@promptbook/legacy-documents 0.74.0-11 → 0.74.0-12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -150,7 +150,7 @@ Following is the documentation and blueprint of the Book language.
150
150
 
151
151
  File is designed to be easy to read and write. It is strict subset of markdown. It is designed to be understandable by both humans and machines and without specific knowledge of the language.
152
152
 
153
- It has file with `.ptbk.md` or `.book` extension with `UTF-8` non BOM encoding.
153
+ It has file with `.book.md` or `.book` extension with `UTF-8` non BOM encoding.
154
154
 
155
155
  As it is source code, it can leverage all the features of version control systems like git and does not suffer from the problems of binary formats, proprietary formats, or no-code solutions.
156
156
 
@@ -243,11 +243,6 @@ Or you can install them separately:
243
243
 
244
244
  ## 📚 Dictionary
245
245
 
246
-
247
-
248
-
249
-
250
-
251
246
  ### 📚 Dictionary
252
247
 
253
248
  The following glossary is used to clarify certain concepts:
@@ -263,8 +258,6 @@ The following glossary is used to clarify certain concepts:
263
258
  - **Retrieval-augmented generation** is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
264
259
  - **Longtail** refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.
265
260
 
266
-
267
-
268
261
  _Note: Thos section is not complete dictionary, more list of general AI / LLM terms that has connection with Promptbook_
269
262
 
270
263
  #### Promptbook core
@@ -325,8 +318,6 @@ _Note: Thos section is not complete dictionary, more list of general AI / LLM te
325
318
  - [👮 Agent adversary expectations](https://github.com/webgptorg/promptbook/discussions/39)
326
319
  - [view more](https://github.com/webgptorg/promptbook/discussions/categories/concepts)
327
320
 
328
-
329
-
330
321
  ### Terms specific to Promptbook TypeScript implementation
331
322
 
332
323
  - Anonymous mode
package/esm/index.es.js CHANGED
@@ -23,7 +23,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
23
23
  *
24
24
  * @see https://github.com/webgptorg/promptbook
25
25
  */
26
- var PROMPTBOOK_ENGINE_VERSION = '0.74.0-10';
26
+ var PROMPTBOOK_ENGINE_VERSION = '0.74.0-11';
27
27
  /**
28
28
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
29
29
  */
@@ -1225,7 +1225,7 @@ function getScraperIntermediateSource(source, options) {
1225
1225
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
1226
1226
  */
1227
1227
 
1228
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
1228
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.book.md"}];
1229
1229
 
1230
1230
  /**
1231
1231
  * Prettify the html code
@@ -1273,13 +1273,13 @@ function capitalize(word) {
1273
1273
  /**
1274
1274
  * Converts promptbook in JSON format to string format
1275
1275
  *
1276
- * @param pipelineJson Promptbook in JSON format (.ptbk.json)
1277
- * @returns Promptbook in string format (.ptbk.md)
1276
+ * @param pipelineJson Promptbook in JSON format (.book.json)
1277
+ * @returns Promptbook in string format (.book.md)
1278
1278
  * @public exported from `@promptbook/core`
1279
1279
  */
1280
1280
  function pipelineJsonToString(pipelineJson) {
1281
1281
  var e_1, _a, e_2, _b, e_3, _c, e_4, _d, e_5, _e, e_6, _f;
1282
- var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, promptbookVersion = pipelineJson.promptbookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
1282
+ var title = pipelineJson.title, pipelineUrl = pipelineJson.pipelineUrl, bookVersion = pipelineJson.bookVersion, description = pipelineJson.description, parameters = pipelineJson.parameters, templates = pipelineJson.templates;
1283
1283
  var pipelineString = "# ".concat(title);
1284
1284
  if (description) {
1285
1285
  pipelineString += '\n\n';
@@ -1289,8 +1289,10 @@ function pipelineJsonToString(pipelineJson) {
1289
1289
  if (pipelineUrl) {
1290
1290
  commands.push("PIPELINE URL ".concat(pipelineUrl));
1291
1291
  }
1292
- commands.push("PROMPTBOOK VERSION ".concat(promptbookVersion));
1293
- // TODO: [main] !!! This increase size of the bundle and is probbably not necessary
1292
+ if (bookVersion !== "undefined") {
1293
+ commands.push("BOOK VERSION ".concat(bookVersion));
1294
+ }
1295
+ // TODO: [main] !!!!!! This increase size of the bundle and is probbably not necessary
1294
1296
  pipelineString = prettifyMarkdown(pipelineString);
1295
1297
  try {
1296
1298
  for (var _g = __values(parameters.filter(function (_a) {
@@ -1470,7 +1472,7 @@ function templateParameterJsonToString(templateParameterJson) {
1470
1472
  * TODO: [🧠] Is there a way to auto-detect missing features in pipelineJsonToString
1471
1473
  * TODO: [🏛] Maybe make some markdown builder
1472
1474
  * TODO: [🏛] Escape all
1473
- * TODO: [🧠] Should be in generated .ptbk.md file GENERATOR_WARNING
1475
+ * TODO: [🧠] Should be in generated .book.md file GENERATOR_WARNING
1474
1476
  */
1475
1477
 
1476
1478
  /**
@@ -1617,7 +1619,7 @@ function isValidPipelineUrl(url) {
1617
1619
  if (!url.startsWith('https://')) {
1618
1620
  return false;
1619
1621
  }
1620
- if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.ptbk.md') || url.endsWith('.ptbk'))) {
1622
+ if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
1621
1623
  return false;
1622
1624
  }
1623
1625
  if (url.includes('#')) {
@@ -1686,9 +1688,9 @@ function validatePipelineCore(pipeline) {
1686
1688
  // <- Note: [🚲]
1687
1689
  throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid promptbook URL \"".concat(pipeline.pipelineUrl, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1688
1690
  }
1689
- if (pipeline.promptbookVersion !== undefined && !isValidPromptbookVersion(pipeline.promptbookVersion)) {
1691
+ if (pipeline.bookVersion !== undefined && !isValidPromptbookVersion(pipeline.bookVersion)) {
1690
1692
  // <- Note: [🚲]
1691
- throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.promptbookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1693
+ throw new PipelineLogicError(spaceTrim(function (block) { return "\n Invalid Promptbook Version \"".concat(pipeline.bookVersion, "\"\n\n ").concat(block(pipelineIdentification), "\n "); }));
1692
1694
  }
1693
1695
  // TODO: [🧠] Maybe do here some propper JSON-schema / ZOD checking
1694
1696
  if (!Array.isArray(pipeline.parameters)) {
@@ -2919,7 +2921,7 @@ function preparePersona(personaDescription, tools, options) {
2919
2921
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
2920
2922
  _b = createPipelineExecutor;
2921
2923
  _c = {};
2922
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.ptbk.md')];
2924
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book.md')];
2923
2925
  case 1:
2924
2926
  preparePersonaExecutor = _b.apply(void 0, [(_c.pipeline = _d.sent(),
2925
2927
  _c.tools = tools,
@@ -3529,12 +3531,12 @@ TODO: [🧊] This is how it can look in future
3529
3531
  */
3530
3532
  function clonePipeline(pipeline) {
3531
3533
  // Note: Not using spread operator (...) because @@@
3532
- var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, promptbookVersion = pipeline.promptbookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
3534
+ var pipelineUrl = pipeline.pipelineUrl, sourceFile = pipeline.sourceFile, title = pipeline.title, bookVersion = pipeline.bookVersion, description = pipeline.description, parameters = pipeline.parameters, templates = pipeline.templates, knowledgeSources = pipeline.knowledgeSources, knowledgePieces = pipeline.knowledgePieces, personas = pipeline.personas, preparations = pipeline.preparations;
3533
3535
  return {
3534
3536
  pipelineUrl: pipelineUrl,
3535
3537
  sourceFile: sourceFile,
3536
3538
  title: title,
3537
- promptbookVersion: promptbookVersion,
3539
+ bookVersion: bookVersion,
3538
3540
  description: description,
3539
3541
  parameters: parameters,
3540
3542
  templates: templates,
@@ -4782,7 +4784,7 @@ function executeAttempts(options) {
4782
4784
  promptTitle: template.title,
4783
4785
  promptMessage: replaceParameters(template.description || '', parameters),
4784
4786
  defaultValue: replaceParameters(preparedContent, parameters),
4785
- // TODO: [🧠] !! Figure out how to define placeholder in .ptbk.md file
4787
+ // TODO: [🧠] !! Figure out how to define placeholder in .book.md file
4786
4788
  placeholder: undefined,
4787
4789
  priority: priority,
4788
4790
  }))];
@@ -5348,7 +5350,7 @@ function executePipeline(options) {
5348
5350
  pipelineUrl: preparedPipeline.pipelineUrl,
5349
5351
  title: preparedPipeline.title,
5350
5352
  promptbookUsedVersion: PROMPTBOOK_ENGINE_VERSION,
5351
- promptbookRequestedVersion: preparedPipeline.promptbookVersion,
5353
+ promptbookRequestedVersion: preparedPipeline.bookVersion,
5352
5354
  description: preparedPipeline.description,
5353
5355
  promptExecutions: [],
5354
5356
  };
@@ -5744,7 +5746,7 @@ var MarkdownScraper = /** @class */ (function () {
5744
5746
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
5745
5747
  _d = createPipelineExecutor;
5746
5748
  _g = {};
5747
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md')];
5749
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md')];
5748
5750
  case 1:
5749
5751
  prepareKnowledgeFromMarkdownExecutor = _d.apply(void 0, [(_g.pipeline = _k.sent(),
5750
5752
  _g.tools = {
@@ -5753,7 +5755,7 @@ var MarkdownScraper = /** @class */ (function () {
5753
5755
  _g)]);
5754
5756
  _e = createPipelineExecutor;
5755
5757
  _h = {};
5756
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md')];
5758
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-title.book.md')];
5757
5759
  case 2:
5758
5760
  prepareTitleExecutor = _e.apply(void 0, [(_h.pipeline = _k.sent(),
5759
5761
  _h.tools = {
@@ -5762,7 +5764,7 @@ var MarkdownScraper = /** @class */ (function () {
5762
5764
  _h)]);
5763
5765
  _f = createPipelineExecutor;
5764
5766
  _j = {};
5765
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md')];
5767
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md')];
5766
5768
  case 3:
5767
5769
  prepareKeywordsExecutor = _f.apply(void 0, [(_j.pipeline = _k.sent(),
5768
5770
  _j.tools = {