@promptbook/core 0.103.0-48 → 0.103.0-49
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +527 -337
- package/esm/index.es.js.map +1 -1
- package/esm/typings/servers.d.ts +1 -0
- package/esm/typings/src/_packages/types.index.d.ts +2 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/book-2.0/agent-source/AgentBasicInformation.d.ts +12 -2
- package/esm/typings/src/collection/agent-collection/constructors/agent-collection-in-supabase/AgentCollectionInSupabase.d.ts +14 -8
- package/esm/typings/src/collection/agent-collection/constructors/agent-collection-in-supabase/AgentCollectionInSupabaseOptions.d.ts +10 -0
- package/esm/typings/src/commitments/MESSAGE/InitialMessageCommitmentDefinition.d.ts +28 -0
- package/esm/typings/src/commitments/index.d.ts +2 -1
- package/esm/typings/src/config.d.ts +1 -0
- package/esm/typings/src/errors/DatabaseError.d.ts +2 -2
- package/esm/typings/src/errors/WrappedError.d.ts +2 -2
- package/esm/typings/src/execution/ExecutionTask.d.ts +2 -2
- package/esm/typings/src/execution/LlmExecutionTools.d.ts +6 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForWizardOrCli.d.ts +2 -2
- package/esm/typings/src/llm-providers/agent/Agent.d.ts +11 -3
- package/esm/typings/src/llm-providers/agent/AgentLlmExecutionTools.d.ts +6 -1
- package/esm/typings/src/llm-providers/agent/RemoteAgent.d.ts +6 -2
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +6 -1
- package/esm/typings/src/remote-server/startAgentServer.d.ts +2 -2
- package/esm/typings/src/utils/color/Color.d.ts +7 -0
- package/esm/typings/src/utils/color/Color.test.d.ts +1 -0
- package/esm/typings/src/utils/environment/$getGlobalScope.d.ts +2 -2
- package/esm/typings/src/utils/misc/computeHash.d.ts +11 -0
- package/esm/typings/src/utils/misc/computeHash.test.d.ts +1 -0
- package/esm/typings/src/utils/organization/$sideEffect.d.ts +2 -2
- package/esm/typings/src/utils/organization/$side_effect.d.ts +2 -2
- package/esm/typings/src/utils/organization/TODO_USE.d.ts +2 -2
- package/esm/typings/src/utils/organization/keepUnused.d.ts +2 -2
- package/esm/typings/src/utils/organization/preserve.d.ts +3 -3
- package/esm/typings/src/utils/organization/really_any.d.ts +7 -0
- package/esm/typings/src/utils/serialization/asSerializable.d.ts +2 -2
- package/esm/typings/src/version.d.ts +1 -1
- package/package.json +1 -1
- package/umd/index.umd.js +527 -337
- package/umd/index.umd.js.map +1 -1
package/umd/index.umd.js
CHANGED
|
@@ -28,140 +28,12 @@
|
|
|
28
28
|
* @generated
|
|
29
29
|
* @see https://github.com/webgptorg/promptbook
|
|
30
30
|
*/
|
|
31
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-
|
|
31
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-49';
|
|
32
32
|
/**
|
|
33
33
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
34
34
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
35
35
|
*/
|
|
36
36
|
|
|
37
|
-
/**
|
|
38
|
-
* Computes SHA-256 hash of the agent source
|
|
39
|
-
*
|
|
40
|
-
* @public exported from `@promptbook/core`
|
|
41
|
-
*/
|
|
42
|
-
function computeAgentHash(agentSource) {
|
|
43
|
-
return cryptoJs.SHA256(hexEncoder__default["default"].parse(agentSource /* <- TODO: !!!!! spaceTrim */)).toString( /* hex */);
|
|
44
|
-
}
|
|
45
|
-
|
|
46
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
47
|
-
|
|
48
|
-
/**
|
|
49
|
-
* Checks if value is valid email
|
|
50
|
-
*
|
|
51
|
-
* @public exported from `@promptbook/utils`
|
|
52
|
-
*/
|
|
53
|
-
function isValidEmail(email) {
|
|
54
|
-
if (typeof email !== 'string') {
|
|
55
|
-
return false;
|
|
56
|
-
}
|
|
57
|
-
if (email.split('\n').length > 1) {
|
|
58
|
-
return false;
|
|
59
|
-
}
|
|
60
|
-
return /^.+@.+\..+$/.test(email);
|
|
61
|
-
}
|
|
62
|
-
|
|
63
|
-
/**
|
|
64
|
-
* Tests if given string is valid file path.
|
|
65
|
-
*
|
|
66
|
-
* Note: This does not check if the file exists only if the path is valid
|
|
67
|
-
* @public exported from `@promptbook/utils`
|
|
68
|
-
*/
|
|
69
|
-
function isValidFilePath(filename) {
|
|
70
|
-
if (typeof filename !== 'string') {
|
|
71
|
-
return false;
|
|
72
|
-
}
|
|
73
|
-
if (filename.split('\n').length > 1) {
|
|
74
|
-
return false;
|
|
75
|
-
}
|
|
76
|
-
// Normalize slashes early so heuristics can detect path-like inputs
|
|
77
|
-
const filenameSlashes = filename.replace(/\\/g, '/');
|
|
78
|
-
// Reject strings that look like sentences (informational text)
|
|
79
|
-
// Heuristic: contains multiple spaces and ends with a period, or contains typical sentence punctuation
|
|
80
|
-
// But skip this heuristic if the string looks like a path (contains '/' or starts with a drive letter)
|
|
81
|
-
if (filename.trim().length > 60 && // long enough to be a sentence
|
|
82
|
-
/[.!?]/.test(filename) && // contains sentence punctuation
|
|
83
|
-
filename.split(' ').length > 8 && // has many words
|
|
84
|
-
!/\/|^[A-Z]:/i.test(filenameSlashes) // do NOT treat as sentence if looks like a path
|
|
85
|
-
) {
|
|
86
|
-
return false;
|
|
87
|
-
}
|
|
88
|
-
// Absolute Unix path: /hello.txt
|
|
89
|
-
if (/^(\/)/i.test(filenameSlashes)) {
|
|
90
|
-
// console.log(filename, 'Absolute Unix path: /hello.txt');
|
|
91
|
-
return true;
|
|
92
|
-
}
|
|
93
|
-
// Absolute Windows path: C:/ or C:\ (allow spaces and multiple dots in filename)
|
|
94
|
-
if (/^[A-Z]:\/.+$/i.test(filenameSlashes)) {
|
|
95
|
-
// console.log(filename, 'Absolute Windows path: /hello.txt');
|
|
96
|
-
return true;
|
|
97
|
-
}
|
|
98
|
-
// Relative path: ./hello.txt
|
|
99
|
-
if (/^(\.\.?\/)+/i.test(filenameSlashes)) {
|
|
100
|
-
// console.log(filename, 'Relative path: ./hello.txt');
|
|
101
|
-
return true;
|
|
102
|
-
}
|
|
103
|
-
// Allow paths like foo/hello
|
|
104
|
-
if (/^[^/]+\/[^/]+/i.test(filenameSlashes)) {
|
|
105
|
-
// console.log(filename, 'Allow paths like foo/hello');
|
|
106
|
-
return true;
|
|
107
|
-
}
|
|
108
|
-
// Allow paths like hello.book
|
|
109
|
-
if (/^[^/]+\.[^/]+$/i.test(filenameSlashes)) {
|
|
110
|
-
// console.log(filename, 'Allow paths like hello.book');
|
|
111
|
-
return true;
|
|
112
|
-
}
|
|
113
|
-
return false;
|
|
114
|
-
}
|
|
115
|
-
/**
|
|
116
|
-
* TODO: [🍏] Implement for MacOs
|
|
117
|
-
*/
|
|
118
|
-
|
|
119
|
-
/**
|
|
120
|
-
* Tests if given string is valid URL.
|
|
121
|
-
*
|
|
122
|
-
* Note: [🔂] This function is idempotent.
|
|
123
|
-
* Note: Dataurl are considered perfectly valid.
|
|
124
|
-
* Note: There are two similar functions:
|
|
125
|
-
* - `isValidUrl` which tests any URL
|
|
126
|
-
* - `isValidPipelineUrl` *(this one)* which tests just promptbook URL
|
|
127
|
-
*
|
|
128
|
-
* @public exported from `@promptbook/utils`
|
|
129
|
-
*/
|
|
130
|
-
function isValidUrl(url) {
|
|
131
|
-
if (typeof url !== 'string') {
|
|
132
|
-
return false;
|
|
133
|
-
}
|
|
134
|
-
try {
|
|
135
|
-
if (url.startsWith('blob:')) {
|
|
136
|
-
url = url.replace(/^blob:/, '');
|
|
137
|
-
}
|
|
138
|
-
const urlObject = new URL(url /* because fail is handled */);
|
|
139
|
-
if (!['http:', 'https:', 'data:'].includes(urlObject.protocol)) {
|
|
140
|
-
return false;
|
|
141
|
-
}
|
|
142
|
-
return true;
|
|
143
|
-
}
|
|
144
|
-
catch (error) {
|
|
145
|
-
return false;
|
|
146
|
-
}
|
|
147
|
-
}
|
|
148
|
-
|
|
149
|
-
/**
|
|
150
|
-
* This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
|
|
151
|
-
*
|
|
152
|
-
* @public exported from `@promptbook/core`
|
|
153
|
-
*/
|
|
154
|
-
class ParseError extends Error {
|
|
155
|
-
constructor(message) {
|
|
156
|
-
super(message);
|
|
157
|
-
this.name = 'ParseError';
|
|
158
|
-
Object.setPrototypeOf(this, ParseError.prototype);
|
|
159
|
-
}
|
|
160
|
-
}
|
|
161
|
-
/**
|
|
162
|
-
* TODO: Maybe split `ParseError` and `ApplyError`
|
|
163
|
-
*/
|
|
164
|
-
|
|
165
37
|
/**
|
|
166
38
|
* Available remote servers for the Promptbook
|
|
167
39
|
*
|
|
@@ -195,6 +67,7 @@
|
|
|
195
67
|
*/
|
|
196
68
|
];
|
|
197
69
|
/**
|
|
70
|
+
* TODO: [🐱🚀] Auto-federated server from url in here
|
|
198
71
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
199
72
|
*/
|
|
200
73
|
|
|
@@ -528,6 +401,9 @@
|
|
|
528
401
|
if (hex.length === 3) {
|
|
529
402
|
return Color.fromHex3(hex);
|
|
530
403
|
}
|
|
404
|
+
if (hex.length === 4) {
|
|
405
|
+
return Color.fromHex4(hex);
|
|
406
|
+
}
|
|
531
407
|
if (hex.length === 6) {
|
|
532
408
|
return Color.fromHex6(hex);
|
|
533
409
|
}
|
|
@@ -548,6 +424,19 @@
|
|
|
548
424
|
const b = parseInt(hex.substr(2, 1), 16) * 16;
|
|
549
425
|
return take(new Color(r, g, b));
|
|
550
426
|
}
|
|
427
|
+
/**
|
|
428
|
+
* Creates a new Color instance from color in hex format with 4 digits (with alpha channel)
|
|
429
|
+
*
|
|
430
|
+
* @param color in hex for example `09df`
|
|
431
|
+
* @returns Color object
|
|
432
|
+
*/
|
|
433
|
+
static fromHex4(hex) {
|
|
434
|
+
const r = parseInt(hex.substr(0, 1), 16) * 16;
|
|
435
|
+
const g = parseInt(hex.substr(1, 1), 16) * 16;
|
|
436
|
+
const b = parseInt(hex.substr(2, 1), 16) * 16;
|
|
437
|
+
const a = parseInt(hex.substr(3, 1), 16) * 16;
|
|
438
|
+
return take(new Color(r, g, b, a));
|
|
439
|
+
}
|
|
551
440
|
/**
|
|
552
441
|
* Creates a new Color instance from color in hex format with 6 color digits (without alpha channel)
|
|
553
442
|
*
|
|
@@ -738,7 +627,8 @@
|
|
|
738
627
|
* @returns true if the value is a valid hex color string (e.g., `#009edd`, `#fff`, etc.)
|
|
739
628
|
*/
|
|
740
629
|
static isHexColorString(value) {
|
|
741
|
-
return typeof value === 'string' &&
|
|
630
|
+
return (typeof value === 'string' &&
|
|
631
|
+
/^#(?:[0-9a-fA-F]{3}|[0-9a-fA-F]{4}|[0-9a-fA-F]{6}|[0-9a-fA-F]{8})$/.test(value));
|
|
742
632
|
}
|
|
743
633
|
/**
|
|
744
634
|
* Creates new Color object
|
|
@@ -1079,6 +969,7 @@
|
|
|
1079
969
|
const PROMPTBOOK_SYNTAX_COLORS = {
|
|
1080
970
|
TITLE: Color.fromHex('#244EA8'),
|
|
1081
971
|
LINE: Color.fromHex('#eeeeee'),
|
|
972
|
+
SEPARATOR: Color.fromHex('#cccccc'),
|
|
1082
973
|
COMMITMENT: Color.fromHex('#DA0F78'),
|
|
1083
974
|
PARAMETER: Color.fromHex('#8e44ad'),
|
|
1084
975
|
};
|
|
@@ -1457,76 +1348,297 @@
|
|
|
1457
1348
|
}
|
|
1458
1349
|
|
|
1459
1350
|
/**
|
|
1460
|
-
* This error type indicates that the error should not happen and its last check before crashing with some other error
|
|
1351
|
+
* This error type indicates that the error should not happen and its last check before crashing with some other error
|
|
1352
|
+
*
|
|
1353
|
+
* @public exported from `@promptbook/core`
|
|
1354
|
+
*/
|
|
1355
|
+
class UnexpectedError extends Error {
|
|
1356
|
+
constructor(message) {
|
|
1357
|
+
super(spaceTrim$1.spaceTrim((block) => `
|
|
1358
|
+
${block(message)}
|
|
1359
|
+
|
|
1360
|
+
Note: This error should not happen.
|
|
1361
|
+
It's probably a bug in the pipeline collection
|
|
1362
|
+
|
|
1363
|
+
Please report issue:
|
|
1364
|
+
${block(getErrorReportUrl(new Error(message)).href)}
|
|
1365
|
+
|
|
1366
|
+
Or contact us on ${ADMIN_EMAIL}
|
|
1367
|
+
|
|
1368
|
+
`));
|
|
1369
|
+
this.name = 'UnexpectedError';
|
|
1370
|
+
Object.setPrototypeOf(this, UnexpectedError.prototype);
|
|
1371
|
+
}
|
|
1372
|
+
}
|
|
1373
|
+
|
|
1374
|
+
/**
|
|
1375
|
+
* This error type indicates that somewhere in the code non-Error object was thrown and it was wrapped into the `WrappedError`
|
|
1376
|
+
*
|
|
1377
|
+
* @public exported from `@promptbook/core`
|
|
1378
|
+
*/
|
|
1379
|
+
class WrappedError extends Error {
|
|
1380
|
+
constructor(whatWasThrown) {
|
|
1381
|
+
const tag = `[🤮]`;
|
|
1382
|
+
console.error(tag, whatWasThrown);
|
|
1383
|
+
super(spaceTrim$1.spaceTrim(`
|
|
1384
|
+
Non-Error object was thrown
|
|
1385
|
+
|
|
1386
|
+
Note: Look for ${tag} in the console for more details
|
|
1387
|
+
Please report issue on ${ADMIN_EMAIL}
|
|
1388
|
+
`));
|
|
1389
|
+
this.name = 'WrappedError';
|
|
1390
|
+
Object.setPrototypeOf(this, WrappedError.prototype);
|
|
1391
|
+
}
|
|
1392
|
+
}
|
|
1393
|
+
|
|
1394
|
+
/**
|
|
1395
|
+
* Helper used in catch blocks to assert that the error is an instance of `Error`
|
|
1396
|
+
*
|
|
1397
|
+
* @param whatWasThrown Any object that was thrown
|
|
1398
|
+
* @returns Nothing if the error is an instance of `Error`
|
|
1399
|
+
* @throws `WrappedError` or `UnexpectedError` if the error is not standard
|
|
1400
|
+
*
|
|
1401
|
+
* @private within the repository
|
|
1402
|
+
*/
|
|
1403
|
+
function assertsError(whatWasThrown) {
|
|
1404
|
+
// Case 1: Handle error which was rethrown as `WrappedError`
|
|
1405
|
+
if (whatWasThrown instanceof WrappedError) {
|
|
1406
|
+
const wrappedError = whatWasThrown;
|
|
1407
|
+
throw wrappedError;
|
|
1408
|
+
}
|
|
1409
|
+
// Case 2: Handle unexpected errors
|
|
1410
|
+
if (whatWasThrown instanceof UnexpectedError) {
|
|
1411
|
+
const unexpectedError = whatWasThrown;
|
|
1412
|
+
throw unexpectedError;
|
|
1413
|
+
}
|
|
1414
|
+
// Case 3: Handle standard errors - keep them up to consumer
|
|
1415
|
+
if (whatWasThrown instanceof Error) {
|
|
1416
|
+
return;
|
|
1417
|
+
}
|
|
1418
|
+
// Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
|
|
1419
|
+
throw new WrappedError(whatWasThrown);
|
|
1420
|
+
}
|
|
1421
|
+
|
|
1422
|
+
/**
|
|
1423
|
+
* Format either small or big number
|
|
1424
|
+
*
|
|
1425
|
+
* @public exported from `@promptbook/utils`
|
|
1426
|
+
*/
|
|
1427
|
+
function numberToString(value) {
|
|
1428
|
+
if (value === 0) {
|
|
1429
|
+
return '0';
|
|
1430
|
+
}
|
|
1431
|
+
else if (Number.isNaN(value)) {
|
|
1432
|
+
return VALUE_STRINGS.nan;
|
|
1433
|
+
}
|
|
1434
|
+
else if (value === Infinity) {
|
|
1435
|
+
return VALUE_STRINGS.infinity;
|
|
1436
|
+
}
|
|
1437
|
+
else if (value === -Infinity) {
|
|
1438
|
+
return VALUE_STRINGS.negativeInfinity;
|
|
1439
|
+
}
|
|
1440
|
+
for (let exponent = 0; exponent < 15; exponent++) {
|
|
1441
|
+
const factor = 10 ** exponent;
|
|
1442
|
+
const valueRounded = Math.round(value * factor) / factor;
|
|
1443
|
+
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
1444
|
+
return valueRounded.toFixed(exponent);
|
|
1445
|
+
}
|
|
1446
|
+
}
|
|
1447
|
+
return value.toString();
|
|
1448
|
+
}
|
|
1449
|
+
|
|
1450
|
+
/**
|
|
1451
|
+
* Function `valueToString` will convert the given value to string
|
|
1452
|
+
* This is useful and used in the `templateParameters` function
|
|
1453
|
+
*
|
|
1454
|
+
* Note: This function is not just calling `toString` method
|
|
1455
|
+
* It's more complex and can handle this conversion specifically for LLM models
|
|
1456
|
+
* See `VALUE_STRINGS`
|
|
1457
|
+
*
|
|
1458
|
+
* Note: There are 2 similar functions
|
|
1459
|
+
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
1460
|
+
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
1461
|
+
*
|
|
1462
|
+
* @public exported from `@promptbook/utils`
|
|
1463
|
+
*/
|
|
1464
|
+
function valueToString(value) {
|
|
1465
|
+
try {
|
|
1466
|
+
if (value === '') {
|
|
1467
|
+
return VALUE_STRINGS.empty;
|
|
1468
|
+
}
|
|
1469
|
+
else if (value === null) {
|
|
1470
|
+
return VALUE_STRINGS.null;
|
|
1471
|
+
}
|
|
1472
|
+
else if (value === undefined) {
|
|
1473
|
+
return VALUE_STRINGS.undefined;
|
|
1474
|
+
}
|
|
1475
|
+
else if (typeof value === 'string') {
|
|
1476
|
+
return value;
|
|
1477
|
+
}
|
|
1478
|
+
else if (typeof value === 'number') {
|
|
1479
|
+
return numberToString(value);
|
|
1480
|
+
}
|
|
1481
|
+
else if (value instanceof Date) {
|
|
1482
|
+
return value.toISOString();
|
|
1483
|
+
}
|
|
1484
|
+
else {
|
|
1485
|
+
try {
|
|
1486
|
+
return JSON.stringify(value);
|
|
1487
|
+
}
|
|
1488
|
+
catch (error) {
|
|
1489
|
+
if (error instanceof TypeError && error.message.includes('circular structure')) {
|
|
1490
|
+
return VALUE_STRINGS.circular;
|
|
1491
|
+
}
|
|
1492
|
+
throw error;
|
|
1493
|
+
}
|
|
1494
|
+
}
|
|
1495
|
+
}
|
|
1496
|
+
catch (error) {
|
|
1497
|
+
assertsError(error);
|
|
1498
|
+
console.error(error);
|
|
1499
|
+
return VALUE_STRINGS.unserializable;
|
|
1500
|
+
}
|
|
1501
|
+
}
|
|
1502
|
+
|
|
1503
|
+
/**
|
|
1504
|
+
* Computes SHA-256 hash of the given object
|
|
1505
|
+
*
|
|
1506
|
+
* @public exported from `@promptbook/utils`
|
|
1507
|
+
*/
|
|
1508
|
+
function computeHash(value) {
|
|
1509
|
+
return cryptoJs.SHA256(hexEncoder__default["default"].parse(spaceTrim__default["default"](valueToString(value)))).toString( /* hex */);
|
|
1510
|
+
}
|
|
1511
|
+
/**
|
|
1512
|
+
* TODO: [🥬][🥬] Use this ACRY
|
|
1513
|
+
*/
|
|
1514
|
+
|
|
1515
|
+
/**
|
|
1516
|
+
* Computes SHA-256 hash of the agent source
|
|
1517
|
+
*
|
|
1518
|
+
* @public exported from `@promptbook/core`
|
|
1519
|
+
*/
|
|
1520
|
+
function computeAgentHash(agentSource) {
|
|
1521
|
+
return computeHash(agentSource);
|
|
1522
|
+
}
|
|
1523
|
+
|
|
1524
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
1525
|
+
|
|
1526
|
+
/**
|
|
1527
|
+
* Checks if value is valid email
|
|
1528
|
+
*
|
|
1529
|
+
* @public exported from `@promptbook/utils`
|
|
1530
|
+
*/
|
|
1531
|
+
function isValidEmail(email) {
|
|
1532
|
+
if (typeof email !== 'string') {
|
|
1533
|
+
return false;
|
|
1534
|
+
}
|
|
1535
|
+
if (email.split('\n').length > 1) {
|
|
1536
|
+
return false;
|
|
1537
|
+
}
|
|
1538
|
+
return /^.+@.+\..+$/.test(email);
|
|
1539
|
+
}
|
|
1540
|
+
|
|
1541
|
+
/**
|
|
1542
|
+
* Tests if given string is valid file path.
|
|
1543
|
+
*
|
|
1544
|
+
* Note: This does not check if the file exists only if the path is valid
|
|
1545
|
+
* @public exported from `@promptbook/utils`
|
|
1546
|
+
*/
|
|
1547
|
+
function isValidFilePath(filename) {
|
|
1548
|
+
if (typeof filename !== 'string') {
|
|
1549
|
+
return false;
|
|
1550
|
+
}
|
|
1551
|
+
if (filename.split('\n').length > 1) {
|
|
1552
|
+
return false;
|
|
1553
|
+
}
|
|
1554
|
+
// Normalize slashes early so heuristics can detect path-like inputs
|
|
1555
|
+
const filenameSlashes = filename.replace(/\\/g, '/');
|
|
1556
|
+
// Reject strings that look like sentences (informational text)
|
|
1557
|
+
// Heuristic: contains multiple spaces and ends with a period, or contains typical sentence punctuation
|
|
1558
|
+
// But skip this heuristic if the string looks like a path (contains '/' or starts with a drive letter)
|
|
1559
|
+
if (filename.trim().length > 60 && // long enough to be a sentence
|
|
1560
|
+
/[.!?]/.test(filename) && // contains sentence punctuation
|
|
1561
|
+
filename.split(' ').length > 8 && // has many words
|
|
1562
|
+
!/\/|^[A-Z]:/i.test(filenameSlashes) // do NOT treat as sentence if looks like a path
|
|
1563
|
+
) {
|
|
1564
|
+
return false;
|
|
1565
|
+
}
|
|
1566
|
+
// Absolute Unix path: /hello.txt
|
|
1567
|
+
if (/^(\/)/i.test(filenameSlashes)) {
|
|
1568
|
+
// console.log(filename, 'Absolute Unix path: /hello.txt');
|
|
1569
|
+
return true;
|
|
1570
|
+
}
|
|
1571
|
+
// Absolute Windows path: C:/ or C:\ (allow spaces and multiple dots in filename)
|
|
1572
|
+
if (/^[A-Z]:\/.+$/i.test(filenameSlashes)) {
|
|
1573
|
+
// console.log(filename, 'Absolute Windows path: /hello.txt');
|
|
1574
|
+
return true;
|
|
1575
|
+
}
|
|
1576
|
+
// Relative path: ./hello.txt
|
|
1577
|
+
if (/^(\.\.?\/)+/i.test(filenameSlashes)) {
|
|
1578
|
+
// console.log(filename, 'Relative path: ./hello.txt');
|
|
1579
|
+
return true;
|
|
1580
|
+
}
|
|
1581
|
+
// Allow paths like foo/hello
|
|
1582
|
+
if (/^[^/]+\/[^/]+/i.test(filenameSlashes)) {
|
|
1583
|
+
// console.log(filename, 'Allow paths like foo/hello');
|
|
1584
|
+
return true;
|
|
1585
|
+
}
|
|
1586
|
+
// Allow paths like hello.book
|
|
1587
|
+
if (/^[^/]+\.[^/]+$/i.test(filenameSlashes)) {
|
|
1588
|
+
// console.log(filename, 'Allow paths like hello.book');
|
|
1589
|
+
return true;
|
|
1590
|
+
}
|
|
1591
|
+
return false;
|
|
1592
|
+
}
|
|
1593
|
+
/**
|
|
1594
|
+
* TODO: [🍏] Implement for MacOs
|
|
1595
|
+
*/
|
|
1596
|
+
|
|
1597
|
+
/**
|
|
1598
|
+
* Tests if given string is valid URL.
|
|
1461
1599
|
*
|
|
1462
|
-
*
|
|
1600
|
+
* Note: [🔂] This function is idempotent.
|
|
1601
|
+
* Note: Dataurl are considered perfectly valid.
|
|
1602
|
+
* Note: There are two similar functions:
|
|
1603
|
+
* - `isValidUrl` which tests any URL
|
|
1604
|
+
* - `isValidPipelineUrl` *(this one)* which tests just promptbook URL
|
|
1605
|
+
*
|
|
1606
|
+
* @public exported from `@promptbook/utils`
|
|
1463
1607
|
*/
|
|
1464
|
-
|
|
1465
|
-
|
|
1466
|
-
|
|
1467
|
-
|
|
1468
|
-
|
|
1469
|
-
|
|
1470
|
-
|
|
1471
|
-
|
|
1472
|
-
|
|
1473
|
-
|
|
1474
|
-
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
|
|
1608
|
+
function isValidUrl(url) {
|
|
1609
|
+
if (typeof url !== 'string') {
|
|
1610
|
+
return false;
|
|
1611
|
+
}
|
|
1612
|
+
try {
|
|
1613
|
+
if (url.startsWith('blob:')) {
|
|
1614
|
+
url = url.replace(/^blob:/, '');
|
|
1615
|
+
}
|
|
1616
|
+
const urlObject = new URL(url /* because fail is handled */);
|
|
1617
|
+
if (!['http:', 'https:', 'data:'].includes(urlObject.protocol)) {
|
|
1618
|
+
return false;
|
|
1619
|
+
}
|
|
1620
|
+
return true;
|
|
1621
|
+
}
|
|
1622
|
+
catch (error) {
|
|
1623
|
+
return false;
|
|
1480
1624
|
}
|
|
1481
1625
|
}
|
|
1482
1626
|
|
|
1483
1627
|
/**
|
|
1484
|
-
* This error
|
|
1628
|
+
* This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
|
|
1485
1629
|
*
|
|
1486
1630
|
* @public exported from `@promptbook/core`
|
|
1487
1631
|
*/
|
|
1488
|
-
class
|
|
1489
|
-
constructor(
|
|
1490
|
-
|
|
1491
|
-
|
|
1492
|
-
|
|
1493
|
-
Non-Error object was thrown
|
|
1494
|
-
|
|
1495
|
-
Note: Look for ${tag} in the console for more details
|
|
1496
|
-
Please report issue on ${ADMIN_EMAIL}
|
|
1497
|
-
`));
|
|
1498
|
-
this.name = 'WrappedError';
|
|
1499
|
-
Object.setPrototypeOf(this, WrappedError.prototype);
|
|
1632
|
+
class ParseError extends Error {
|
|
1633
|
+
constructor(message) {
|
|
1634
|
+
super(message);
|
|
1635
|
+
this.name = 'ParseError';
|
|
1636
|
+
Object.setPrototypeOf(this, ParseError.prototype);
|
|
1500
1637
|
}
|
|
1501
1638
|
}
|
|
1502
|
-
|
|
1503
1639
|
/**
|
|
1504
|
-
*
|
|
1505
|
-
*
|
|
1506
|
-
* @param whatWasThrown Any object that was thrown
|
|
1507
|
-
* @returns Nothing if the error is an instance of `Error`
|
|
1508
|
-
* @throws `WrappedError` or `UnexpectedError` if the error is not standard
|
|
1509
|
-
*
|
|
1510
|
-
* @private within the repository
|
|
1640
|
+
* TODO: Maybe split `ParseError` and `ApplyError`
|
|
1511
1641
|
*/
|
|
1512
|
-
function assertsError(whatWasThrown) {
|
|
1513
|
-
// Case 1: Handle error which was rethrown as `WrappedError`
|
|
1514
|
-
if (whatWasThrown instanceof WrappedError) {
|
|
1515
|
-
const wrappedError = whatWasThrown;
|
|
1516
|
-
throw wrappedError;
|
|
1517
|
-
}
|
|
1518
|
-
// Case 2: Handle unexpected errors
|
|
1519
|
-
if (whatWasThrown instanceof UnexpectedError) {
|
|
1520
|
-
const unexpectedError = whatWasThrown;
|
|
1521
|
-
throw unexpectedError;
|
|
1522
|
-
}
|
|
1523
|
-
// Case 3: Handle standard errors - keep them up to consumer
|
|
1524
|
-
if (whatWasThrown instanceof Error) {
|
|
1525
|
-
return;
|
|
1526
|
-
}
|
|
1527
|
-
// Case 4: Handle non-standard errors - wrap them into `WrappedError` and throw
|
|
1528
|
-
throw new WrappedError(whatWasThrown);
|
|
1529
|
-
}
|
|
1530
1642
|
|
|
1531
1643
|
/**
|
|
1532
1644
|
* Function isValidJsonString will tell you if the string is valid JSON or not
|
|
@@ -1940,7 +2052,7 @@
|
|
|
1940
2052
|
TODO: [🧠] Is there a better implementation?
|
|
1941
2053
|
> const propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
1942
2054
|
> for (const propertyName of propertyNames) {
|
|
1943
|
-
> const value = (objectValue as
|
|
2055
|
+
> const value = (objectValue as chococake)[propertyName];
|
|
1944
2056
|
> if (value && typeof value === 'object') {
|
|
1945
2057
|
> deepClone(value);
|
|
1946
2058
|
> }
|
|
@@ -2793,7 +2905,7 @@
|
|
|
2793
2905
|
}
|
|
2794
2906
|
}
|
|
2795
2907
|
/**
|
|
2796
|
-
* TODO:
|
|
2908
|
+
* TODO: [🐱🚀] Explain that NotFoundError ([🐱🚀] and other specific errors) has priority over DatabaseError in some contexts
|
|
2797
2909
|
*/
|
|
2798
2910
|
|
|
2799
2911
|
/**
|
|
@@ -5062,87 +5174,6 @@
|
|
|
5062
5174
|
* @see https://docs.anthropic.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#specify-the-desired-output-format
|
|
5063
5175
|
*/
|
|
5064
5176
|
|
|
5065
|
-
/**
|
|
5066
|
-
* Format either small or big number
|
|
5067
|
-
*
|
|
5068
|
-
* @public exported from `@promptbook/utils`
|
|
5069
|
-
*/
|
|
5070
|
-
function numberToString(value) {
|
|
5071
|
-
if (value === 0) {
|
|
5072
|
-
return '0';
|
|
5073
|
-
}
|
|
5074
|
-
else if (Number.isNaN(value)) {
|
|
5075
|
-
return VALUE_STRINGS.nan;
|
|
5076
|
-
}
|
|
5077
|
-
else if (value === Infinity) {
|
|
5078
|
-
return VALUE_STRINGS.infinity;
|
|
5079
|
-
}
|
|
5080
|
-
else if (value === -Infinity) {
|
|
5081
|
-
return VALUE_STRINGS.negativeInfinity;
|
|
5082
|
-
}
|
|
5083
|
-
for (let exponent = 0; exponent < 15; exponent++) {
|
|
5084
|
-
const factor = 10 ** exponent;
|
|
5085
|
-
const valueRounded = Math.round(value * factor) / factor;
|
|
5086
|
-
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
5087
|
-
return valueRounded.toFixed(exponent);
|
|
5088
|
-
}
|
|
5089
|
-
}
|
|
5090
|
-
return value.toString();
|
|
5091
|
-
}
|
|
5092
|
-
|
|
5093
|
-
/**
|
|
5094
|
-
* Function `valueToString` will convert the given value to string
|
|
5095
|
-
* This is useful and used in the `templateParameters` function
|
|
5096
|
-
*
|
|
5097
|
-
* Note: This function is not just calling `toString` method
|
|
5098
|
-
* It's more complex and can handle this conversion specifically for LLM models
|
|
5099
|
-
* See `VALUE_STRINGS`
|
|
5100
|
-
*
|
|
5101
|
-
* Note: There are 2 similar functions
|
|
5102
|
-
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
5103
|
-
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
5104
|
-
*
|
|
5105
|
-
* @public exported from `@promptbook/utils`
|
|
5106
|
-
*/
|
|
5107
|
-
function valueToString(value) {
|
|
5108
|
-
try {
|
|
5109
|
-
if (value === '') {
|
|
5110
|
-
return VALUE_STRINGS.empty;
|
|
5111
|
-
}
|
|
5112
|
-
else if (value === null) {
|
|
5113
|
-
return VALUE_STRINGS.null;
|
|
5114
|
-
}
|
|
5115
|
-
else if (value === undefined) {
|
|
5116
|
-
return VALUE_STRINGS.undefined;
|
|
5117
|
-
}
|
|
5118
|
-
else if (typeof value === 'string') {
|
|
5119
|
-
return value;
|
|
5120
|
-
}
|
|
5121
|
-
else if (typeof value === 'number') {
|
|
5122
|
-
return numberToString(value);
|
|
5123
|
-
}
|
|
5124
|
-
else if (value instanceof Date) {
|
|
5125
|
-
return value.toISOString();
|
|
5126
|
-
}
|
|
5127
|
-
else {
|
|
5128
|
-
try {
|
|
5129
|
-
return JSON.stringify(value);
|
|
5130
|
-
}
|
|
5131
|
-
catch (error) {
|
|
5132
|
-
if (error instanceof TypeError && error.message.includes('circular structure')) {
|
|
5133
|
-
return VALUE_STRINGS.circular;
|
|
5134
|
-
}
|
|
5135
|
-
throw error;
|
|
5136
|
-
}
|
|
5137
|
-
}
|
|
5138
|
-
}
|
|
5139
|
-
catch (error) {
|
|
5140
|
-
assertsError(error);
|
|
5141
|
-
console.error(error);
|
|
5142
|
-
return VALUE_STRINGS.unserializable;
|
|
5143
|
-
}
|
|
5144
|
-
}
|
|
5145
|
-
|
|
5146
5177
|
/**
|
|
5147
5178
|
* Parses the given script and returns the list of all used variables that are not defined in the script
|
|
5148
5179
|
*
|
|
@@ -8069,6 +8100,60 @@
|
|
|
8069
8100
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
8070
8101
|
*/
|
|
8071
8102
|
|
|
8103
|
+
/**
|
|
8104
|
+
* INITIAL MESSAGE commitment definition
|
|
8105
|
+
*
|
|
8106
|
+
* The INITIAL MESSAGE commitment defines the first message that the user sees when opening the chat.
|
|
8107
|
+
* It is used to greet the user and set the tone of the conversation.
|
|
8108
|
+
*
|
|
8109
|
+
* Example usage in agent source:
|
|
8110
|
+
*
|
|
8111
|
+
* ```book
|
|
8112
|
+
* INITIAL MESSAGE Hello! I am ready to help you with your tasks.
|
|
8113
|
+
* ```
|
|
8114
|
+
*
|
|
8115
|
+
* @private [🪔] Maybe export the commitments through some package
|
|
8116
|
+
*/
|
|
8117
|
+
class InitialMessageCommitmentDefinition extends BaseCommitmentDefinition {
|
|
8118
|
+
constructor() {
|
|
8119
|
+
super('INITIAL MESSAGE');
|
|
8120
|
+
}
|
|
8121
|
+
/**
|
|
8122
|
+
* Short one-line description of INITIAL MESSAGE.
|
|
8123
|
+
*/
|
|
8124
|
+
get description() {
|
|
8125
|
+
return 'Defines the **initial message** shown to the user when the chat starts.';
|
|
8126
|
+
}
|
|
8127
|
+
/**
|
|
8128
|
+
* Markdown documentation for INITIAL MESSAGE commitment.
|
|
8129
|
+
*/
|
|
8130
|
+
get documentation() {
|
|
8131
|
+
return spaceTrim$1.spaceTrim(`
|
|
8132
|
+
# ${this.type}
|
|
8133
|
+
|
|
8134
|
+
Defines the first message that the user sees when opening the chat. This message is purely for display purposes in the UI and does not inherently become part of the LLM's system prompt context (unless also included via other means).
|
|
8135
|
+
|
|
8136
|
+
## Key aspects
|
|
8137
|
+
|
|
8138
|
+
- Used to greet the user.
|
|
8139
|
+
- Sets the tone of the conversation.
|
|
8140
|
+
- Displayed immediately when the chat interface loads.
|
|
8141
|
+
|
|
8142
|
+
## Examples
|
|
8143
|
+
|
|
8144
|
+
\`\`\`book
|
|
8145
|
+
Support Agent
|
|
8146
|
+
|
|
8147
|
+
PERSONA You are a helpful support agent.
|
|
8148
|
+
INITIAL MESSAGE Hi there! How can I assist you today?
|
|
8149
|
+
\`\`\`
|
|
8150
|
+
`);
|
|
8151
|
+
}
|
|
8152
|
+
applyToAgentModelRequirements(requirements, content) {
|
|
8153
|
+
return requirements;
|
|
8154
|
+
}
|
|
8155
|
+
}
|
|
8156
|
+
|
|
8072
8157
|
/**
|
|
8073
8158
|
* MESSAGE commitment definition
|
|
8074
8159
|
*
|
|
@@ -9230,6 +9315,7 @@
|
|
|
9230
9315
|
new NoteCommitmentDefinition('NONCE'),
|
|
9231
9316
|
new GoalCommitmentDefinition('GOAL'),
|
|
9232
9317
|
new GoalCommitmentDefinition('GOALS'),
|
|
9318
|
+
new InitialMessageCommitmentDefinition(),
|
|
9233
9319
|
new MessageCommitmentDefinition('MESSAGE'),
|
|
9234
9320
|
new MessageCommitmentDefinition('MESSAGES'),
|
|
9235
9321
|
new ScenarioCommitmentDefinition('SCENARIO'),
|
|
@@ -10118,13 +10204,31 @@
|
|
|
10118
10204
|
}
|
|
10119
10205
|
personaDescription += commitment.content;
|
|
10120
10206
|
}
|
|
10207
|
+
let initialMessage = null;
|
|
10208
|
+
for (const commitment of parseResult.commitments) {
|
|
10209
|
+
if (commitment.type !== 'INITIAL MESSAGE') {
|
|
10210
|
+
continue;
|
|
10211
|
+
}
|
|
10212
|
+
// Note: Initial message override logic - later overrides earlier
|
|
10213
|
+
// Or should it append? Usually initial message is just one block.
|
|
10214
|
+
// Let's stick to "later overrides earlier" for simplicity, or just take the last one.
|
|
10215
|
+
initialMessage = commitment.content;
|
|
10216
|
+
}
|
|
10121
10217
|
const meta = {};
|
|
10218
|
+
const links = [];
|
|
10122
10219
|
for (const commitment of parseResult.commitments) {
|
|
10220
|
+
if (commitment.type === 'META LINK') {
|
|
10221
|
+
links.push(spaceTrim__default["default"](commitment.content));
|
|
10222
|
+
continue;
|
|
10223
|
+
}
|
|
10123
10224
|
if (commitment.type !== 'META') {
|
|
10124
10225
|
continue;
|
|
10125
10226
|
}
|
|
10126
10227
|
// Parse META commitments - format is "META TYPE content"
|
|
10127
10228
|
const metaTypeRaw = commitment.content.split(' ')[0] || 'NONE';
|
|
10229
|
+
if (metaTypeRaw === 'LINK') {
|
|
10230
|
+
links.push(spaceTrim__default["default"](commitment.content.substring(metaTypeRaw.length)));
|
|
10231
|
+
}
|
|
10128
10232
|
const metaType = normalizeTo_camelCase(metaTypeRaw);
|
|
10129
10233
|
meta[metaType] = spaceTrim__default["default"](commitment.content.substring(metaTypeRaw.length));
|
|
10130
10234
|
}
|
|
@@ -10140,7 +10244,9 @@
|
|
|
10140
10244
|
agentName: normalizeAgentName(parseResult.agentName || createDefaultAgentName(agentSource)),
|
|
10141
10245
|
agentHash,
|
|
10142
10246
|
personaDescription,
|
|
10247
|
+
initialMessage,
|
|
10143
10248
|
meta,
|
|
10249
|
+
links,
|
|
10144
10250
|
parameters,
|
|
10145
10251
|
};
|
|
10146
10252
|
}
|
|
@@ -10311,26 +10417,28 @@
|
|
|
10311
10417
|
PERSONA A friendly AI assistant that helps you with your tasks
|
|
10312
10418
|
`)));
|
|
10313
10419
|
// <- Note: Not using book`...` notation to avoid strange error in jest unit tests `TypeError: (0 , book_notation_1.book) is not a function`
|
|
10314
|
-
// <- TODO:
|
|
10315
|
-
// <-
|
|
10316
|
-
// <- TODO:
|
|
10420
|
+
// <- TODO: [🐱🚀] `GENESIS_BOOK` / `ADAM_BOOK` in `/agents/adam.book`
|
|
10421
|
+
// <- [🐱🚀] Buttons into genesis book
|
|
10422
|
+
// <- TODO: [🐱🚀] generateBookBoilerplate and deprecate `DEFAULT_BOOK`
|
|
10317
10423
|
|
|
10424
|
+
// import { getTableName } from '../../../../../apps/agents-server/src/database/getTableName';
|
|
10425
|
+
// <- TODO: [🐱🚀] Prevent imports from `/apps` -> `/src`
|
|
10318
10426
|
/**
|
|
10319
10427
|
* Agent collection stored in Supabase table
|
|
10320
10428
|
*
|
|
10321
10429
|
* Note: This object can work both from Node.js and browser environment depending on the Supabase client provided
|
|
10322
10430
|
*
|
|
10323
10431
|
* @public exported from `@promptbook/core`
|
|
10324
|
-
* <- TODO:
|
|
10432
|
+
* <- TODO: [🐱🚀] Move to `@promptbook/supabase` package
|
|
10325
10433
|
*/
|
|
10326
|
-
class AgentCollectionInSupabase /* TODO:
|
|
10434
|
+
class AgentCollectionInSupabase /* TODO: [🐱🚀] implements Agent */ {
|
|
10327
10435
|
/**
|
|
10328
10436
|
* @param rootPath - path to the directory with agents
|
|
10329
|
-
* @param tools - Execution tools to be used in
|
|
10437
|
+
* @param tools - Execution tools to be used in [🐱🚀] `Agent` itself and listing the agents
|
|
10330
10438
|
* @param options - Options for the collection creation
|
|
10331
10439
|
*/
|
|
10332
10440
|
constructor(supabaseClient,
|
|
10333
|
-
/// TODO:
|
|
10441
|
+
/// TODO: [🐱🚀] Remove> private readonly tools?: Pick<ExecutionTools, 'llm' | 'fs' | 'scrapers'>,
|
|
10334
10442
|
options) {
|
|
10335
10443
|
this.supabaseClient = supabaseClient;
|
|
10336
10444
|
this.options = options;
|
|
@@ -10344,7 +10452,9 @@
|
|
|
10344
10452
|
*/
|
|
10345
10453
|
async listAgents( /* TODO: [🧠] Allow to pass some condition here */) {
|
|
10346
10454
|
const { isVerbose = exports.DEFAULT_IS_VERBOSE } = this.options || {};
|
|
10347
|
-
const selectResult = await this.supabaseClient
|
|
10455
|
+
const selectResult = await this.supabaseClient
|
|
10456
|
+
.from(this.getTableName('Agent'))
|
|
10457
|
+
.select('agentName,agentProfile');
|
|
10348
10458
|
if (selectResult.error) {
|
|
10349
10459
|
throw new DatabaseError(spaceTrim((block) => `
|
|
10350
10460
|
|
|
@@ -10372,11 +10482,11 @@
|
|
|
10372
10482
|
});
|
|
10373
10483
|
}
|
|
10374
10484
|
/**
|
|
10375
|
-
*
|
|
10485
|
+
* [🐱🚀]@@@
|
|
10376
10486
|
*/
|
|
10377
10487
|
async getAgentSource(agentName) {
|
|
10378
10488
|
const selectResult = await this.supabaseClient
|
|
10379
|
-
.from('Agent')
|
|
10489
|
+
.from(this.getTableName('Agent'))
|
|
10380
10490
|
.select('agentSource')
|
|
10381
10491
|
.eq('agentName', agentName)
|
|
10382
10492
|
.single();
|
|
@@ -10392,7 +10502,7 @@
|
|
|
10392
10502
|
|
|
10393
10503
|
${block(selectResult.error.message)}
|
|
10394
10504
|
`));
|
|
10395
|
-
// <- TODO:
|
|
10505
|
+
// <- TODO: [🐱🚀] First check if the error is "not found" and throw `NotFoundError` instead then throw `DatabaseError`
|
|
10396
10506
|
}
|
|
10397
10507
|
return selectResult.data.agentSource;
|
|
10398
10508
|
}
|
|
@@ -10405,7 +10515,7 @@
|
|
|
10405
10515
|
const agentProfile = parseAgentSource(agentSource);
|
|
10406
10516
|
// <- TODO: [🕛]
|
|
10407
10517
|
const { agentName, agentHash } = agentProfile;
|
|
10408
|
-
const insertAgentResult = await this.supabaseClient.from('Agent').insert({
|
|
10518
|
+
const insertAgentResult = await this.supabaseClient.from(this.getTableName('Agent')).insert({
|
|
10409
10519
|
agentName,
|
|
10410
10520
|
agentHash,
|
|
10411
10521
|
agentProfile,
|
|
@@ -10422,7 +10532,7 @@
|
|
|
10422
10532
|
${block(insertAgentResult.error.message)}
|
|
10423
10533
|
`));
|
|
10424
10534
|
}
|
|
10425
|
-
await this.supabaseClient.from('AgentHistory').insert({
|
|
10535
|
+
await this.supabaseClient.from(this.getTableName('AgentHistory')).insert({
|
|
10426
10536
|
createdAt: new Date().toISOString(),
|
|
10427
10537
|
agentName,
|
|
10428
10538
|
agentHash,
|
|
@@ -10438,7 +10548,7 @@
|
|
|
10438
10548
|
*/
|
|
10439
10549
|
async updateAgentSource(agentName, agentSource) {
|
|
10440
10550
|
const selectPreviousAgentResult = await this.supabaseClient
|
|
10441
|
-
.from('Agent')
|
|
10551
|
+
.from(this.getTableName('Agent'))
|
|
10442
10552
|
.select('agentHash,agentName')
|
|
10443
10553
|
.eq('agentName', agentName)
|
|
10444
10554
|
.single();
|
|
@@ -10449,7 +10559,7 @@
|
|
|
10449
10559
|
|
|
10450
10560
|
${block(selectPreviousAgentResult.error.message)}
|
|
10451
10561
|
`));
|
|
10452
|
-
// <- TODO:
|
|
10562
|
+
// <- TODO: [🐱🚀] First check if the error is "not found" and throw `NotFoundError` instead then throw `DatabaseError`
|
|
10453
10563
|
}
|
|
10454
10564
|
selectPreviousAgentResult.data.agentName;
|
|
10455
10565
|
const previousAgentHash = selectPreviousAgentResult.data.agentHash;
|
|
@@ -10457,9 +10567,9 @@
|
|
|
10457
10567
|
// <- TODO: [🕛]
|
|
10458
10568
|
const { agentHash } = agentProfile;
|
|
10459
10569
|
const updateAgentResult = await this.supabaseClient
|
|
10460
|
-
.from('Agent')
|
|
10570
|
+
.from(this.getTableName('Agent'))
|
|
10461
10571
|
.update({
|
|
10462
|
-
// TODO:
|
|
10572
|
+
// TODO: [🐱🚀] Compare not update> agentName: agentProfile.agentName || '[🐱🚀]' /* <- TODO: [🐱🚀] Remove */,
|
|
10463
10573
|
agentProfile,
|
|
10464
10574
|
updatedAt: new Date().toISOString(),
|
|
10465
10575
|
agentHash: agentProfile.agentHash,
|
|
@@ -10467,9 +10577,9 @@
|
|
|
10467
10577
|
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10468
10578
|
})
|
|
10469
10579
|
.eq('agentName', agentName);
|
|
10470
|
-
// console.log('
|
|
10471
|
-
// console.log('
|
|
10472
|
-
// console.log('
|
|
10580
|
+
// console.log('[🐱🚀] updateAgent', updateResult);
|
|
10581
|
+
// console.log('[🐱🚀] old', oldAgentSource);
|
|
10582
|
+
// console.log('[🐱🚀] new', newAgentSource);
|
|
10473
10583
|
if (updateAgentResult.error) {
|
|
10474
10584
|
throw new DatabaseError(spaceTrim((block) => `
|
|
10475
10585
|
Error updating agent "${agentName}" in Supabase:
|
|
@@ -10477,7 +10587,7 @@
|
|
|
10477
10587
|
${block(updateAgentResult.error.message)}
|
|
10478
10588
|
`));
|
|
10479
10589
|
}
|
|
10480
|
-
await this.supabaseClient.from('AgentHistory').insert({
|
|
10590
|
+
await this.supabaseClient.from(this.getTableName('AgentHistory')).insert({
|
|
10481
10591
|
createdAt: new Date().toISOString(),
|
|
10482
10592
|
agentName,
|
|
10483
10593
|
agentHash,
|
|
@@ -10487,7 +10597,7 @@
|
|
|
10487
10597
|
});
|
|
10488
10598
|
// <- TODO: [🧠] What to do with `insertAgentHistoryResult.error`, ignore? wait?
|
|
10489
10599
|
}
|
|
10490
|
-
// TODO:
|
|
10600
|
+
// TODO: [🐱🚀] public async getAgentSourceSubject(agentName: string_agent_name): Promise<BehaviorSubject<string_book>>
|
|
10491
10601
|
// Use Supabase realtime logic
|
|
10492
10602
|
/**
|
|
10493
10603
|
* Deletes an agent from the collection
|
|
@@ -10495,9 +10605,19 @@
|
|
|
10495
10605
|
async deleteAgent(agentName) {
|
|
10496
10606
|
throw new NotYetImplementedError('Method not implemented.');
|
|
10497
10607
|
}
|
|
10608
|
+
/**
|
|
10609
|
+
* Get the Supabase table name with prefix
|
|
10610
|
+
*
|
|
10611
|
+
* @param tableName - The original table name
|
|
10612
|
+
* @returns The prefixed table name
|
|
10613
|
+
*/
|
|
10614
|
+
getTableName(tableName) {
|
|
10615
|
+
const { tablePrefix = '' } = this.options || {};
|
|
10616
|
+
return `${tablePrefix}${tableName}`;
|
|
10617
|
+
}
|
|
10498
10618
|
}
|
|
10499
10619
|
/**
|
|
10500
|
-
* TODO:
|
|
10620
|
+
* TODO: [🐱🚀] Implement it here correctly and update JSDoc comments here, and on interface + other implementations
|
|
10501
10621
|
* TODO: Write unit test
|
|
10502
10622
|
* TODO: [🧠][🚙] `AgentXxx` vs `AgentsXxx` naming convention
|
|
10503
10623
|
*/
|
|
@@ -16652,11 +16772,12 @@
|
|
|
16652
16772
|
*
|
|
16653
16773
|
* This is useful for calling OpenAI API with a single assistant, for more wide usage use `OpenAiExecutionTools`.
|
|
16654
16774
|
*
|
|
16655
|
-
*
|
|
16775
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
16656
16776
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
16657
16777
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
16658
16778
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
16659
16779
|
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
16780
|
+
* - `RemoteAgent` - which is an `Agent` that connects to a Promptbook Agents Server
|
|
16660
16781
|
*
|
|
16661
16782
|
* @public exported from `@promptbook/openai`
|
|
16662
16783
|
*/
|
|
@@ -16691,6 +16812,12 @@
|
|
|
16691
16812
|
* Calls OpenAI API to use a chat model.
|
|
16692
16813
|
*/
|
|
16693
16814
|
async callChatModel(prompt) {
|
|
16815
|
+
return this.callChatModelStream(prompt, () => { });
|
|
16816
|
+
}
|
|
16817
|
+
/**
|
|
16818
|
+
* Calls OpenAI API to use a chat model with streaming.
|
|
16819
|
+
*/
|
|
16820
|
+
async callChatModelStream(prompt, onProgress) {
|
|
16694
16821
|
var _a, _b, _c;
|
|
16695
16822
|
if (this.options.isVerbose) {
|
|
16696
16823
|
console.info('💬 OpenAI callChatModel call', { prompt });
|
|
@@ -16758,21 +16885,24 @@
|
|
|
16758
16885
|
console.info('connect', stream.currentEvent);
|
|
16759
16886
|
}
|
|
16760
16887
|
});
|
|
16761
|
-
|
|
16762
|
-
|
|
16763
|
-
|
|
16764
|
-
this.options.isVerbose &&
|
|
16765
|
-
messageDelta &&
|
|
16766
|
-
messageDelta.content &&
|
|
16767
|
-
messageDelta.content[0] &&
|
|
16768
|
-
messageDelta.content[0].type === 'text'
|
|
16769
|
-
) {
|
|
16770
|
-
console.info('messageDelta', messageDelta.content[0].text?.value);
|
|
16888
|
+
stream.on('textDelta', (textDelta, snapshot) => {
|
|
16889
|
+
if (this.options.isVerbose && textDelta.value) {
|
|
16890
|
+
console.info('textDelta', textDelta.value);
|
|
16771
16891
|
}
|
|
16772
|
-
|
|
16773
|
-
|
|
16892
|
+
const chunk = {
|
|
16893
|
+
content: textDelta.value || '',
|
|
16894
|
+
modelName: 'assistant',
|
|
16895
|
+
timing: {
|
|
16896
|
+
start,
|
|
16897
|
+
complete: $getCurrentDate(),
|
|
16898
|
+
},
|
|
16899
|
+
usage: UNCERTAIN_USAGE,
|
|
16900
|
+
rawPromptContent,
|
|
16901
|
+
rawRequest,
|
|
16902
|
+
rawResponse: snapshot,
|
|
16903
|
+
};
|
|
16904
|
+
onProgress(chunk);
|
|
16774
16905
|
});
|
|
16775
|
-
*/
|
|
16776
16906
|
stream.on('messageCreated', (message) => {
|
|
16777
16907
|
if (this.options.isVerbose) {
|
|
16778
16908
|
console.info('messageCreated', message);
|
|
@@ -16808,7 +16938,7 @@
|
|
|
16808
16938
|
}
|
|
16809
16939
|
return exportJson({
|
|
16810
16940
|
name: 'promptResult',
|
|
16811
|
-
message: `Result of \`OpenAiAssistantExecutionTools.
|
|
16941
|
+
message: `Result of \`OpenAiAssistantExecutionTools.callChatModelStream\``,
|
|
16812
16942
|
order: [],
|
|
16813
16943
|
value: {
|
|
16814
16944
|
content: resultContent,
|
|
@@ -16947,9 +17077,9 @@
|
|
|
16947
17077
|
}
|
|
16948
17078
|
const assistant = await client.beta.assistants.create(assistantConfig);
|
|
16949
17079
|
console.log(`✅ Assistant created: ${assistant.id}`);
|
|
16950
|
-
// TODO:
|
|
16951
|
-
// TODO:
|
|
16952
|
-
// TODO:
|
|
17080
|
+
// TODO: [🐱🚀] Try listing existing assistants
|
|
17081
|
+
// TODO: [🐱🚀] Try marking existing assistants by DISCRIMINANT
|
|
17082
|
+
// TODO: [🐱🚀] Allow to update and reconnect to existing assistants
|
|
16953
17083
|
return new OpenAiAssistantExecutionTools({
|
|
16954
17084
|
...this.options,
|
|
16955
17085
|
isCreatingNewAssistantsAllowed: false,
|
|
@@ -17077,11 +17207,12 @@
|
|
|
17077
17207
|
* Execution Tools for calling LLM models with a predefined agent "soul"
|
|
17078
17208
|
* This wraps underlying LLM execution tools and applies agent-specific system prompts and requirements
|
|
17079
17209
|
*
|
|
17080
|
-
*
|
|
17210
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
17081
17211
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
17082
17212
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
17083
17213
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
17084
17214
|
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
17215
|
+
* - `RemoteAgent` - which is an `Agent` that connects to a Promptbook Agents Server
|
|
17085
17216
|
*
|
|
17086
17217
|
* @public exported from `@promptbook/core`
|
|
17087
17218
|
*/
|
|
@@ -17175,9 +17306,12 @@
|
|
|
17175
17306
|
* Calls the chat model with agent-specific system prompt and requirements
|
|
17176
17307
|
*/
|
|
17177
17308
|
async callChatModel(prompt) {
|
|
17178
|
-
|
|
17179
|
-
|
|
17180
|
-
|
|
17309
|
+
return this.callChatModelStream(prompt, () => { });
|
|
17310
|
+
}
|
|
17311
|
+
/**
|
|
17312
|
+
* Calls the chat model with agent-specific system prompt and requirements with streaming
|
|
17313
|
+
*/
|
|
17314
|
+
async callChatModelStream(prompt, onProgress) {
|
|
17181
17315
|
// Ensure we're working with a chat prompt
|
|
17182
17316
|
if (prompt.modelRequirements.modelVariant !== 'CHAT') {
|
|
17183
17317
|
throw new Error('AgentLlmExecutionTools only supports chat prompts');
|
|
@@ -17216,7 +17350,7 @@
|
|
|
17216
17350
|
if (this.options.isVerbose) {
|
|
17217
17351
|
console.log(`1️⃣ Creating new OpenAI Assistant for agent ${this.title}...`);
|
|
17218
17352
|
}
|
|
17219
|
-
// <- TODO:
|
|
17353
|
+
// <- TODO: [🐱🚀] Check also `isCreatingNewAssistantsAllowed` and warn about it
|
|
17220
17354
|
assistant = await this.options.llmTools.createNewAssistant({
|
|
17221
17355
|
name: this.title,
|
|
17222
17356
|
instructions: modelRequirements.systemMessage,
|
|
@@ -17233,7 +17367,7 @@
|
|
|
17233
17367
|
requirementsHash,
|
|
17234
17368
|
});
|
|
17235
17369
|
}
|
|
17236
|
-
underlyingLlmResult = await assistant.
|
|
17370
|
+
underlyingLlmResult = await assistant.callChatModelStream(chatPrompt, onProgress);
|
|
17237
17371
|
}
|
|
17238
17372
|
else {
|
|
17239
17373
|
if (this.options.isVerbose) {
|
|
@@ -17252,7 +17386,16 @@
|
|
|
17252
17386
|
: ''),
|
|
17253
17387
|
},
|
|
17254
17388
|
};
|
|
17255
|
-
|
|
17389
|
+
if (this.options.llmTools.callChatModelStream) {
|
|
17390
|
+
underlyingLlmResult = await this.options.llmTools.callChatModelStream(modifiedChatPrompt, onProgress);
|
|
17391
|
+
}
|
|
17392
|
+
else if (this.options.llmTools.callChatModel) {
|
|
17393
|
+
underlyingLlmResult = await this.options.llmTools.callChatModel(modifiedChatPrompt);
|
|
17394
|
+
onProgress(underlyingLlmResult);
|
|
17395
|
+
}
|
|
17396
|
+
else {
|
|
17397
|
+
throw new Error('Underlying LLM execution tools do not support chat model calls');
|
|
17398
|
+
}
|
|
17256
17399
|
}
|
|
17257
17400
|
let content = underlyingLlmResult.content;
|
|
17258
17401
|
// Note: Cleanup the AI artifacts from the content
|
|
@@ -17279,11 +17422,12 @@
|
|
|
17279
17422
|
/**
|
|
17280
17423
|
* Represents one AI Agent
|
|
17281
17424
|
*
|
|
17282
|
-
*
|
|
17425
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
17283
17426
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
17284
17427
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
17285
17428
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
17286
17429
|
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
17430
|
+
* - `RemoteAgent` - which is an `Agent` that connects to a Promptbook Agents Server
|
|
17287
17431
|
*
|
|
17288
17432
|
* @public exported from `@promptbook/core`
|
|
17289
17433
|
*/
|
|
@@ -17313,31 +17457,40 @@
|
|
|
17313
17457
|
super({
|
|
17314
17458
|
isVerbose: options.isVerbose,
|
|
17315
17459
|
llmTools: getSingleLlmExecutionTools(options.executionTools.llm),
|
|
17316
|
-
agentSource: agentSource.value, // <- TODO:
|
|
17460
|
+
agentSource: agentSource.value, // <- TODO: [🐱🚀] Allow to pass BehaviorSubject<string_book> OR refresh llmExecutionTools.callChat on agentSource change
|
|
17317
17461
|
});
|
|
17318
17462
|
this._agentName = undefined;
|
|
17319
17463
|
/**
|
|
17320
17464
|
* Description of the agent
|
|
17321
17465
|
*/
|
|
17322
17466
|
this.personaDescription = null;
|
|
17467
|
+
/**
|
|
17468
|
+
* The initial message shown to the user when the chat starts
|
|
17469
|
+
*/
|
|
17470
|
+
this.initialMessage = null;
|
|
17471
|
+
/**
|
|
17472
|
+
* Links found in the agent source
|
|
17473
|
+
*/
|
|
17474
|
+
this.links = [];
|
|
17323
17475
|
/**
|
|
17324
17476
|
* Metadata like image or color
|
|
17325
17477
|
*/
|
|
17326
17478
|
this.meta = {};
|
|
17327
|
-
// TODO:
|
|
17328
|
-
// TODO:
|
|
17479
|
+
// TODO: [🐱🚀] Add `Agent` simple "mocked" learning by appending to agent source
|
|
17480
|
+
// TODO: [🐱🚀] Add `Agent` learning by promptbookAgent
|
|
17329
17481
|
this.agentSource = agentSource;
|
|
17330
17482
|
this.agentSource.subscribe((source) => {
|
|
17331
|
-
const { agentName, personaDescription, meta } = parseAgentSource(source);
|
|
17483
|
+
const { agentName, personaDescription, initialMessage, links, meta } = parseAgentSource(source);
|
|
17332
17484
|
this._agentName = agentName;
|
|
17333
17485
|
this.personaDescription = personaDescription;
|
|
17486
|
+
this.initialMessage = initialMessage;
|
|
17487
|
+
this.links = links;
|
|
17334
17488
|
this.meta = { ...this.meta, ...meta };
|
|
17335
17489
|
});
|
|
17336
17490
|
}
|
|
17337
17491
|
}
|
|
17338
17492
|
/**
|
|
17339
17493
|
* TODO: [🧠][😰]Agent is not working with the parameters, should it be?
|
|
17340
|
-
* TODO: !!! Agent on remote server
|
|
17341
17494
|
*/
|
|
17342
17495
|
|
|
17343
17496
|
/**
|
|
@@ -17403,24 +17556,24 @@
|
|
|
17403
17556
|
/**
|
|
17404
17557
|
* Represents one AI Agent
|
|
17405
17558
|
*
|
|
17406
|
-
*
|
|
17559
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
17407
17560
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
17408
|
-
* !!!!!! `RemoteAgent`
|
|
17409
17561
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
17410
17562
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
17411
17563
|
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
17564
|
+
* - `RemoteAgent` - which is an `Agent` that connects to a Promptbook Agents Server
|
|
17412
17565
|
*
|
|
17413
17566
|
* @public exported from `@promptbook/core`
|
|
17414
17567
|
*/
|
|
17415
17568
|
class RemoteAgent extends Agent {
|
|
17416
17569
|
static async connect(options) {
|
|
17417
|
-
console.log('
|
|
17570
|
+
console.log('[🐱🚀]', `${options.agentUrl}/api/book`);
|
|
17418
17571
|
const bookResponse = await fetch(`${options.agentUrl}/api/book`);
|
|
17419
|
-
// <- TODO:
|
|
17420
|
-
// <- TODO:
|
|
17572
|
+
// <- TODO: [🐱🚀] What about closed-source agents?
|
|
17573
|
+
// <- TODO: [🐱🚀] Maybe use promptbookFetch
|
|
17421
17574
|
const agentSourceValue = (await bookResponse.text());
|
|
17422
17575
|
const agentSource = new rxjs.BehaviorSubject(agentSourceValue);
|
|
17423
|
-
// <- TODO:
|
|
17576
|
+
// <- TODO: [🐱🚀] Support updating and self-updating
|
|
17424
17577
|
return new RemoteAgent({
|
|
17425
17578
|
...options,
|
|
17426
17579
|
executionTools: {
|
|
@@ -17447,13 +17600,29 @@
|
|
|
17447
17600
|
* Calls the agent on agents remote server
|
|
17448
17601
|
*/
|
|
17449
17602
|
async callChatModel(prompt) {
|
|
17603
|
+
return this.callChatModelStream(prompt, () => { });
|
|
17604
|
+
}
|
|
17605
|
+
/**
|
|
17606
|
+
* Calls the agent on agents remote server with streaming
|
|
17607
|
+
*/
|
|
17608
|
+
async callChatModelStream(prompt, onProgress) {
|
|
17450
17609
|
// Ensure we're working with a chat prompt
|
|
17451
17610
|
if (prompt.modelRequirements.modelVariant !== 'CHAT') {
|
|
17452
17611
|
throw new Error('Agents only supports chat prompts');
|
|
17453
17612
|
}
|
|
17454
|
-
const
|
|
17455
|
-
|
|
17456
|
-
|
|
17613
|
+
const chatPrompt = prompt;
|
|
17614
|
+
const bookResponse = await fetch(`${this.agentUrl}/api/chat`, {
|
|
17615
|
+
method: 'POST',
|
|
17616
|
+
headers: {
|
|
17617
|
+
'Content-Type': 'application/json',
|
|
17618
|
+
},
|
|
17619
|
+
body: JSON.stringify({
|
|
17620
|
+
message: prompt.content,
|
|
17621
|
+
thread: chatPrompt.thread,
|
|
17622
|
+
}),
|
|
17623
|
+
});
|
|
17624
|
+
// <- TODO: [🐱🚀] What about closed-source agents?
|
|
17625
|
+
// <- TODO: [🐱🚀] Maybe use promptbookFetch
|
|
17457
17626
|
let content = '';
|
|
17458
17627
|
if (!bookResponse.body) {
|
|
17459
17628
|
content = await bookResponse.text();
|
|
@@ -17472,16 +17641,37 @@
|
|
|
17472
17641
|
const textChunk = decoder.decode(value, { stream: true });
|
|
17473
17642
|
// console.debug('RemoteAgent chunk:', textChunk);
|
|
17474
17643
|
content += textChunk;
|
|
17644
|
+
onProgress({
|
|
17645
|
+
content,
|
|
17646
|
+
modelName: this.modelName,
|
|
17647
|
+
timing: {},
|
|
17648
|
+
usage: {},
|
|
17649
|
+
rawPromptContent: {},
|
|
17650
|
+
rawRequest: {},
|
|
17651
|
+
rawResponse: {},
|
|
17652
|
+
});
|
|
17475
17653
|
}
|
|
17476
17654
|
}
|
|
17477
17655
|
// Flush any remaining decoder internal state
|
|
17478
|
-
|
|
17656
|
+
const lastChunk = decoder.decode();
|
|
17657
|
+
if (lastChunk) {
|
|
17658
|
+
content += lastChunk;
|
|
17659
|
+
onProgress({
|
|
17660
|
+
content: lastChunk,
|
|
17661
|
+
modelName: this.modelName,
|
|
17662
|
+
timing: {},
|
|
17663
|
+
usage: {},
|
|
17664
|
+
rawPromptContent: {},
|
|
17665
|
+
rawRequest: {},
|
|
17666
|
+
rawResponse: {},
|
|
17667
|
+
});
|
|
17668
|
+
}
|
|
17479
17669
|
}
|
|
17480
17670
|
finally {
|
|
17481
17671
|
reader.releaseLock();
|
|
17482
17672
|
}
|
|
17483
17673
|
}
|
|
17484
|
-
// <- TODO:
|
|
17674
|
+
// <- TODO: [🐱🚀] Transfer metadata
|
|
17485
17675
|
const agentResult = {
|
|
17486
17676
|
content,
|
|
17487
17677
|
modelName: this.modelName,
|
|
@@ -17490,7 +17680,7 @@
|
|
|
17490
17680
|
rawPromptContent: {},
|
|
17491
17681
|
rawRequest: {},
|
|
17492
17682
|
rawResponse: {},
|
|
17493
|
-
// <- TODO:
|
|
17683
|
+
// <- TODO: [🐱🚀] Transfer and proxy the metadata
|
|
17494
17684
|
};
|
|
17495
17685
|
return agentResult;
|
|
17496
17686
|
}
|
|
@@ -18777,7 +18967,7 @@
|
|
|
18777
18967
|
const agentSource = validateBook(spaceTrim__default["default"]((block) => `
|
|
18778
18968
|
${agentName}
|
|
18779
18969
|
|
|
18780
|
-
META COLOR ${color || '#3498db' /* <- TODO: [🧠]
|
|
18970
|
+
META COLOR ${color || '#3498db' /* <- TODO: [🧠] [🐱🚀] Best default color */}
|
|
18781
18971
|
PERSONA ${block(personaDescription)}
|
|
18782
18972
|
`));
|
|
18783
18973
|
return agentSource;
|