ----- /
|
|
3704
|
+
// ----- /Tasks preparation -----
|
|
3704
3705
|
// Note: Count total usage
|
|
3705
3706
|
currentPreparation.usage = llmToolsWithUsage.getTotalUsage();
|
|
3706
3707
|
return [2 /*return*/, $asDeeplyFrozenSerializableJson('Prepared PipelineJson', __assign(__assign({}, clonePipeline(pipeline)), { tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
@@ -3769,16 +3770,16 @@ function extractVariables(script) {
|
|
|
3769
3770
|
*/
|
|
3770
3771
|
|
|
3771
3772
|
/**
|
|
3772
|
-
* Parses the
|
|
3773
|
+
* Parses the task and returns the set of all used parameters
|
|
3773
3774
|
*
|
|
3774
|
-
* @param
|
|
3775
|
+
* @param task the task with used parameters
|
|
3775
3776
|
* @returns the set of parameter names
|
|
3776
3777
|
* @throws {ParseError} if the script is invalid
|
|
3777
3778
|
* @public exported from `@promptbook/utils`
|
|
3778
3779
|
*/
|
|
3779
|
-
function extractParameterNamesFromTask(
|
|
3780
|
+
function extractParameterNamesFromTask(task) {
|
|
3780
3781
|
var e_1, _a, e_2, _b, e_3, _c, e_4, _d;
|
|
3781
|
-
var title =
|
|
3782
|
+
var title = task.title, description = task.description, taskType = task.taskType, content = task.content, preparedContent = task.preparedContent, jokerParameterNames = task.jokerParameterNames, foreach = task.foreach;
|
|
3782
3783
|
var parameterNames = new Set();
|
|
3783
3784
|
try {
|
|
3784
3785
|
for (var _e = __values(__spreadArray(__spreadArray(__spreadArray(__spreadArray([], __read(extractParameterNames(title)), false), __read(extractParameterNames(description || '')), false), __read(extractParameterNames(content)), false), __read(extractParameterNames(preparedContent || '')), false)), _f = _e.next(); !_f.done; _f = _e.next()) {
|