@promptbook/documents 0.92.0-14 → 0.92.0-16

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,9 @@
1
+ import type { KnowledgePiecePreparedJson } from '../../pipeline/PipelineJson/KnowledgePieceJson';
2
+ /**
3
+ *
4
+ * @param knowledgePieces
5
+ * @returns
6
+ *
7
+ * @private internal utility of `createPipelineExecutor`
8
+ */
9
+ export declare function knowledgePiecesToString(knowledgePieces: ReadonlyArray<Pick<KnowledgePiecePreparedJson, 'content'>>): string;
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@promptbook/documents",
3
- "version": "0.92.0-14",
3
+ "version": "0.92.0-16",
4
4
  "description": "It's time for a paradigm shift. The future of software in plain English, French or Latin",
5
5
  "private": false,
6
6
  "sideEffects": false,
@@ -51,7 +51,7 @@
51
51
  "module": "./esm/index.es.js",
52
52
  "typings": "./esm/typings/src/_packages/documents.index.d.ts",
53
53
  "peerDependencies": {
54
- "@promptbook/core": "0.92.0-14"
54
+ "@promptbook/core": "0.92.0-16"
55
55
  },
56
56
  "dependencies": {
57
57
  "colors": "1.4.0",
package/umd/index.umd.js CHANGED
@@ -26,7 +26,7 @@
26
26
  * @generated
27
27
  * @see https://github.com/webgptorg/promptbook
28
28
  */
29
- const PROMPTBOOK_ENGINE_VERSION = '0.92.0-14';
29
+ const PROMPTBOOK_ENGINE_VERSION = '0.92.0-16';
30
30
  /**
31
31
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
32
32
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -4711,10 +4711,12 @@
4711
4711
  throw new PipelineExecutionError('Parameter is already opened or not closed');
4712
4712
  }
4713
4713
  if (parameters[parameterName] === undefined) {
4714
+ console.log('!!! templateParameters 1', { parameterName, template, parameters });
4714
4715
  throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
4715
4716
  }
4716
4717
  let parameterValue = parameters[parameterName];
4717
4718
  if (parameterValue === undefined) {
4719
+ console.log('!!! templateParameters 2', { parameterName, template, parameters });
4718
4720
  throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
4719
4721
  }
4720
4722
  parameterValue = valueToString(parameterValue);
@@ -5370,6 +5372,23 @@
5370
5372
  return 1 - dotProduct / (magnitude1 * magnitude2);
5371
5373
  }
5372
5374
 
5375
+ /**
5376
+ *
5377
+ * @param knowledgePieces
5378
+ * @returns
5379
+ *
5380
+ * @private internal utility of `createPipelineExecutor`
5381
+ */
5382
+ function knowledgePiecesToString(knowledgePieces) {
5383
+ return knowledgePieces
5384
+ .map((knowledgePiece) => {
5385
+ const { content } = knowledgePiece;
5386
+ return `- ${content}`;
5387
+ })
5388
+ .join('\n');
5389
+ // <- TODO: [🧠] Some smarter aggregation of knowledge pieces, single-line vs multi-line vs mixed
5390
+ }
5391
+
5373
5392
  /**
5374
5393
  * @@@
5375
5394
  *
@@ -5383,53 +5402,60 @@
5383
5402
  const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5384
5403
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5385
5404
  if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5386
- return 'No knowledge pieces found';
5405
+ return ''; // <- Note: Np knowledge present, return empty string
5387
5406
  }
5388
- // TODO: [🚐] Make arrayable LLMs -> single LLM DRY
5389
- const _llms = arrayableToArray(tools.llm);
5390
- const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
5391
- const taskEmbeddingPrompt = {
5392
- title: 'Knowledge Search',
5393
- modelRequirements: {
5394
- modelVariant: 'EMBEDDING',
5395
- modelName: firstKnowlegeIndex.modelName,
5396
- },
5397
- content: task.content,
5398
- parameters: {
5399
- /* !!!! */
5400
- },
5401
- };
5402
- const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5403
- const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5404
- const { index } = knowledgePiece;
5405
- const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5406
- // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5407
- if (knowledgePieceIndex === undefined) {
5407
+ try {
5408
+ // TODO: [🚐] Make arrayable LLMs -> single LLM DRY
5409
+ const _llms = arrayableToArray(tools.llm);
5410
+ const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
5411
+ const taskEmbeddingPrompt = {
5412
+ title: 'Knowledge Search',
5413
+ modelRequirements: {
5414
+ modelVariant: 'EMBEDDING',
5415
+ modelName: firstKnowlegeIndex.modelName,
5416
+ },
5417
+ content: task.content,
5418
+ parameters: {
5419
+ /* !!!! */
5420
+ },
5421
+ };
5422
+ const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5423
+ const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5424
+ const { index } = knowledgePiece;
5425
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5426
+ // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5427
+ if (knowledgePieceIndex === undefined) {
5428
+ return {
5429
+ content: knowledgePiece.content,
5430
+ relevance: 0,
5431
+ };
5432
+ }
5433
+ const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
5408
5434
  return {
5409
5435
  content: knowledgePiece.content,
5410
- relevance: 0,
5436
+ relevance,
5411
5437
  };
5412
- }
5413
- const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
5414
- return {
5415
- content: knowledgePiece.content,
5416
- relevance,
5417
- };
5418
- });
5419
- const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
5420
- const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
5421
- console.log('!!! Embedding', {
5422
- task,
5423
- taskEmbeddingPrompt,
5424
- taskEmbeddingResult,
5425
- firstKnowlegePiece,
5426
- firstKnowlegeIndex,
5427
- knowledgePiecesWithRelevance,
5428
- knowledgePiecesSorted,
5429
- knowledgePiecesLimited,
5430
- });
5431
- return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
5432
- // <- TODO: [🧠] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
5438
+ });
5439
+ const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
5440
+ const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
5441
+ console.log('!!! Embedding', {
5442
+ task,
5443
+ taskEmbeddingPrompt,
5444
+ taskEmbeddingResult,
5445
+ firstKnowlegePiece,
5446
+ firstKnowlegeIndex,
5447
+ knowledgePiecesWithRelevance,
5448
+ knowledgePiecesSorted,
5449
+ knowledgePiecesLimited,
5450
+ });
5451
+ return knowledgePiecesToString(knowledgePiecesLimited);
5452
+ }
5453
+ catch (error) {
5454
+ assertsError(error);
5455
+ console.error('Error in `getKnowledgeForTask`', error);
5456
+ // Note: If the LLM fails, just return all knowledge pieces
5457
+ return knowledgePiecesToString(preparedPipeline.knowledgePieces);
5458
+ }
5433
5459
  }
5434
5460
  /**
5435
5461
  * TODO: !!!! Verify if this is working