@promptbook/legacy-documents 0.72.0 → 0.74.0-0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,4 +12,4 @@ export type TemplateType = TupleToUnion<typeof TemplateTypes>;
12
12
  * @see https://github.com/webgptorg/promptbook#template-type
13
13
  * @public exported from `@promptbook/core`
14
14
  */
15
- export declare const TemplateTypes: readonly ["PROMPT_TEMPLATE", "SIMPLE_TEMPLATE", "SCRIPT_TEMPLATE", "DIALOG_TEMPLATE", "SAMPLE", "KNOWLEDGE", "INSTRUMENT", "ACTION"];
15
+ export declare const TemplateTypes: readonly ["PROMPT_TEMPLATE", "SIMPLE_TEMPLATE", "SCRIPT_TEMPLATE", "DIALOG_TEMPLATE", "EXAMPLE", "KNOWLEDGE", "INSTRUMENT", "ACTION"];
@@ -121,7 +121,7 @@ export declare const REPLACING_NONCE = "u$k42k%!V2zo34w7Fu#@QUHYPW";
121
121
  *
122
122
  * @public exported from `@promptbook/core`
123
123
  */
124
- export declare const RESERVED_PARAMETER_NAMES: readonly ["content", "context", "knowledge", "samples", "modelName", "currentDate"];
124
+ export declare const RESERVED_PARAMETER_NAMES: readonly ["content", "context", "knowledge", "examples", "modelName", "currentDate"];
125
125
  /**
126
126
  * @@@
127
127
  *
@@ -22,9 +22,9 @@ export type renderPipelineMermaidOptions = {
22
22
  */
23
23
  export declare function renderPromptbookMermaid(pipelineJson: PipelineJson, options?: renderPipelineMermaidOptions): string;
24
24
  /**
25
- * TODO: !!!!! FOREACH in mermaid graph
26
- * TODO: !!!!! Knowledge in mermaid graph
27
- * TODO: !!!!! Personas in mermaid graph
25
+ * TODO: [🧠] !! FOREACH in mermaid graph
26
+ * TODO: [🧠] !! Knowledge in mermaid graph
27
+ * TODO: [🧠] !! Personas in mermaid graph
28
28
  * TODO: Maybe use some Mermaid package instead of string templating
29
29
  * TODO: [🕌] When more than 2 functionalities, split into separate functions
30
30
  */
@@ -9,7 +9,7 @@ import type { string_json } from '../../types/typeAliases';
9
9
  */
10
10
  export declare function stringifyPipelineJson<TType>(pipeline: TType): string_json<TType>;
11
11
  /**
12
- * TODO: [🐝] Not Working propperly @see https://promptbook.studio/samples/mixed-knowledge.ptbk.md
12
+ * TODO: [🐝] Not Working propperly @see https://promptbook.studio/examples/mixed-knowledge.ptbk.md
13
13
  * TODO: [🧠][0] Maybe rename to `stringifyPipelineJson`, `stringifyIndexedJson`,...
14
14
  * TODO: [🧠] Maybe more elegant solution than replacing via regex
15
15
  * TODO: [🍙] Make some standard order of json properties
@@ -7,7 +7,7 @@ import type { string_json } from '../../types/typeAliases';
7
7
  * Note: Using here custom import to work in jest tests
8
8
  * Note: Using sync version is 💩 in the production code, but it's ok here in tests
9
9
  *
10
- * @param path - The path to the file relative to samples/pipelines directory
10
+ * @param path - The path to the file relative to examples/pipelines directory
11
11
  * @private internal function of tests
12
12
  */
13
13
  export declare function importPipelineWithoutPreparation(path: `${string}.ptbk.md`): PipelineString;
@@ -20,7 +20,7 @@ export declare function validatePipeline(pipeline: PipelineJson): PipelineJson;
20
20
  */
21
21
  export declare function validatePipelineCore(pipeline: PipelineJson): void;
22
22
  /**
23
- * TODO: !!!!! [🧞‍♀️] Do not allow joker + foreach
23
+ * TODO: !! [🧞‍♀️] Do not allow joker + foreach
24
24
  * TODO: [🧠] Work with promptbookVersion
25
25
  * TODO: Use here some json-schema, Zod or something similar and change it to:
26
26
  * > /**
@@ -32,7 +32,7 @@ export declare function validatePipelineCore(pipeline: PipelineJson): void;
32
32
  * > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
33
33
  */
34
34
  /**
35
- * TODO: [🧳][main] !!!! Validate that all samples match expectations
35
+ * TODO: [🧳][main] !!!! Validate that all examples match expectations
36
36
  * TODO: [🧳][🐝][main] !!!! Validate that knowledge is valid (non-void)
37
37
  * TODO: [🧳][main] !!!! Validate that persona can be used only with CHAT variant
38
38
  * TODO: [🧳][main] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
@@ -7,4 +7,4 @@ import type { string_parameter_value } from '../../types/typeAliases';
7
7
  *
8
8
  * @private internal utility of `createPipelineExecutor`
9
9
  */
10
- export declare function getSamplesForTemplate(template: ReadonlyDeep<TemplateJson>): Promise<string_parameter_value & string_markdown>;
10
+ export declare function getExamplesForTemplate(template: ReadonlyDeep<TemplateJson>): Promise<string_parameter_value & string_markdown>;
@@ -15,7 +15,7 @@ export type FormatDefinition<TValue extends TPartialValue, TPartialValue extends
15
15
  /**
16
16
  * The name of the format used in .ptbk.md files
17
17
  *
18
- * @sample "JSON"
18
+ * @example "JSON"
19
19
  */
20
20
  readonly formatName: string_name & string_SCREAMING_CASE;
21
21
  /**
@@ -25,7 +25,7 @@ export type FormatDefinition<TValue extends TPartialValue, TPartialValue extends
25
25
  /**
26
26
  * The mime type of the format (if any)
27
27
  *
28
- * @sample "application/json"
28
+ * @example "application/json"
29
29
  */
30
30
  readonly mimeType?: string_mime_type;
31
31
  /**
@@ -11,7 +11,7 @@ export type FormatSubvalueDefinition<TValue extends string, TSettings extends em
11
11
  /**
12
12
  * The name of the format used in .ptbk.md files
13
13
  *
14
- * @sample "CELL"
14
+ * @example "CELL"
15
15
  */
16
16
  readonly subvalueName: string_name & string_SCREAMING_CASE;
17
17
  /**
@@ -10,7 +10,7 @@ import type { string_persona_description } from '../types/typeAliases';
10
10
  */
11
11
  export declare function preparePersona(personaDescription: string_persona_description, tools: Pick<ExecutionTools, 'llm'>, options: PrepareAndScrapeOptions): Promise<PersonaPreparedJson['modelRequirements']>;
12
12
  /**
13
- * TODO: [🔃][main] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
13
+ * TODO: [🔃][main] !! If the persona was prepared with different version or different set of models, prepare it once again
14
14
  * TODO: [🏢] !! Check validity of `modelName` in pipeline
15
15
  * TODO: [🏢] !! Check validity of `systemMessage` in pipeline
16
16
  * TODO: [🏢] !! Check validity of `temperature` in pipeline
@@ -6,11 +6,11 @@ import type { PipelineJson } from '../types/PipelineJson/PipelineJson';
6
6
  */
7
7
  export declare function isPipelinePrepared(pipeline: PipelineJson): boolean;
8
8
  /**
9
- * TODO: [🔃][main] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
9
+ * TODO: [🔃][main] !! If the pipeline was prepared with different version or different set of models, prepare it once again
10
10
  * TODO: [🐠] Maybe base this on `makeValidator`
11
11
  * TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
12
12
  * TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
13
13
  * - [🏍] ? Is context in each template
14
- * - [♨] Are samples prepared
14
+ * - [♨] Are examples prepared
15
15
  * - [♨] Are templates prepared
16
16
  */
@@ -24,7 +24,7 @@ export {};
24
24
  /**
25
25
  * TODO: [🧠] Add context to each template (if missing)
26
26
  * TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
27
- * TODO: [♨][main] !!! Prepare index the samples and maybe templates
27
+ * TODO: [♨][main] !!! Prepare index the examples and maybe templates
28
28
  * TODO: Write tests for `preparePipeline`
29
29
  * TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
30
30
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
@@ -1,4 +1,4 @@
1
1
  export {};
2
2
  /**
3
- * TODO: [📓] Maybe test all file in samples (not just 10-simple.docx)
3
+ * TODO: [📓] Maybe test all file in examples (not just 10-simple.docx)
4
4
  */
@@ -1,4 +1,4 @@
1
1
  export {};
2
2
  /**
3
- * TODO: [📓] Maybe test all file in samples (not just 10-simple.doc)
3
+ * TODO: [📓] Maybe test all file in examples (not just 10-simple.doc)
4
4
  */
@@ -1,4 +1,4 @@
1
1
  export {};
2
2
  /**
3
- * TODO: [📓] Maybe test all file in samples (not just 10-simple.md)
3
+ * TODO: [📓] Maybe test all file in examples (not just 10-simple.md)
4
4
  */
@@ -27,10 +27,10 @@ export type ParameterJson = {
27
27
  */
28
28
  readonly description?: string_markdown_text;
29
29
  /**
30
- * Sample values of the parameter
30
+ * Example values of the parameter
31
31
  * Note: This values won't be actually used as some default values, but they are just for better understanding of the parameter
32
32
  */
33
- readonly sampleValues?: Array<string_parameter_value>;
33
+ readonly exampleValues?: Array<string_parameter_value>;
34
34
  };
35
35
  /**
36
36
  * TODO: [🧠] Should be here registered subparameters from foreach or not?
@@ -18,5 +18,5 @@ export type PreparationJson = {
18
18
  /**
19
19
  * TODO: [🍙] Make some standard order of json properties
20
20
  * TODO: Maybe put here used `modelName`
21
- * TODO: [🍥] When using `date` it changes all samples .ptbk.json files each time so until some more elegant solution omit the time from prepared pipeline
21
+ * TODO: [🍥] When using `date` it changes all examples .ptbk.json files each time so until some more elegant solution omit the time from prepared pipeline
22
22
  */
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@promptbook/legacy-documents",
3
- "version": "0.72.0",
3
+ "version": "0.74.0-0",
4
4
  "description": "Supercharge your use of large language models",
5
5
  "private": false,
6
6
  "sideEffects": false,
@@ -31,7 +31,8 @@
31
31
  "o1",
32
32
  "o1-mini",
33
33
  "o1-preview",
34
- "anthropic"
34
+ "anthropic",
35
+ "LLMOps"
35
36
  ],
36
37
  "license": "CC-BY-4.0",
37
38
  "bugs": {
@@ -52,7 +53,7 @@
52
53
  "module": "./esm/index.es.js",
53
54
  "typings": "./esm/typings/src/_packages/legacy-documents.index.d.ts",
54
55
  "peerDependencies": {
55
- "@promptbook/core": "0.72.0"
56
+ "@promptbook/core": "0.74.0-0"
56
57
  },
57
58
  "dependencies": {
58
59
  "colors": "1.4.0",
package/umd/index.umd.js CHANGED
@@ -15,7 +15,7 @@
15
15
  /**
16
16
  * The version of the Promptbook library
17
17
  */
18
- var PROMPTBOOK_VERSION = '0.72.0-34';
18
+ var PROMPTBOOK_VERSION = '0.73.0';
19
19
  // TODO: [main] !!!! List here all the versions and annotate + put into script
20
20
 
21
21
  /*! *****************************************************************************
@@ -405,10 +405,10 @@
405
405
  'content',
406
406
  'context',
407
407
  'knowledge',
408
- 'samples',
408
+ 'examples',
409
409
  'modelName',
410
410
  'currentDate',
411
- // <- TODO: !!!!! list here all command names
411
+ // <- TODO: list here all command names
412
412
  // <- TODO: Add more like 'date', 'modelName',...
413
413
  // <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
414
414
  ]);
@@ -1237,7 +1237,7 @@
1237
1237
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
1238
1238
  */
1239
1239
 
1240
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Sample\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
1240
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.ptbk.md",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-from-markdown.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-keywords.ptbk.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.ptbk.md",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-knowledge-title.ptbk.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.ptbk.md",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],templates:[{templateType:"PROMPT_TEMPLATE",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],knowledgeSources:[],knowledgePieces:[],personas:[],preparations:[],sourceFile:"./promptbook-collection/prepare-persona.ptbk.md"}];
1241
1241
 
1242
1242
  /**
1243
1243
  * Prettify the html code
@@ -1881,7 +1881,7 @@
1881
1881
  }
1882
1882
  }
1883
1883
  /**
1884
- * TODO: !!!!! [🧞‍♀️] Do not allow joker + foreach
1884
+ * TODO: !! [🧞‍♀️] Do not allow joker + foreach
1885
1885
  * TODO: [🧠] Work with promptbookVersion
1886
1886
  * TODO: Use here some json-schema, Zod or something similar and change it to:
1887
1887
  * > /**
@@ -1893,7 +1893,7 @@
1893
1893
  * > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
1894
1894
  */
1895
1895
  /**
1896
- * TODO: [🧳][main] !!!! Validate that all samples match expectations
1896
+ * TODO: [🧳][main] !!!! Validate that all examples match expectations
1897
1897
  * TODO: [🧳][🐝][main] !!!! Validate that knowledge is valid (non-void)
1898
1898
  * TODO: [🧳][main] !!!! Validate that persona can be used only with CHAT variant
1899
1899
  * TODO: [🧳][main] !!!! Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
@@ -2263,12 +2263,12 @@
2263
2263
  return true;
2264
2264
  }
2265
2265
  /**
2266
- * TODO: [🔃][main] !!!!! If the pipeline was prepared with different version or different set of models, prepare it once again
2266
+ * TODO: [🔃][main] !! If the pipeline was prepared with different version or different set of models, prepare it once again
2267
2267
  * TODO: [🐠] Maybe base this on `makeValidator`
2268
2268
  * TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
2269
2269
  * TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
2270
2270
  * - [🏍] ? Is context in each template
2271
- * - [♨] Are samples prepared
2271
+ * - [♨] Are examples prepared
2272
2272
  * - [♨] Are templates prepared
2273
2273
  */
2274
2274
 
@@ -2973,7 +2973,7 @@
2973
2973
  });
2974
2974
  }
2975
2975
  /**
2976
- * TODO: [🔃][main] !!!!! If the persona was prepared with different version or different set of models, prepare it once again
2976
+ * TODO: [🔃][main] !! If the persona was prepared with different version or different set of models, prepare it once again
2977
2977
  * TODO: [🏢] !! Check validity of `modelName` in pipeline
2978
2978
  * TODO: [🏢] !! Check validity of `systemMessage` in pipeline
2979
2979
  * TODO: [🏢] !! Check validity of `temperature` in pipeline
@@ -3577,7 +3577,7 @@
3577
3577
  case 0:
3578
3578
  _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a;
3579
3579
  templates = pipeline.templates, parameters = pipeline.parameters, knowledgePiecesCount = pipeline.knowledgePiecesCount;
3580
- // TODO: [main] !!!!! Apply samples to each template (if missing and is for the template defined)
3580
+ // TODO: [main] !! Apply examples to each template (if missing and is for the template defined)
3581
3581
  TODO_USE(parameters);
3582
3582
  templatesPrepared = new Array(templates.length);
3583
3583
  return [4 /*yield*/, forEachAsync(templates, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (template, index) { return __awaiter(_this, void 0, void 0, function () {
@@ -3607,7 +3607,7 @@
3607
3607
  /**
3608
3608
  * TODO: [🧠] Add context to each template (if missing)
3609
3609
  * TODO: [🧠] What is better name `prepareTemplate` or `prepareTemplateAndParameters`
3610
- * TODO: [♨][main] !!! Prepare index the samples and maybe templates
3610
+ * TODO: [♨][main] !!! Prepare index the examples and maybe templates
3611
3611
  * TODO: Write tests for `preparePipeline`
3612
3612
  * TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
3613
3613
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
@@ -5137,7 +5137,7 @@
5137
5137
  var preparedPipeline, template;
5138
5138
  return __generator(this, function (_a) {
5139
5139
  preparedPipeline = options.preparedPipeline, template = options.template;
5140
- // TODO: [♨] Implement Better - use real index and keyword search from `template` and {samples}
5140
+ // TODO: [♨] Implement Better - use real index and keyword search from `template` and {examples}
5141
5141
  TODO_USE(template);
5142
5142
  return [2 /*return*/, preparedPipeline.knowledgePieces.map(function (_a) {
5143
5143
  var content = _a.content;
@@ -5152,7 +5152,7 @@
5152
5152
  *
5153
5153
  * @private internal utility of `createPipelineExecutor`
5154
5154
  */
5155
- function getSamplesForTemplate(template) {
5155
+ function getExamplesForTemplate(template) {
5156
5156
  return __awaiter(this, void 0, void 0, function () {
5157
5157
  return __generator(this, function (_a) {
5158
5158
  // TODO: [♨] Implement Better - use real index and keyword search
@@ -5169,7 +5169,7 @@
5169
5169
  */
5170
5170
  function getReservedParametersForTemplate(options) {
5171
5171
  return __awaiter(this, void 0, void 0, function () {
5172
- var preparedPipeline, template, pipelineIdentification, context, knowledge, samples, currentDate, modelName, reservedParameters, _loop_1, RESERVED_PARAMETER_NAMES_1, RESERVED_PARAMETER_NAMES_1_1, parameterName;
5172
+ var preparedPipeline, template, pipelineIdentification, context, knowledge, examples, currentDate, modelName, reservedParameters, _loop_1, RESERVED_PARAMETER_NAMES_1, RESERVED_PARAMETER_NAMES_1_1, parameterName;
5173
5173
  var e_1, _a;
5174
5174
  return __generator(this, function (_b) {
5175
5175
  switch (_b.label) {
@@ -5181,16 +5181,16 @@
5181
5181
  return [4 /*yield*/, getKnowledgeForTemplate({ preparedPipeline: preparedPipeline, template: template })];
5182
5182
  case 2:
5183
5183
  knowledge = _b.sent();
5184
- return [4 /*yield*/, getSamplesForTemplate(template)];
5184
+ return [4 /*yield*/, getExamplesForTemplate(template)];
5185
5185
  case 3:
5186
- samples = _b.sent();
5186
+ examples = _b.sent();
5187
5187
  currentDate = new Date().toISOString();
5188
5188
  modelName = RESERVED_PARAMETER_MISSING_VALUE;
5189
5189
  reservedParameters = {
5190
5190
  content: RESERVED_PARAMETER_RESTRICTED,
5191
5191
  context: context,
5192
5192
  knowledge: knowledge,
5193
- samples: samples,
5193
+ examples: examples,
5194
5194
  currentDate: currentDate,
5195
5195
  modelName: modelName,
5196
5196
  };
@@ -5849,7 +5849,7 @@
5849
5849
  outputParameters = result.outputParameters;
5850
5850
  knowledgePiecesRaw = outputParameters.knowledgePieces;
5851
5851
  knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
5852
- // <- TODO: [main] !!!!! Smarter split and filter out empty pieces
5852
+ // <- TODO: [main] !! Smarter split and filter out empty pieces
5853
5853
  if (isVerbose) {
5854
5854
  console.info('knowledgeTextPieces:', knowledgeTextPieces);
5855
5855
  }