@promptbook/documents 0.89.0-9 โ 0.92.0-10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +9 -7
- package/esm/index.es.js +303 -68
- package/esm/index.es.js.map +1 -1
- package/esm/typings/servers.d.ts +40 -0
- package/esm/typings/src/_packages/core.index.d.ts +14 -4
- package/esm/typings/src/_packages/deepseek.index.d.ts +2 -0
- package/esm/typings/src/_packages/google.index.d.ts +2 -0
- package/esm/typings/src/_packages/types.index.d.ts +18 -0
- package/esm/typings/src/_packages/utils.index.d.ts +6 -0
- package/esm/typings/src/cli/cli-commands/login.d.ts +0 -1
- package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +16 -3
- package/esm/typings/src/cli/test/ptbk.d.ts +1 -1
- package/esm/typings/src/commands/EXPECT/expectCommandParser.d.ts +2 -0
- package/esm/typings/src/config.d.ts +10 -19
- package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
- package/esm/typings/src/errors/0-index.d.ts +7 -4
- package/esm/typings/src/errors/PipelineExecutionError.d.ts +1 -1
- package/esm/typings/src/errors/WrappedError.d.ts +10 -0
- package/esm/typings/src/errors/assertsError.d.ts +11 -0
- package/esm/typings/src/execution/CommonToolsOptions.d.ts +4 -0
- package/esm/typings/src/execution/PromptbookFetch.d.ts +1 -1
- package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
- package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
- package/esm/typings/src/formats/csv/utils/csvParse.d.ts +12 -0
- package/esm/typings/src/formats/csv/utils/isValidCsvString.d.ts +9 -0
- package/esm/typings/src/formats/csv/utils/isValidCsvString.test.d.ts +1 -0
- package/esm/typings/src/formats/json/utils/isValidJsonString.d.ts +3 -0
- package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
- package/esm/typings/src/formats/xml/utils/isValidXmlString.d.ts +9 -0
- package/esm/typings/src/formats/xml/utils/isValidXmlString.test.d.ts +1 -0
- package/esm/typings/src/llm-providers/_common/filterModels.d.ts +15 -0
- package/esm/typings/src/llm-providers/_common/register/{$provideEnvFilepath.d.ts โ $provideEnvFilename.d.ts} +2 -2
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForWizzardOrCli.d.ts +11 -2
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
- package/esm/typings/src/llm-providers/azure-openai/AzureOpenAiExecutionTools.d.ts +4 -0
- package/esm/typings/src/llm-providers/deepseek/deepseek-models.d.ts +23 -0
- package/esm/typings/src/llm-providers/google/google-models.d.ts +23 -0
- package/esm/typings/src/llm-providers/openai/OpenAiExecutionTools.d.ts +4 -0
- package/esm/typings/src/personas/preparePersona.d.ts +1 -1
- package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +4 -2
- package/esm/typings/src/remote-server/openapi-types.d.ts +626 -0
- package/esm/typings/src/remote-server/openapi.d.ts +581 -0
- package/esm/typings/src/remote-server/socket-types/_subtypes/Identification.d.ts +7 -1
- package/esm/typings/src/remote-server/socket-types/_subtypes/identificationToPromptbookToken.d.ts +11 -0
- package/esm/typings/src/remote-server/socket-types/_subtypes/promptbookTokenToIdentification.d.ts +10 -0
- package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -2
- package/esm/typings/src/remote-server/types/RemoteServerOptions.d.ts +15 -9
- package/esm/typings/src/storage/env-storage/$EnvStorage.d.ts +40 -0
- package/esm/typings/src/types/typeAliases.d.ts +26 -0
- package/package.json +8 -4
- package/umd/index.umd.js +303 -68
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/cli/test/ptbk2.d.ts +0 -5
package/esm/index.es.js
CHANGED
|
@@ -28,7 +28,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
28
28
|
* @generated
|
|
29
29
|
* @see https://github.com/webgptorg/promptbook
|
|
30
30
|
*/
|
|
31
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.
|
|
31
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-10';
|
|
32
32
|
/**
|
|
33
33
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
34
34
|
* Note: [๐] Ignore a discrepancy between file name and entity name
|
|
@@ -91,6 +91,7 @@ const ADMIN_EMAIL = 'pavol@ptbk.io';
|
|
|
91
91
|
* @public exported from `@promptbook/core`
|
|
92
92
|
*/
|
|
93
93
|
const ADMIN_GITHUB_NAME = 'hejny';
|
|
94
|
+
// <- TODO: [๐] Pick the best claim
|
|
94
95
|
/**
|
|
95
96
|
* When the title is not provided, the default title is used
|
|
96
97
|
*
|
|
@@ -123,6 +124,7 @@ const VALUE_STRINGS = {
|
|
|
123
124
|
infinity: '(infinity; โ)',
|
|
124
125
|
negativeInfinity: '(negative infinity; -โ)',
|
|
125
126
|
unserializable: '(unserializable value)',
|
|
127
|
+
circular: '(circular JSON)',
|
|
126
128
|
};
|
|
127
129
|
/**
|
|
128
130
|
* Small number limit
|
|
@@ -162,7 +164,7 @@ const DEFAULT_MAX_PARALLEL_COUNT = 5; // <- TODO: [๐คนโโ๏ธ]
|
|
|
162
164
|
*/
|
|
163
165
|
const DEFAULT_MAX_EXECUTION_ATTEMPTS = 10; // <- TODO: [๐คนโโ๏ธ]
|
|
164
166
|
// <- TODO: [๐] Make also `BOOKS_DIRNAME_ALTERNATIVES`
|
|
165
|
-
// TODO:
|
|
167
|
+
// TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
|
|
166
168
|
/**
|
|
167
169
|
* Where to store the temporary downloads
|
|
168
170
|
*
|
|
@@ -1037,7 +1039,7 @@ async function getScraperIntermediateSource(source, options) {
|
|
|
1037
1039
|
* Note: [๐ข] Code in this file should never be never released in packages that could be imported into browser environment
|
|
1038
1040
|
*/
|
|
1039
1041
|
|
|
1040
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [๐] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [๐] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โ Convert Knowledge-piece to title\" but \"โ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โ Convert Knowledge-piece to title\" but \"โ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
1042
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [๐] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [๐] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โ Convert Knowledge-piece to title\" but \"โ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"โ Convert Knowledge-piece to title\" but \"โ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
1041
1043
|
|
|
1042
1044
|
/**
|
|
1043
1045
|
* Checks if value is valid email
|
|
@@ -1070,9 +1072,60 @@ class ParseError extends Error {
|
|
|
1070
1072
|
* TODO: Maybe split `ParseError` and `ApplyError`
|
|
1071
1073
|
*/
|
|
1072
1074
|
|
|
1075
|
+
/**
|
|
1076
|
+
* This error type indicates that somewhere in the code non-Error object was thrown and it was wrapped into the `WrappedError`
|
|
1077
|
+
*
|
|
1078
|
+
* @public exported from `@promptbook/core`
|
|
1079
|
+
*/
|
|
1080
|
+
class WrappedError extends Error {
|
|
1081
|
+
constructor(whatWasThrown) {
|
|
1082
|
+
const tag = `[๐คฎ]`;
|
|
1083
|
+
console.error(tag, whatWasThrown);
|
|
1084
|
+
super(spaceTrim(`
|
|
1085
|
+
Non-Error object was thrown
|
|
1086
|
+
|
|
1087
|
+
Note: Look for ${tag} in the console for more details
|
|
1088
|
+
Please report issue on ${ADMIN_EMAIL}
|
|
1089
|
+
`));
|
|
1090
|
+
this.name = 'WrappedError';
|
|
1091
|
+
Object.setPrototypeOf(this, WrappedError.prototype);
|
|
1092
|
+
}
|
|
1093
|
+
}
|
|
1094
|
+
|
|
1095
|
+
/**
|
|
1096
|
+
* Helper used in catch blocks to assert that the error is an instance of `Error`
|
|
1097
|
+
*
|
|
1098
|
+
* @param whatWasThrown Any object that was thrown
|
|
1099
|
+
* @returns Nothing if the error is an instance of `Error`
|
|
1100
|
+
* @throws `WrappedError` or `UnexpectedError` if the error is not standard
|
|
1101
|
+
*
|
|
1102
|
+
* @private within the repository
|
|
1103
|
+
*/
|
|
1104
|
+
function assertsError(whatWasThrown) {
|
|
1105
|
+
// Case 1: Handle error which was rethrown as `WrappedError`
|
|
1106
|
+
if (whatWasThrown instanceof WrappedError) {
|
|
1107
|
+
const wrappedError = whatWasThrown;
|
|
1108
|
+
throw wrappedError;
|
|
1109
|
+
}
|
|
1110
|
+
// Case 2: Handle unexpected errors
|
|
1111
|
+
if (whatWasThrown instanceof UnexpectedError) {
|
|
1112
|
+
const unexpectedError = whatWasThrown;
|
|
1113
|
+
throw unexpectedError;
|
|
1114
|
+
}
|
|
1115
|
+
// Case 3: Handle standard errors - keep them up to consumer
|
|
1116
|
+
if (whatWasThrown instanceof Error) {
|
|
1117
|
+
return;
|
|
1118
|
+
}
|
|
1119
|
+
// Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
|
|
1120
|
+
throw new WrappedError(whatWasThrown);
|
|
1121
|
+
}
|
|
1122
|
+
|
|
1073
1123
|
/**
|
|
1074
1124
|
* Function isValidJsonString will tell you if the string is valid JSON or not
|
|
1075
1125
|
*
|
|
1126
|
+
* @param value The string to check
|
|
1127
|
+
* @returns True if the string is a valid JSON string, false otherwise
|
|
1128
|
+
*
|
|
1076
1129
|
* @public exported from `@promptbook/utils`
|
|
1077
1130
|
*/
|
|
1078
1131
|
function isValidJsonString(value /* <- [๐จโโ๏ธ] */) {
|
|
@@ -1081,9 +1134,7 @@ function isValidJsonString(value /* <- [๐จโโ๏ธ] */) {
|
|
|
1081
1134
|
return true;
|
|
1082
1135
|
}
|
|
1083
1136
|
catch (error) {
|
|
1084
|
-
|
|
1085
|
-
throw error;
|
|
1086
|
-
}
|
|
1137
|
+
assertsError(error);
|
|
1087
1138
|
if (error.message.includes('Unexpected token')) {
|
|
1088
1139
|
return false;
|
|
1089
1140
|
}
|
|
@@ -1436,9 +1487,7 @@ function checkSerializableAsJson(options) {
|
|
|
1436
1487
|
JSON.stringify(value); // <- TODO: [0]
|
|
1437
1488
|
}
|
|
1438
1489
|
catch (error) {
|
|
1439
|
-
|
|
1440
|
-
throw error;
|
|
1441
|
-
}
|
|
1490
|
+
assertsError(error);
|
|
1442
1491
|
throw new UnexpectedError(spaceTrim$1((block) => `
|
|
1443
1492
|
\`${name}\` is not serializable
|
|
1444
1493
|
|
|
@@ -2033,7 +2082,7 @@ function extractParameterNames(template) {
|
|
|
2033
2082
|
*/
|
|
2034
2083
|
function unpreparePipeline(pipeline) {
|
|
2035
2084
|
let { personas, knowledgeSources, tasks } = pipeline;
|
|
2036
|
-
personas = personas.map((persona) => ({ ...persona,
|
|
2085
|
+
personas = personas.map((persona) => ({ ...persona, modelsRequirements: undefined, preparationIds: undefined }));
|
|
2037
2086
|
knowledgeSources = knowledgeSources.map((knowledgeSource) => ({ ...knowledgeSource, preparationIds: undefined }));
|
|
2038
2087
|
tasks = tasks.map((task) => {
|
|
2039
2088
|
let { dependentParameterNames } = task;
|
|
@@ -2209,7 +2258,7 @@ class PipelineExecutionError extends Error {
|
|
|
2209
2258
|
}
|
|
2210
2259
|
}
|
|
2211
2260
|
/**
|
|
2212
|
-
* TODO:
|
|
2261
|
+
* TODO: [๐ง ][๐] Add id to all errors
|
|
2213
2262
|
*/
|
|
2214
2263
|
|
|
2215
2264
|
/**
|
|
@@ -2225,7 +2274,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
2225
2274
|
if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
|
|
2226
2275
|
return false;
|
|
2227
2276
|
}
|
|
2228
|
-
if (!pipeline.personas.every((persona) => persona.
|
|
2277
|
+
if (!pipeline.personas.every((persona) => persona.modelsRequirements !== undefined)) {
|
|
2229
2278
|
return false;
|
|
2230
2279
|
}
|
|
2231
2280
|
if (!pipeline.knowledgeSources.every((knowledgeSource) => knowledgeSource.preparationIds !== undefined)) {
|
|
@@ -2249,6 +2298,45 @@ function isPipelinePrepared(pipeline) {
|
|
|
2249
2298
|
* - [โจ] Are tasks prepared
|
|
2250
2299
|
*/
|
|
2251
2300
|
|
|
2301
|
+
/**
|
|
2302
|
+
* Converts a JavaScript Object Notation (JSON) string into an object.
|
|
2303
|
+
*
|
|
2304
|
+
* Note: This is wrapper around `JSON.parse()` with better error and type handling
|
|
2305
|
+
*
|
|
2306
|
+
* @public exported from `@promptbook/utils`
|
|
2307
|
+
*/
|
|
2308
|
+
function jsonParse(value) {
|
|
2309
|
+
if (value === undefined) {
|
|
2310
|
+
throw new Error(`Can not parse JSON from undefined value.`);
|
|
2311
|
+
}
|
|
2312
|
+
else if (typeof value !== 'string') {
|
|
2313
|
+
console.error('Can not parse JSON from non-string value.', { text: value });
|
|
2314
|
+
throw new Error(spaceTrim$1(`
|
|
2315
|
+
Can not parse JSON from non-string value.
|
|
2316
|
+
|
|
2317
|
+
The value type: ${typeof value}
|
|
2318
|
+
See more in console.
|
|
2319
|
+
`));
|
|
2320
|
+
}
|
|
2321
|
+
try {
|
|
2322
|
+
return JSON.parse(value);
|
|
2323
|
+
}
|
|
2324
|
+
catch (error) {
|
|
2325
|
+
if (!(error instanceof Error)) {
|
|
2326
|
+
throw error;
|
|
2327
|
+
}
|
|
2328
|
+
throw new Error(spaceTrim$1((block) => `
|
|
2329
|
+
${block(error.message)}
|
|
2330
|
+
|
|
2331
|
+
The JSON text:
|
|
2332
|
+
${block(value)}
|
|
2333
|
+
`));
|
|
2334
|
+
}
|
|
2335
|
+
}
|
|
2336
|
+
/**
|
|
2337
|
+
* TODO: !!!! Use in Promptbook.studio
|
|
2338
|
+
*/
|
|
2339
|
+
|
|
2252
2340
|
/**
|
|
2253
2341
|
* Recursively converts JSON strings to JSON objects
|
|
2254
2342
|
|
|
@@ -2267,7 +2355,7 @@ function jsonStringsToJsons(object) {
|
|
|
2267
2355
|
const newObject = { ...object };
|
|
2268
2356
|
for (const [key, value] of Object.entries(object)) {
|
|
2269
2357
|
if (typeof value === 'string' && isValidJsonString(value)) {
|
|
2270
|
-
newObject[key] =
|
|
2358
|
+
newObject[key] = jsonParse(value);
|
|
2271
2359
|
}
|
|
2272
2360
|
else {
|
|
2273
2361
|
newObject[key] = jsonStringsToJsons(value);
|
|
@@ -2420,7 +2508,10 @@ const PROMPTBOOK_ERRORS = {
|
|
|
2420
2508
|
PipelineExecutionError,
|
|
2421
2509
|
PipelineLogicError,
|
|
2422
2510
|
PipelineUrlError,
|
|
2511
|
+
AuthenticationError,
|
|
2512
|
+
PromptbookFetchError,
|
|
2423
2513
|
UnexpectedError,
|
|
2514
|
+
WrappedError,
|
|
2424
2515
|
// TODO: [๐ช]> VersionMismatchError,
|
|
2425
2516
|
};
|
|
2426
2517
|
/**
|
|
@@ -2437,8 +2528,6 @@ const COMMON_JAVASCRIPT_ERRORS = {
|
|
|
2437
2528
|
TypeError,
|
|
2438
2529
|
URIError,
|
|
2439
2530
|
AggregateError,
|
|
2440
|
-
AuthenticationError,
|
|
2441
|
-
PromptbookFetchError,
|
|
2442
2531
|
/*
|
|
2443
2532
|
Note: Not widely supported
|
|
2444
2533
|
> InternalError,
|
|
@@ -2561,8 +2650,8 @@ function createTask(options) {
|
|
|
2561
2650
|
updatedAt = new Date();
|
|
2562
2651
|
errors.push(...executionResult.errors);
|
|
2563
2652
|
warnings.push(...executionResult.warnings);
|
|
2564
|
-
// <- TODO:
|
|
2565
|
-
// TODO: [๐ง ]
|
|
2653
|
+
// <- TODO: [๐] Only unique errors and warnings should be added (or filtered)
|
|
2654
|
+
// TODO: [๐ง ] !! errors, warning, isSuccessful are redundant both in `ExecutionTask` and `ExecutionTask.currentValue`
|
|
2566
2655
|
// Also maybe move `ExecutionTask.currentValue.usage` -> `ExecutionTask.usage`
|
|
2567
2656
|
// And delete `ExecutionTask.currentValue.preparedPipeline`
|
|
2568
2657
|
assertsTaskSuccessful(executionResult);
|
|
@@ -2572,6 +2661,7 @@ function createTask(options) {
|
|
|
2572
2661
|
partialResultSubject.next(executionResult);
|
|
2573
2662
|
}
|
|
2574
2663
|
catch (error) {
|
|
2664
|
+
assertsError(error);
|
|
2575
2665
|
status = 'ERROR';
|
|
2576
2666
|
errors.push(error);
|
|
2577
2667
|
partialResultSubject.error(error);
|
|
@@ -2963,14 +3053,15 @@ class MultipleLlmExecutionTools {
|
|
|
2963
3053
|
}
|
|
2964
3054
|
}
|
|
2965
3055
|
catch (error) {
|
|
2966
|
-
|
|
3056
|
+
assertsError(error);
|
|
3057
|
+
if (error instanceof UnexpectedError) {
|
|
2967
3058
|
throw error;
|
|
2968
3059
|
}
|
|
2969
3060
|
errors.push({ llmExecutionTools, error });
|
|
2970
3061
|
}
|
|
2971
3062
|
}
|
|
2972
3063
|
if (errors.length === 1) {
|
|
2973
|
-
throw errors[0];
|
|
3064
|
+
throw errors[0].error;
|
|
2974
3065
|
}
|
|
2975
3066
|
else if (errors.length > 1) {
|
|
2976
3067
|
throw new PipelineExecutionError(
|
|
@@ -3096,27 +3187,48 @@ async function preparePersona(personaDescription, tools, options) {
|
|
|
3096
3187
|
pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
|
|
3097
3188
|
tools,
|
|
3098
3189
|
});
|
|
3099
|
-
// TODO: [๐] Make arrayable LLMs -> single LLM DRY
|
|
3100
3190
|
const _llms = arrayableToArray(tools.llm);
|
|
3101
3191
|
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
3102
|
-
const availableModels = await llmTools.listModels()
|
|
3103
|
-
const availableModelNames = availableModels
|
|
3192
|
+
const availableModels = (await llmTools.listModels())
|
|
3104
3193
|
.filter(({ modelVariant }) => modelVariant === 'CHAT')
|
|
3105
|
-
.map(({ modelName }) =>
|
|
3106
|
-
|
|
3107
|
-
|
|
3194
|
+
.map(({ modelName, modelDescription }) => ({
|
|
3195
|
+
modelName,
|
|
3196
|
+
modelDescription,
|
|
3197
|
+
// <- Note: `modelTitle` and `modelVariant` is not relevant for this task
|
|
3198
|
+
}));
|
|
3199
|
+
const result = await preparePersonaExecutor({
|
|
3200
|
+
availableModels /* <- Note: Passing as JSON */,
|
|
3201
|
+
personaDescription,
|
|
3202
|
+
}).asPromise();
|
|
3108
3203
|
const { outputParameters } = result;
|
|
3109
|
-
const {
|
|
3110
|
-
|
|
3204
|
+
const { modelsRequirements: modelsRequirementsJson } = outputParameters;
|
|
3205
|
+
let modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
|
|
3111
3206
|
if (isVerbose) {
|
|
3112
|
-
console.info(`PERSONA ${personaDescription}`,
|
|
3207
|
+
console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
|
|
3113
3208
|
}
|
|
3114
|
-
|
|
3115
|
-
|
|
3209
|
+
if (!Array.isArray(modelsRequirementsUnchecked)) {
|
|
3210
|
+
// <- TODO: Book should have syntax and system to enforce shape of JSON
|
|
3211
|
+
modelsRequirementsUnchecked = [modelsRequirementsUnchecked];
|
|
3212
|
+
/*
|
|
3213
|
+
throw new UnexpectedError(
|
|
3214
|
+
spaceTrim(
|
|
3215
|
+
(block) => `
|
|
3216
|
+
Invalid \`modelsRequirements\`:
|
|
3217
|
+
|
|
3218
|
+
\`\`\`json
|
|
3219
|
+
${block(JSON.stringify(modelsRequirementsUnchecked, null, 4))}
|
|
3220
|
+
\`\`\`
|
|
3221
|
+
`,
|
|
3222
|
+
),
|
|
3223
|
+
);
|
|
3224
|
+
*/
|
|
3225
|
+
}
|
|
3226
|
+
const modelsRequirements = modelsRequirementsUnchecked.map((modelRequirements) => ({
|
|
3116
3227
|
modelVariant: 'CHAT',
|
|
3117
|
-
|
|
3118
|
-
|
|
3119
|
-
|
|
3228
|
+
...modelRequirements,
|
|
3229
|
+
}));
|
|
3230
|
+
return {
|
|
3231
|
+
modelsRequirements,
|
|
3120
3232
|
};
|
|
3121
3233
|
}
|
|
3122
3234
|
/**
|
|
@@ -3415,9 +3527,7 @@ const promptbookFetch = async (urlOrRequest, init) => {
|
|
|
3415
3527
|
return await fetch(urlOrRequest, init);
|
|
3416
3528
|
}
|
|
3417
3529
|
catch (error) {
|
|
3418
|
-
|
|
3419
|
-
throw error;
|
|
3420
|
-
}
|
|
3530
|
+
assertsError(error);
|
|
3421
3531
|
let url;
|
|
3422
3532
|
if (typeof urlOrRequest === 'string') {
|
|
3423
3533
|
url = urlOrRequest;
|
|
@@ -3546,7 +3656,7 @@ async function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3546
3656
|
> },
|
|
3547
3657
|
*/
|
|
3548
3658
|
async asJson() {
|
|
3549
|
-
return
|
|
3659
|
+
return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
|
|
3550
3660
|
},
|
|
3551
3661
|
async asText() {
|
|
3552
3662
|
return await tools.fs.readFile(filename, 'utf-8');
|
|
@@ -3648,9 +3758,7 @@ async function prepareKnowledgePieces(knowledgeSources, tools, options) {
|
|
|
3648
3758
|
knowledgePreparedUnflatten[index] = pieces;
|
|
3649
3759
|
}
|
|
3650
3760
|
catch (error) {
|
|
3651
|
-
|
|
3652
|
-
throw error;
|
|
3653
|
-
}
|
|
3761
|
+
assertsError(error);
|
|
3654
3762
|
console.warn(error);
|
|
3655
3763
|
// <- TODO: [๐ฎ] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
|
|
3656
3764
|
}
|
|
@@ -3806,14 +3914,14 @@ async function preparePipeline(pipeline, tools, options) {
|
|
|
3806
3914
|
// TODO: [๐][๐ง ] Implement some `mapAsync` function
|
|
3807
3915
|
const preparedPersonas = new Array(personas.length);
|
|
3808
3916
|
await forEachAsync(personas, { maxParallelCount /* <- TODO: [๐ช] When there are subtasks, this maximul limit can be broken */ }, async (persona, index) => {
|
|
3809
|
-
const
|
|
3917
|
+
const { modelsRequirements } = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
|
|
3810
3918
|
rootDirname,
|
|
3811
3919
|
maxParallelCount /* <- TODO: [๐ช] */,
|
|
3812
3920
|
isVerbose,
|
|
3813
3921
|
});
|
|
3814
3922
|
const preparedPersona = {
|
|
3815
3923
|
...persona,
|
|
3816
|
-
|
|
3924
|
+
modelsRequirements,
|
|
3817
3925
|
preparationIds: [/* TODO: [๐ง] -> */ currentPreparation.id],
|
|
3818
3926
|
// <- TODO: [๐] Make some standard order of json properties
|
|
3819
3927
|
};
|
|
@@ -3942,13 +4050,19 @@ function valueToString(value) {
|
|
|
3942
4050
|
return value.toISOString();
|
|
3943
4051
|
}
|
|
3944
4052
|
else {
|
|
3945
|
-
|
|
4053
|
+
try {
|
|
4054
|
+
return JSON.stringify(value);
|
|
4055
|
+
}
|
|
4056
|
+
catch (error) {
|
|
4057
|
+
if (error instanceof TypeError && error.message.includes('circular structure')) {
|
|
4058
|
+
return VALUE_STRINGS.circular;
|
|
4059
|
+
}
|
|
4060
|
+
throw error;
|
|
4061
|
+
}
|
|
3946
4062
|
}
|
|
3947
4063
|
}
|
|
3948
4064
|
catch (error) {
|
|
3949
|
-
|
|
3950
|
-
throw error;
|
|
3951
|
-
}
|
|
4065
|
+
assertsError(error);
|
|
3952
4066
|
console.error(error);
|
|
3953
4067
|
return VALUE_STRINGS.unserializable;
|
|
3954
4068
|
}
|
|
@@ -4005,9 +4119,7 @@ function extractVariablesFromJavascript(script) {
|
|
|
4005
4119
|
}
|
|
4006
4120
|
}
|
|
4007
4121
|
catch (error) {
|
|
4008
|
-
|
|
4009
|
-
throw error;
|
|
4010
|
-
}
|
|
4122
|
+
assertsError(error);
|
|
4011
4123
|
throw new ParseError(spaceTrim((block) => `
|
|
4012
4124
|
Can not extract variables from the script
|
|
4013
4125
|
${block(error.stack || error.message)}
|
|
@@ -4126,6 +4238,46 @@ const MANDATORY_CSV_SETTINGS = Object.freeze({
|
|
|
4126
4238
|
// encoding: 'utf-8',
|
|
4127
4239
|
});
|
|
4128
4240
|
|
|
4241
|
+
/**
|
|
4242
|
+
* Function to check if a string is valid CSV
|
|
4243
|
+
*
|
|
4244
|
+
* @param value The string to check
|
|
4245
|
+
* @returns True if the string is a valid CSV string, false otherwise
|
|
4246
|
+
*
|
|
4247
|
+
* @public exported from `@promptbook/utils`
|
|
4248
|
+
*/
|
|
4249
|
+
function isValidCsvString(value) {
|
|
4250
|
+
try {
|
|
4251
|
+
// A simple check for CSV format: at least one comma and no invalid characters
|
|
4252
|
+
if (value.includes(',') && /^[\w\s,"']+$/.test(value)) {
|
|
4253
|
+
return true;
|
|
4254
|
+
}
|
|
4255
|
+
return false;
|
|
4256
|
+
}
|
|
4257
|
+
catch (error) {
|
|
4258
|
+
assertsError(error);
|
|
4259
|
+
return false;
|
|
4260
|
+
}
|
|
4261
|
+
}
|
|
4262
|
+
|
|
4263
|
+
/**
|
|
4264
|
+
* Converts a CSV string into an object
|
|
4265
|
+
*
|
|
4266
|
+
* Note: This is wrapper around `papaparse.parse()` with better autohealing
|
|
4267
|
+
*
|
|
4268
|
+
* @private - for now until `@promptbook/csv` is released
|
|
4269
|
+
*/
|
|
4270
|
+
function csvParse(value /* <- TODO: string_csv */, settings, schema /* <- TODO: Make CSV Schemas */) {
|
|
4271
|
+
settings = { ...settings, ...MANDATORY_CSV_SETTINGS };
|
|
4272
|
+
// Note: Autoheal invalid '\n' characters
|
|
4273
|
+
if (settings.newline && !settings.newline.includes('\r') && value.includes('\r')) {
|
|
4274
|
+
console.warn('CSV string contains carriage return characters, but in the CSV settings the `newline` setting does not include them. Autohealing the CSV string.');
|
|
4275
|
+
value = value.replace(/\r\n/g, '\n').replace(/\r/g, '\n');
|
|
4276
|
+
}
|
|
4277
|
+
const csv = parse(value, settings);
|
|
4278
|
+
return csv;
|
|
4279
|
+
}
|
|
4280
|
+
|
|
4129
4281
|
/**
|
|
4130
4282
|
* Definition for CSV spreadsheet
|
|
4131
4283
|
*
|
|
@@ -4136,7 +4288,7 @@ const CsvFormatDefinition = {
|
|
|
4136
4288
|
formatName: 'CSV',
|
|
4137
4289
|
aliases: ['SPREADSHEET', 'TABLE'],
|
|
4138
4290
|
isValid(value, settings, schema) {
|
|
4139
|
-
return
|
|
4291
|
+
return isValidCsvString(value);
|
|
4140
4292
|
},
|
|
4141
4293
|
canBeValid(partialValue, settings, schema) {
|
|
4142
4294
|
return true;
|
|
@@ -4148,8 +4300,7 @@ const CsvFormatDefinition = {
|
|
|
4148
4300
|
{
|
|
4149
4301
|
subvalueName: 'ROW',
|
|
4150
4302
|
async mapValues(value, outputParameterName, settings, mapCallback) {
|
|
4151
|
-
|
|
4152
|
-
const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
|
|
4303
|
+
const csv = csvParse(value, settings);
|
|
4153
4304
|
if (csv.errors.length !== 0) {
|
|
4154
4305
|
throw new CsvFormatError(spaceTrim$1((block) => `
|
|
4155
4306
|
CSV parsing error
|
|
@@ -4179,8 +4330,7 @@ const CsvFormatDefinition = {
|
|
|
4179
4330
|
{
|
|
4180
4331
|
subvalueName: 'CELL',
|
|
4181
4332
|
async mapValues(value, outputParameterName, settings, mapCallback) {
|
|
4182
|
-
|
|
4183
|
-
const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
|
|
4333
|
+
const csv = csvParse(value, settings);
|
|
4184
4334
|
if (csv.errors.length !== 0) {
|
|
4185
4335
|
throw new CsvFormatError(spaceTrim$1((block) => `
|
|
4186
4336
|
CSV parsing error
|
|
@@ -4290,6 +4440,30 @@ const TextFormatDefinition = {
|
|
|
4290
4440
|
* TODO: [๐ข] Allow to expect something inside each item of list and other formats
|
|
4291
4441
|
*/
|
|
4292
4442
|
|
|
4443
|
+
/**
|
|
4444
|
+
* Function to check if a string is valid XML
|
|
4445
|
+
*
|
|
4446
|
+
* @param value
|
|
4447
|
+
* @returns True if the string is a valid XML string, false otherwise
|
|
4448
|
+
*
|
|
4449
|
+
* @public exported from `@promptbook/utils`
|
|
4450
|
+
*/
|
|
4451
|
+
function isValidXmlString(value) {
|
|
4452
|
+
try {
|
|
4453
|
+
const parser = new DOMParser();
|
|
4454
|
+
const parsedDocument = parser.parseFromString(value, 'application/xml');
|
|
4455
|
+
const parserError = parsedDocument.getElementsByTagName('parsererror');
|
|
4456
|
+
if (parserError.length > 0) {
|
|
4457
|
+
return false;
|
|
4458
|
+
}
|
|
4459
|
+
return true;
|
|
4460
|
+
}
|
|
4461
|
+
catch (error) {
|
|
4462
|
+
assertsError(error);
|
|
4463
|
+
return false;
|
|
4464
|
+
}
|
|
4465
|
+
}
|
|
4466
|
+
|
|
4293
4467
|
/**
|
|
4294
4468
|
* Definition for XML format
|
|
4295
4469
|
*
|
|
@@ -4299,7 +4473,7 @@ const XmlFormatDefinition = {
|
|
|
4299
4473
|
formatName: 'XML',
|
|
4300
4474
|
mimeType: 'application/xml',
|
|
4301
4475
|
isValid(value, settings, schema) {
|
|
4302
|
-
return
|
|
4476
|
+
return isValidXmlString(value);
|
|
4303
4477
|
},
|
|
4304
4478
|
canBeValid(partialValue, settings, schema) {
|
|
4305
4479
|
return true;
|
|
@@ -4872,9 +5046,7 @@ async function executeAttempts(options) {
|
|
|
4872
5046
|
break scripts;
|
|
4873
5047
|
}
|
|
4874
5048
|
catch (error) {
|
|
4875
|
-
|
|
4876
|
-
throw error;
|
|
4877
|
-
}
|
|
5049
|
+
assertsError(error);
|
|
4878
5050
|
if (error instanceof UnexpectedError) {
|
|
4879
5051
|
throw error;
|
|
4880
5052
|
}
|
|
@@ -4944,9 +5116,7 @@ async function executeAttempts(options) {
|
|
|
4944
5116
|
break scripts;
|
|
4945
5117
|
}
|
|
4946
5118
|
catch (error) {
|
|
4947
|
-
|
|
4948
|
-
throw error;
|
|
4949
|
-
}
|
|
5119
|
+
assertsError(error);
|
|
4950
5120
|
if (error instanceof UnexpectedError) {
|
|
4951
5121
|
throw error;
|
|
4952
5122
|
}
|
|
@@ -5189,13 +5359,79 @@ async function getExamplesForTask(task) {
|
|
|
5189
5359
|
/**
|
|
5190
5360
|
* @@@
|
|
5191
5361
|
*
|
|
5362
|
+
* Here is the place where RAG (retrieval-augmented generation) happens
|
|
5363
|
+
*
|
|
5192
5364
|
* @private internal utility of `createPipelineExecutor`
|
|
5193
5365
|
*/
|
|
5194
5366
|
async function getKnowledgeForTask(options) {
|
|
5195
|
-
const { preparedPipeline, task } = options;
|
|
5196
|
-
|
|
5367
|
+
const { tools, preparedPipeline, task } = options;
|
|
5368
|
+
const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
|
|
5369
|
+
const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
|
|
5370
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
|
|
5371
|
+
if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
|
|
5372
|
+
return 'No knowledge pieces found';
|
|
5373
|
+
}
|
|
5374
|
+
// TODO: [๐] Make arrayable LLMs -> single LLM DRY
|
|
5375
|
+
const _llms = arrayableToArray(tools.llm);
|
|
5376
|
+
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
5377
|
+
const taskEmbeddingPrompt = {
|
|
5378
|
+
title: 'Knowledge Search',
|
|
5379
|
+
modelRequirements: {
|
|
5380
|
+
modelVariant: 'EMBEDDING',
|
|
5381
|
+
modelName: firstKnowlegeIndex.modelName,
|
|
5382
|
+
},
|
|
5383
|
+
content: task.content,
|
|
5384
|
+
parameters: {
|
|
5385
|
+
/* !!!!!!!! */
|
|
5386
|
+
},
|
|
5387
|
+
};
|
|
5388
|
+
const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
|
|
5389
|
+
const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
|
|
5390
|
+
const { index } = knowledgePiece;
|
|
5391
|
+
const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
|
|
5392
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model
|
|
5393
|
+
if (knowledgePieceIndex === undefined) {
|
|
5394
|
+
return {
|
|
5395
|
+
content: knowledgePiece.content,
|
|
5396
|
+
relevance: 0,
|
|
5397
|
+
};
|
|
5398
|
+
}
|
|
5399
|
+
const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
|
|
5400
|
+
return {
|
|
5401
|
+
content: knowledgePiece.content,
|
|
5402
|
+
relevance,
|
|
5403
|
+
};
|
|
5404
|
+
});
|
|
5405
|
+
const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
|
|
5406
|
+
const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
|
|
5407
|
+
console.log('!!! Embedding', {
|
|
5408
|
+
task,
|
|
5409
|
+
taskEmbeddingPrompt,
|
|
5410
|
+
taskEmbeddingResult,
|
|
5411
|
+
firstKnowlegePiece,
|
|
5412
|
+
firstKnowlegeIndex,
|
|
5413
|
+
knowledgePiecesWithRelevance,
|
|
5414
|
+
knowledgePiecesSorted,
|
|
5415
|
+
knowledgePiecesLimited,
|
|
5416
|
+
});
|
|
5417
|
+
return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
|
|
5197
5418
|
// <- TODO: [๐ง ] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
|
|
5198
5419
|
}
|
|
5420
|
+
// TODO: !!!!!! Annotate + to new file
|
|
5421
|
+
function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
|
|
5422
|
+
if (embeddingVector1.length !== embeddingVector2.length) {
|
|
5423
|
+
throw new TypeError('Embedding vectors must have the same length');
|
|
5424
|
+
}
|
|
5425
|
+
const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
|
|
5426
|
+
const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
|
|
5427
|
+
const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
|
|
5428
|
+
return 1 - dotProduct / (magnitude1 * magnitude2);
|
|
5429
|
+
}
|
|
5430
|
+
/**
|
|
5431
|
+
* TODO: !!!! Verify if this is working
|
|
5432
|
+
* TODO: [โจ] Implement Better - use keyword search
|
|
5433
|
+
* TODO: [โจ] Examples of values
|
|
5434
|
+
*/
|
|
5199
5435
|
|
|
5200
5436
|
/**
|
|
5201
5437
|
* @@@
|
|
@@ -5203,9 +5439,9 @@ async function getKnowledgeForTask(options) {
|
|
|
5203
5439
|
* @private internal utility of `createPipelineExecutor`
|
|
5204
5440
|
*/
|
|
5205
5441
|
async function getReservedParametersForTask(options) {
|
|
5206
|
-
const { preparedPipeline, task, pipelineIdentification } = options;
|
|
5442
|
+
const { tools, preparedPipeline, task, pipelineIdentification } = options;
|
|
5207
5443
|
const context = await getContextForTask(); // <- [๐]
|
|
5208
|
-
const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
|
|
5444
|
+
const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
|
|
5209
5445
|
const examples = await getExamplesForTask();
|
|
5210
5446
|
const currentDate = new Date().toISOString(); // <- TODO: [๐ง ][๐ฉ] Better
|
|
5211
5447
|
const modelName = RESERVED_PARAMETER_MISSING_VALUE;
|
|
@@ -5267,6 +5503,7 @@ async function executeTask(options) {
|
|
|
5267
5503
|
}
|
|
5268
5504
|
const definedParameters = Object.freeze({
|
|
5269
5505
|
...(await getReservedParametersForTask({
|
|
5506
|
+
tools,
|
|
5270
5507
|
preparedPipeline,
|
|
5271
5508
|
task: currentTask,
|
|
5272
5509
|
pipelineIdentification,
|
|
@@ -5567,9 +5804,7 @@ async function executePipeline(options) {
|
|
|
5567
5804
|
await Promise.all(resolving);
|
|
5568
5805
|
}
|
|
5569
5806
|
catch (error /* <- Note: [3] */) {
|
|
5570
|
-
|
|
5571
|
-
throw error;
|
|
5572
|
-
}
|
|
5807
|
+
assertsError(error);
|
|
5573
5808
|
// Note: No need to rethrow UnexpectedError
|
|
5574
5809
|
// if (error instanceof UnexpectedError) {
|
|
5575
5810
|
// Note: Count usage, [๐ง ] Maybe put to separate function executionReportJsonToUsage + DRY [๐คนโโ๏ธ]
|