@promptbook/legacy-documents 0.74.0-7 → 0.74.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. package/README.md +3 -15
  2. package/esm/index.es.js +43 -27
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/core.index.d.ts +5 -1
  5. package/esm/typings/src/_packages/utils.index.d.ts +4 -0
  6. package/esm/typings/src/cli/cli-commands/run.d.ts +1 -1
  7. package/esm/typings/src/cli/main.d.ts +4 -1
  8. package/esm/typings/src/cli/promptbookCli.d.ts +1 -1
  9. package/esm/typings/src/cli/test/ptbk.d.ts +1 -1
  10. package/esm/typings/src/collection/collectionToJson.test.d.ts +1 -1
  11. package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +1 -1
  12. package/esm/typings/src/commands/BOOK_VERSION/BookVersionCommand.d.ts +1 -1
  13. package/esm/typings/src/commands/FOREACH/foreachCommandParser.d.ts +2 -2
  14. package/esm/typings/src/commands/_BOILERPLATE/boilerplateCommandParser.d.ts +1 -1
  15. package/esm/typings/src/config.d.ts +6 -0
  16. package/esm/typings/src/conversion/pipelineJsonToString.d.ts +3 -3
  17. package/esm/typings/src/conversion/pipelineStringToJson.d.ts +2 -2
  18. package/esm/typings/src/conversion/pipelineStringToJsonSync.d.ts +2 -2
  19. package/esm/typings/src/conversion/utils/stringifyPipelineJson.d.ts +1 -1
  20. package/esm/typings/src/conversion/validation/_importPipeline.d.ts +7 -7
  21. package/esm/typings/src/formats/_common/FormatDefinition.d.ts +1 -1
  22. package/esm/typings/src/formats/_common/FormatSubvalueDefinition.d.ts +1 -1
  23. package/esm/typings/src/storage/blackhole/BlackholeStorage.d.ts +33 -0
  24. package/esm/typings/src/storage/memory/MemoryStorage.d.ts +1 -1
  25. package/esm/typings/src/storage/{memory/utils → utils}/PrefixStorage.d.ts +1 -1
  26. package/esm/typings/src/types/PipelineJson/PipelineJson.d.ts +6 -4
  27. package/esm/typings/src/types/PipelineJson/PreparationJson.d.ts +1 -1
  28. package/esm/typings/src/types/Prompt.d.ts +1 -1
  29. package/esm/typings/src/types/typeAliases.d.ts +2 -2
  30. package/esm/typings/src/utils/expectation-counters/config.d.ts +12 -0
  31. package/esm/typings/src/utils/expectation-counters/countLines.d.ts +2 -0
  32. package/esm/typings/src/utils/expectation-counters/countPages.d.ts +2 -0
  33. package/package.json +2 -2
  34. package/umd/index.umd.js +43 -27
  35. package/umd/index.umd.js.map +1 -1
  36. /package/esm/typings/src/storage/{memory → local-storage}/utils/makePromptbookStorageFromWebStorage.d.ts +0 -0
package/README.md CHANGED
@@ -18,16 +18,13 @@ Build responsible, controlled and transparent applications on top of LLM models!
18
18
 
19
19
  ## ✨ New Features
20
20
 
21
- - 💙 Working on [the **Book** language v1](https://github.com/webgptorg/book)
21
+ - 💙 Working [the **Book** language v1.0.0](https://github.com/webgptorg/book)
22
+ - 🖤 Run books from CLI - `npx ptbk run path/to/your/book`
22
23
  - 📚 Support of `.docx`, `.doc` and `.pdf` documents
23
24
  - ✨ **Support of [OpenAI o1 model](https://openai.com/o1/)**
24
25
 
25
26
 
26
27
 
27
- <blockquote style="color: #ff8811">
28
- <b>⚠ Warning:</b> This is a pre-release version of the library. It is not yet ready for production use. Please look at <a href="https://www.npmjs.com/package/@promptbook/core?activeTab=versions">latest stable release</a>.
29
- </blockquote>
30
-
31
28
  ## 📦 Package `@promptbook/legacy-documents`
32
29
 
33
30
  - Promptbooks are [divided into several](#-packages) packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
@@ -150,7 +147,7 @@ Following is the documentation and blueprint of the Book language.
150
147
 
151
148
  File is designed to be easy to read and write. It is strict subset of markdown. It is designed to be understandable by both humans and machines and without specific knowledge of the language.
152
149
 
153
- It has file with `.ptbk.md` or `.book` extension with `UTF-8` non BOM encoding.
150
+ It has file with `.book.md` or `.book` extension with `UTF-8` non BOM encoding.
154
151
 
155
152
  As it is source code, it can leverage all the features of version control systems like git and does not suffer from the problems of binary formats, proprietary formats, or no-code solutions.
156
153
 
@@ -243,11 +240,6 @@ Or you can install them separately:
243
240
 
244
241
  ## 📚 Dictionary
245
242
 
246
-
247
-
248
-
249
-
250
-
251
243
  ### 📚 Dictionary
252
244
 
253
245
  The following glossary is used to clarify certain concepts:
@@ -263,8 +255,6 @@ The following glossary is used to clarify certain concepts:
263
255
  - **Retrieval-augmented generation** is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
264
256
  - **Longtail** refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.
265
257
 
266
-
267
-
268
258
  _Note: Thos section is not complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
269
259
 
270
260
  #### Promptbook core
@@ -325,8 +315,6 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
325
315
  - [👮 Agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39)
326
316
  - [view more](https://github.com/webgptorg/promptbook/discussions/categories/concepts)
327
317
 
328
-
329
-
330
318
  ### Terms specific to Promptbook TypeScript implementation
331
319
 
332
320
  - Anonymous mode
package/esm/index.es.js CHANGED
@@ -23,7 +23,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
23
23
  *
24
24
  * @see https://github.com/webgptorg/promptbook
25
25
  */
26
- var PROMPTBOOK_ENGINE_VERSION = '0.74.0-6';
26
+ var PROMPTBOOK_ENGINE_VERSION = '0.74.0-13';
27
27
  /**
28
28
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
29
29
  */
@@ -1225,7 +1225,7 @@ function getScraperIntermediateSource(source, options) {
1225
1225
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
1226
1226
  */
1227
1227
 
1228
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
1228
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.book.md"}];
1229
1229
 
1230
1230
  /**
1231
1231
  * Prettify the html code
@@ -1273,13 +1273,13 @@ function capitalize(word) {
1273
1273
  /**
1274
1274
  * Converts promptbook in JSON format to string format
1275
1275
  *
1276
- * @param pipelineJson Promptbook in JSON format (.ptbk.json)
1277
- * @returns Promptbook in string format (.ptbk.md)
1276
+ * @param pipelineJson Promptbook in JSON format (.book.json)
1277
+ * @returns Promptbook in string format (.book.md)
1278
1278
  * @public exported from `@promptbook/core`
1279
1279
  */
1280
1280
  function pipelineJsonToString(pipelineJson) {
1281
1281
  var e_1, _a, e_2, _b, e_3, _c, e_4, _d, e_5, _e, e_6, _f;
1282
- var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, promptbookVersion = pipelineJson.promptbookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
1282
+ var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, bookVersion = pipelineJson.bookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
1283
1283
  var pipelineString = "# ".concat(title);
1284
1284
  if (description) {
1285
1285
  pipelineString += '\n\n';
@@ -1289,8 +1289,10 @@ function pipelineJsonToString(pipelineJson) {
1289
1289
  if (pipelineUrl) {
1290
1290
  commands.push("PIPELINE URL ".concat(pipelineUrl));
1291
1291
  }
1292
- commands.push("PROMPTBOOK VERSION ".concat(promptbookVersion));
1293
- // TODO: [main] !!! This increase size of the bundle and is probbably not necessary
1292
+ if (bookVersion !== "undefined") {
1293
+ commands.push("BOOK VERSION ".concat(bookVersion));
1294
+ }
1295
+ // TODO: [main] !!!!! This increases size of the bundle and is probbably not necessary
1294
1296
  pipelineString = prettifyMarkdown(pipelineString);
1295
1297
  try {
1296
1298
  for (var _g = __values(parameters.filter(function (_a) {
@@ -1470,7 +1472,7 @@ function templateParameterJsonToString(templateParameterJson) {
1470
1472
  * TODO: [🧠] Is there a way to auto-detect missing features in pipelineJsonToString
1471
1473
  * TODO: [🏛] Maybe make some markdown builder
1472
1474
  * TODO: [🏛] Escape all
1473
- * TODO: [🧠] Should be in generated .ptbk.md file GENERATOR_WARNING
1475
+ * TODO: [🧠] Should be in generated .book.md file GENERATOR_WARNING
1474
1476
  */
1475
1477
 
1476
1478
  /**
@@ -1617,7 +1619,7 @@ function isValidPipelineUrl(url) {
1617
1619
  if (!url.startsWith('https://')) {
1618
1620
  return false;
1619
1621
  }
1620
- if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.ptbk.md') || url.endsWith('.ptbk'))) {
1622
+ if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
1621
1623
  return false;
1622
1624
  }
1623
1625
  if (url.includes('#')) {
@@ -1686,9 +1688,9 @@ function validatePipelineCore(pipeline) {
1686
1688
  // <- Note: [🚲]
1687
1689
  throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid promptbook URL \"".concat(pipeline.pipelineUrl, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1688
1690
  }
1689
- if (pipeline.promptbookVersion !== undefined && !isValidPromptbookVersion(pipeline.promptbookVersion)) {
1691
+ if (pipeline.bookVersion !== undefined && !isValidPromptbookVersion(pipeline.bookVersion)) {
1690
1692
  // <- Note: [🚲]
1691
- throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.promptbookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1693
+ throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.bookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1692
1694
  }
1693
1695
  // TODO: [🧠] Maybe do here some propper JSON-schema / ZOD checking
1694
1696
  if (!Array.isArray(pipeline.parameters)) {
@@ -2919,7 +2921,7 @@ function preparePersona(personaDescription, tools, options) {
2919
2921
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
2920
2922
  _b = createPipelineExecutor;
2921
2923
  _c = {};
2922
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.ptbk.md')];
2924
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book.md')];
2923
2925
  case 1:
2924
2926
  preparePersonaExecutor = _b.apply(void 0, [(_c.pipeline = _d.sent(),
2925
2927
  _c.tools = tools,
@@ -3529,12 +3531,12 @@ TODO: [🧊] This is how it can look in future
3529
3531
  */
3530
3532
  function clonePipeline(pipeline) {
3531
3533
  // Note: Not using spread operator (...) because @@@
3532
- var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, promptbookVersion = pipeline.promptbookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
3534
+ var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, bookVersion = pipeline.bookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
3533
3535
  return {
3534
3536
  pipelineUrl: pipelineUrl,
3535
3537
  sourceFile: sourceFile,
3536
3538
  title: title,
3537
- promptbookVersion: promptbookVersion,
3539
+ bookVersion: bookVersion,
3538
3540
  description: description,
3539
3541
  parameters: parameters,
3540
3542
  templates: templates,
@@ -4479,28 +4481,42 @@ function countCharacters(text) {
4479
4481
  return text.length;
4480
4482
  }
4481
4483
 
4484
+ /**
4485
+ * Number of characters per standard line with 11pt Arial font size.
4486
+ *
4487
+ * @public exported from `@promptbook/utils`
4488
+ */
4489
+ var CHARACTERS_PER_STANDARD_LINE = 63;
4490
+ /**
4491
+ * Number of lines per standard A4 page with 11pt Arial font size and standard margins and spacing.
4492
+ *
4493
+ * @public exported from `@promptbook/utils`
4494
+ */
4495
+ var LINES_PER_STANDARD_PAGE = 44;
4496
+
4482
4497
  /**
4483
4498
  * Counts number of lines in the text
4484
4499
  *
4500
+ * Note: This does not check only for the presence of newlines, but also for the length of the standard line.
4501
+ *
4485
4502
  * @public exported from `@promptbook/utils`
4486
4503
  */
4487
4504
  function countLines(text) {
4488
- if (text === '') {
4489
- return 0;
4490
- }
4491
- return text.split('\n').length;
4505
+ text = text.replace('\r\n', '\n');
4506
+ text = text.replace('\r', '\n');
4507
+ var lines = text.split('\n');
4508
+ return lines.reduce(function (count, line) { return count + Math.ceil(line.length / CHARACTERS_PER_STANDARD_LINE); }, 0);
4492
4509
  }
4493
4510
 
4494
4511
  /**
4495
4512
  * Counts number of pages in the text
4496
4513
  *
4514
+ * Note: This does not check only for the count of newlines, but also for the length of the standard line and length of the standard page.
4515
+ *
4497
4516
  * @public exported from `@promptbook/utils`
4498
4517
  */
4499
4518
  function countPages(text) {
4500
- var sentencesPerPage = 5; // Assuming each page has 5 sentences
4501
- var sentences = text.split(/[.!?]+/).filter(function (sentence) { return sentence.trim() !== ''; });
4502
- var pageCount = Math.ceil(sentences.length / sentencesPerPage);
4503
- return pageCount;
4519
+ return Math.ceil(countLines(text) / LINES_PER_STANDARD_PAGE);
4504
4520
  }
4505
4521
 
4506
4522
  /**
@@ -4780,7 +4796,7 @@ function executeAttempts(options) {
4780
4796
  promptTitle: template.title,
4781
4797
  promptMessage: replaceParameters(template.description || '', parameters),
4782
4798
  defaultValue: replaceParameters(preparedContent, parameters),
4783
- // TODO: [🧠] !! Figure out how to define placeholder in .ptbk.md file
4799
+ // TODO: [🧠] !! Figure out how to define placeholder in .book.md file
4784
4800
  placeholder: undefined,
4785
4801
  priority: priority,
4786
4802
  }))];
@@ -5346,7 +5362,7 @@ function executePipeline(options) {
5346
5362
  pipelineUrl: preparedPipeline.pipelineUrl,
5347
5363
  title: preparedPipeline.title,
5348
5364
  promptbookUsedVersion: PROMPTBOOK_ENGINE_VERSION,
5349
- promptbookRequestedVersion: preparedPipeline.promptbookVersion,
5365
+ promptbookRequestedVersion: preparedPipeline.bookVersion,
5350
5366
  description: preparedPipeline.description,
5351
5367
  promptExecutions: [],
5352
5368
  };
@@ -5742,7 +5758,7 @@ var MarkdownScraper = /** @class */ (function () {
5742
5758
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
5743
5759
  _d = createPipelineExecutor;
5744
5760
  _g = {};
5745
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md')];
5761
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md')];
5746
5762
  case 1:
5747
5763
  prepareKnowledgeFromMarkdownExecutor = _d.apply(void 0, [(_g.pipeline = _k.sent(),
5748
5764
  _g.tools = {
@@ -5751,7 +5767,7 @@ var MarkdownScraper = /** @class */ (function () {
5751
5767
  _g)]);
5752
5768
  _e = createPipelineExecutor;
5753
5769
  _h = {};
5754
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md')];
5770
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.book.md')];
5755
5771
  case 2:
5756
5772
  prepareTitleExecutor = _e.apply(void 0, [(_h.pipeline = _k.sent(),
5757
5773
  _h.tools = {
@@ -5760,7 +5776,7 @@ var MarkdownScraper = /** @class */ (function () {
5760
5776
  _h)]);
5761
5777
  _f = createPipelineExecutor;
5762
5778
  _j = {};
5763
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md')];
5779
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md')];
5764
5780
  case 3:
5765
5781
  prepareKeywordsExecutor = _f.apply(void 0, [(_j.pipeline = _k.sent(),
5766
5782
  _j.tools = {