@promptbook/core 0.103.0-47 ā 0.103.0-48
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +796 -575
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +6 -0
- package/esm/typings/src/_packages/types.index.d.ts +2 -0
- package/esm/typings/src/book-2.0/agent-source/AgentBasicInformation.d.ts +7 -3
- package/esm/typings/src/book-2.0/agent-source/AgentSourceParseResult.d.ts +2 -1
- package/esm/typings/src/book-2.0/agent-source/computeAgentHash.d.ts +8 -0
- package/esm/typings/src/book-2.0/agent-source/computeAgentHash.test.d.ts +1 -0
- package/esm/typings/src/book-2.0/agent-source/createDefaultAgentName.d.ts +8 -0
- package/esm/typings/src/book-2.0/agent-source/normalizeAgentName.d.ts +9 -0
- package/esm/typings/src/book-2.0/agent-source/normalizeAgentName.test.d.ts +1 -0
- package/esm/typings/src/book-2.0/agent-source/parseAgentSourceWithCommitments.d.ts +1 -1
- package/esm/typings/src/collection/agent-collection/constructors/agent-collection-in-supabase/AgentsDatabaseSchema.d.ts +57 -32
- package/esm/typings/src/llm-providers/_common/utils/assertUniqueModels.d.ts +12 -0
- package/esm/typings/src/llm-providers/agent/Agent.d.ts +7 -2
- package/esm/typings/src/llm-providers/agent/AgentLlmExecutionTools.d.ts +4 -0
- package/esm/typings/src/llm-providers/agent/RemoteAgent.d.ts +2 -2
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +24 -3
- package/esm/typings/src/llm-providers/openai/openai-models.test.d.ts +4 -0
- package/esm/typings/src/remote-server/startAgentServer.d.ts +1 -1
- package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -2
- package/esm/typings/src/transpilers/openai-sdk/register.d.ts +1 -1
- package/esm/typings/src/types/typeAliases.d.ts +6 -0
- package/esm/typings/src/utils/normalization/normalize-to-kebab-case.d.ts +2 -0
- package/esm/typings/src/utils/normalization/normalizeTo_PascalCase.d.ts +3 -0
- package/esm/typings/src/utils/normalization/normalizeTo_camelCase.d.ts +2 -0
- package/esm/typings/src/utils/normalization/titleToName.d.ts +2 -0
- package/esm/typings/src/version.d.ts +1 -1
- package/package.json +1 -1
- package/umd/index.umd.js +803 -579
- package/umd/index.umd.js.map +1 -1
package/esm/index.es.js
CHANGED
|
@@ -1,11 +1,11 @@
|
|
|
1
|
+
import { SHA256 } from 'crypto-js';
|
|
2
|
+
import hexEncoder from 'crypto-js/enc-hex';
|
|
1
3
|
import spaceTrim$1, { spaceTrim as spaceTrim$2 } from 'spacetrim';
|
|
2
4
|
import { randomBytes } from 'crypto';
|
|
3
5
|
import { Subject, BehaviorSubject } from 'rxjs';
|
|
4
|
-
import { forTime
|
|
5
|
-
import hexEncoder from 'crypto-js/enc-hex';
|
|
6
|
+
import { forTime } from 'waitasecond';
|
|
6
7
|
import sha256 from 'crypto-js/sha256';
|
|
7
8
|
import { basename, join, dirname, isAbsolute } from 'path';
|
|
8
|
-
import { SHA256 } from 'crypto-js';
|
|
9
9
|
import { lookup, extension } from 'mime-types';
|
|
10
10
|
import { parse, unparse } from 'papaparse';
|
|
11
11
|
import moment from 'moment';
|
|
@@ -27,12 +27,21 @@ const BOOK_LANGUAGE_VERSION = '2.0.0';
|
|
|
27
27
|
* @generated
|
|
28
28
|
* @see https://github.com/webgptorg/promptbook
|
|
29
29
|
*/
|
|
30
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-
|
|
30
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-48';
|
|
31
31
|
/**
|
|
32
32
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
33
33
|
* Note: [š] Ignore a discrepancy between file name and entity name
|
|
34
34
|
*/
|
|
35
35
|
|
|
36
|
+
/**
|
|
37
|
+
* Computes SHA-256 hash of the agent source
|
|
38
|
+
*
|
|
39
|
+
* @public exported from `@promptbook/core`
|
|
40
|
+
*/
|
|
41
|
+
function computeAgentHash(agentSource) {
|
|
42
|
+
return SHA256(hexEncoder.parse(agentSource /* <- TODO: !!!!! spaceTrim */)).toString( /* hex */);
|
|
43
|
+
}
|
|
44
|
+
|
|
36
45
|
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [š] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [š] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"ā Convert Knowledge-piece to title\" but \"ā Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"ā Convert Knowledge-piece to title\" but \"ā Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
37
46
|
|
|
38
47
|
/**
|
|
@@ -4325,6 +4334,8 @@ function removeDiacritics(input) {
|
|
|
4325
4334
|
/**
|
|
4326
4335
|
* Converts a given text to kebab-case format.
|
|
4327
4336
|
*
|
|
4337
|
+
* Note: [š] This function is idempotent.
|
|
4338
|
+
*
|
|
4328
4339
|
* @param text The text to be converted.
|
|
4329
4340
|
* @returns The kebab-case formatted string.
|
|
4330
4341
|
* @example 'hello-world'
|
|
@@ -4480,6 +4491,8 @@ function removeEmojis(text) {
|
|
|
4480
4491
|
/**
|
|
4481
4492
|
* Converts a title string into a normalized name.
|
|
4482
4493
|
*
|
|
4494
|
+
* Note: [š] This function is idempotent.
|
|
4495
|
+
*
|
|
4483
4496
|
* @param value The title string to be converted to a name.
|
|
4484
4497
|
* @returns A normalized name derived from the input title.
|
|
4485
4498
|
* @example 'Hello World!' -> 'hello-world'
|
|
@@ -8759,6 +8772,7 @@ class PersonaCommitmentDefinition extends BaseCommitmentDefinition {
|
|
|
8759
8772
|
// Keep everything after the PERSONA section
|
|
8760
8773
|
cleanedMessage = lines.slice(personaEndIndex).join('\n').trim();
|
|
8761
8774
|
}
|
|
8775
|
+
// TODO: [š] There should be `agentFullname` not `agentName`
|
|
8762
8776
|
// Create new system message with persona at the beginning
|
|
8763
8777
|
// Format: "You are {agentName}\n{personaContent}"
|
|
8764
8778
|
// The # PERSONA comment will be removed later by removeCommentsFromSystemMessage
|
|
@@ -9580,6 +9594,8 @@ async function createAgentModelRequirementsWithCommitments(agentSource, modelNam
|
|
|
9580
9594
|
/**
|
|
9581
9595
|
* Normalizes a given text to camelCase format.
|
|
9582
9596
|
*
|
|
9597
|
+
* Note: [š] This function is idempotent.
|
|
9598
|
+
*
|
|
9583
9599
|
* @param text The text to be normalized.
|
|
9584
9600
|
* @param _isFirstLetterCapital Whether the first letter should be capitalized.
|
|
9585
9601
|
* @returns The camelCase formatted string.
|
|
@@ -9668,132 +9684,543 @@ function generatePlaceholderAgentProfileImageUrl(agentName) {
|
|
|
9668
9684
|
*/
|
|
9669
9685
|
|
|
9670
9686
|
/**
|
|
9671
|
-
*
|
|
9687
|
+
* Creates a Mermaid graph based on the promptbook
|
|
9672
9688
|
*
|
|
9673
|
-
*
|
|
9674
|
-
* - `parseAgentSource` which is a lightweight parser for agent source, it parses basic information and its purpose is to be quick and synchronous. The commitments there are hardcoded.
|
|
9675
|
-
* - `createAgentModelRequirements` which is an asynchronous function that creates model requirements it applies each commitment one by one and works asynchronously.
|
|
9689
|
+
* Note: The result is not wrapped in a Markdown code block
|
|
9676
9690
|
*
|
|
9677
|
-
* @public exported from `@promptbook/
|
|
9691
|
+
* @public exported from `@promptbook/utils`
|
|
9678
9692
|
*/
|
|
9679
|
-
function
|
|
9680
|
-
const
|
|
9681
|
-
|
|
9682
|
-
|
|
9683
|
-
|
|
9684
|
-
|
|
9685
|
-
|
|
9693
|
+
function renderPromptbookMermaid(pipelineJson, options) {
|
|
9694
|
+
const { linkTask = () => null } = options || {};
|
|
9695
|
+
const MERMAID_PREFIX = 'pipeline_';
|
|
9696
|
+
const MERMAID_KNOWLEDGE_NAME = MERMAID_PREFIX + 'knowledge';
|
|
9697
|
+
const MERMAID_RESERVED_NAME = MERMAID_PREFIX + 'reserved';
|
|
9698
|
+
const MERMAID_INPUT_NAME = MERMAID_PREFIX + 'input';
|
|
9699
|
+
const MERMAID_OUTPUT_NAME = MERMAID_PREFIX + 'output';
|
|
9700
|
+
const parameterNameToTaskName = (parameterName) => {
|
|
9701
|
+
if (parameterName === 'knowledge') {
|
|
9702
|
+
return MERMAID_KNOWLEDGE_NAME;
|
|
9686
9703
|
}
|
|
9687
|
-
if (
|
|
9688
|
-
|
|
9704
|
+
else if (RESERVED_PARAMETER_NAMES.includes(parameterName)) {
|
|
9705
|
+
return MERMAID_RESERVED_NAME;
|
|
9689
9706
|
}
|
|
9690
|
-
|
|
9691
|
-
|
|
9707
|
+
const parameter = pipelineJson.parameters.find((parameter) => parameter.name === parameterName);
|
|
9708
|
+
if (!parameter) {
|
|
9709
|
+
throw new UnexpectedError(`Could not find {${parameterName}}`);
|
|
9710
|
+
// <- TODO: This causes problems when {knowledge} and other reserved parameters are used
|
|
9692
9711
|
}
|
|
9693
|
-
|
|
9694
|
-
|
|
9695
|
-
const meta = {};
|
|
9696
|
-
for (const commitment of parseResult.commitments) {
|
|
9697
|
-
if (commitment.type !== 'META') {
|
|
9698
|
-
continue;
|
|
9712
|
+
if (parameter.isInput) {
|
|
9713
|
+
return MERMAID_INPUT_NAME;
|
|
9699
9714
|
}
|
|
9700
|
-
|
|
9701
|
-
|
|
9702
|
-
|
|
9703
|
-
|
|
9704
|
-
|
|
9705
|
-
// Generate gravatar fallback if no meta image specified
|
|
9706
|
-
if (!meta.image) {
|
|
9707
|
-
meta.image = generatePlaceholderAgentProfileImageUrl(parseResult.agentName || '!!');
|
|
9708
|
-
}
|
|
9709
|
-
// Parse parameters using unified approach - both @Parameter and {parameter} notations
|
|
9710
|
-
// are treated as the same syntax feature with unified representation
|
|
9711
|
-
const parameters = parseParameters(agentSource);
|
|
9712
|
-
return {
|
|
9713
|
-
agentName: parseResult.agentName,
|
|
9714
|
-
personaDescription,
|
|
9715
|
-
meta,
|
|
9716
|
-
parameters,
|
|
9715
|
+
const task = pipelineJson.tasks.find((task) => task.resultingParameterName === parameterName);
|
|
9716
|
+
if (!task) {
|
|
9717
|
+
throw new Error(`Could not find task for {${parameterName}}`);
|
|
9718
|
+
}
|
|
9719
|
+
return MERMAID_PREFIX + (task.name || normalizeTo_camelCase('task-' + titleToName(task.title)));
|
|
9717
9720
|
};
|
|
9721
|
+
const inputAndIntermediateParametersMermaid = pipelineJson.tasks
|
|
9722
|
+
.flatMap(({ title, dependentParameterNames, resultingParameterName }) => [
|
|
9723
|
+
`${parameterNameToTaskName(resultingParameterName)}("${title}")`,
|
|
9724
|
+
...dependentParameterNames.map((dependentParameterName) => `${parameterNameToTaskName(dependentParameterName)}--"{${dependentParameterName}}"-->${parameterNameToTaskName(resultingParameterName)}`),
|
|
9725
|
+
])
|
|
9726
|
+
.join('\n');
|
|
9727
|
+
const outputParametersMermaid = pipelineJson.parameters
|
|
9728
|
+
.filter(({ isOutput }) => isOutput)
|
|
9729
|
+
.map(({ name }) => `${parameterNameToTaskName(name)}--"{${name}}"-->${MERMAID_OUTPUT_NAME}`)
|
|
9730
|
+
.join('\n');
|
|
9731
|
+
const linksMermaid = pipelineJson.tasks
|
|
9732
|
+
.map((task) => {
|
|
9733
|
+
const link = linkTask(task);
|
|
9734
|
+
if (link === null) {
|
|
9735
|
+
return '';
|
|
9736
|
+
}
|
|
9737
|
+
const { href, title } = link;
|
|
9738
|
+
const taskName = parameterNameToTaskName(task.resultingParameterName);
|
|
9739
|
+
return `click ${taskName} href "${href}" "${title}";`;
|
|
9740
|
+
})
|
|
9741
|
+
.filter((line) => line !== '')
|
|
9742
|
+
.join('\n');
|
|
9743
|
+
const interactionPointsMermaid = Object.entries({
|
|
9744
|
+
[MERMAID_INPUT_NAME]: 'Input',
|
|
9745
|
+
[MERMAID_OUTPUT_NAME]: 'Output',
|
|
9746
|
+
[MERMAID_RESERVED_NAME]: 'Other',
|
|
9747
|
+
[MERMAID_KNOWLEDGE_NAME]: 'Knowledge',
|
|
9748
|
+
})
|
|
9749
|
+
.filter(([MERMAID_NAME]) => (inputAndIntermediateParametersMermaid + outputParametersMermaid).includes(MERMAID_NAME))
|
|
9750
|
+
.map(([MERMAID_NAME, title]) => `${MERMAID_NAME}((${title})):::${MERMAID_NAME}`)
|
|
9751
|
+
.join('\n');
|
|
9752
|
+
const promptbookMermaid = spaceTrim$2((block) => `
|
|
9753
|
+
|
|
9754
|
+
%% š® Tip: Open this on GitHub or in the VSCode website to see the Mermaid graph visually
|
|
9755
|
+
|
|
9756
|
+
flowchart LR
|
|
9757
|
+
subgraph "${pipelineJson.title}"
|
|
9758
|
+
|
|
9759
|
+
%% Basic configuration
|
|
9760
|
+
direction TB
|
|
9761
|
+
|
|
9762
|
+
%% Interaction points from pipeline to outside
|
|
9763
|
+
${block(interactionPointsMermaid)}
|
|
9764
|
+
|
|
9765
|
+
%% Input and intermediate parameters
|
|
9766
|
+
${block(inputAndIntermediateParametersMermaid)}
|
|
9767
|
+
|
|
9768
|
+
|
|
9769
|
+
%% Output parameters
|
|
9770
|
+
${block(outputParametersMermaid)}
|
|
9771
|
+
|
|
9772
|
+
%% Links
|
|
9773
|
+
${block(linksMermaid)}
|
|
9774
|
+
|
|
9775
|
+
%% Styles
|
|
9776
|
+
classDef ${MERMAID_INPUT_NAME} color: grey;
|
|
9777
|
+
classDef ${MERMAID_OUTPUT_NAME} color: grey;
|
|
9778
|
+
classDef ${MERMAID_RESERVED_NAME} color: grey;
|
|
9779
|
+
classDef ${MERMAID_KNOWLEDGE_NAME} color: grey;
|
|
9780
|
+
|
|
9781
|
+
end;
|
|
9782
|
+
|
|
9783
|
+
`);
|
|
9784
|
+
return promptbookMermaid;
|
|
9718
9785
|
}
|
|
9719
9786
|
/**
|
|
9720
|
-
* TODO: [
|
|
9787
|
+
* TODO: [š§ ] FOREACH in mermaid graph
|
|
9788
|
+
* TODO: [š§ ] Knowledge in mermaid graph
|
|
9789
|
+
* TODO: [š§ ] Personas in mermaid graph
|
|
9790
|
+
* TODO: Maybe use some Mermaid package instead of string templating
|
|
9791
|
+
* TODO: [š] When more than 2 functionalities, split into separate functions
|
|
9721
9792
|
*/
|
|
9722
9793
|
|
|
9723
9794
|
/**
|
|
9724
|
-
*
|
|
9795
|
+
* Tag function for notating a prompt as template literal
|
|
9725
9796
|
*
|
|
9726
|
-
* There are
|
|
9727
|
-
*
|
|
9728
|
-
*
|
|
9797
|
+
* Note: There are 3 similar functions:
|
|
9798
|
+
* 1) `prompt` for notating single prompt exported from `@promptbook/utils`
|
|
9799
|
+
* 2) `promptTemplate` alias for `prompt`
|
|
9800
|
+
* 3) `book` for notating and validating entire books exported from `@promptbook/utils`
|
|
9729
9801
|
*
|
|
9730
|
-
* @
|
|
9802
|
+
* @param strings
|
|
9803
|
+
* @param values
|
|
9804
|
+
* @returns the prompt string
|
|
9805
|
+
* @public exported from `@promptbook/utils`
|
|
9731
9806
|
*/
|
|
9732
|
-
|
|
9733
|
-
|
|
9734
|
-
|
|
9735
|
-
if (availableModels && !modelName && llmTools) {
|
|
9736
|
-
const selectedModelName = await selectBestModelUsingPersona(agentSource, llmTools);
|
|
9737
|
-
return createAgentModelRequirementsWithCommitments(agentSource, selectedModelName);
|
|
9807
|
+
function prompt(strings, ...values) {
|
|
9808
|
+
if (values.length === 0) {
|
|
9809
|
+
return spaceTrim$1(strings.join(''));
|
|
9738
9810
|
}
|
|
9739
|
-
|
|
9740
|
-
|
|
9741
|
-
}
|
|
9742
|
-
|
|
9743
|
-
|
|
9744
|
-
|
|
9745
|
-
|
|
9746
|
-
|
|
9747
|
-
|
|
9748
|
-
|
|
9749
|
-
* @private function of `createAgentModelRequirements`
|
|
9750
|
-
*/
|
|
9751
|
-
async function selectBestModelUsingPersona(agentSource, llmTools) {
|
|
9752
|
-
var _a;
|
|
9753
|
-
// Parse agent source to get persona description
|
|
9754
|
-
const { agentName, personaDescription } = parseAgentSource(agentSource);
|
|
9755
|
-
// Use agent name as fallback if no persona description is available
|
|
9756
|
-
const description = personaDescription || agentName || 'AI Agent';
|
|
9811
|
+
const stringsWithHiddenParameters = strings.map((stringsItem) =>
|
|
9812
|
+
// TODO: [0] DRY
|
|
9813
|
+
stringsItem.split('{').join(`${REPLACING_NONCE}beginbracket`).split('}').join(`${REPLACING_NONCE}endbracket`));
|
|
9814
|
+
const placeholderParameterNames = values.map((value, i) => `${REPLACING_NONCE}${i}`);
|
|
9815
|
+
const parameters = Object.fromEntries(values.map((value, i) => [placeholderParameterNames[i], value]));
|
|
9816
|
+
// Combine strings and values
|
|
9817
|
+
let pipelineString = stringsWithHiddenParameters.reduce((result, stringsItem, i) => placeholderParameterNames[i] === undefined
|
|
9818
|
+
? `${result}${stringsItem}`
|
|
9819
|
+
: `${result}${stringsItem}{${placeholderParameterNames[i]}}`, '');
|
|
9820
|
+
pipelineString = spaceTrim$1(pipelineString);
|
|
9757
9821
|
try {
|
|
9758
|
-
|
|
9759
|
-
const { modelsRequirements } = await preparePersona(description, { llm: llmTools }, { isVerbose: false });
|
|
9760
|
-
// Extract the first model name from the requirements
|
|
9761
|
-
if (modelsRequirements.length > 0 && ((_a = modelsRequirements[0]) === null || _a === void 0 ? void 0 : _a.modelName)) {
|
|
9762
|
-
return modelsRequirements[0].modelName;
|
|
9763
|
-
}
|
|
9764
|
-
// Fallback: get available models and return the first CHAT model
|
|
9765
|
-
const availableModels = await llmTools.listModels();
|
|
9766
|
-
const chatModels = availableModels.filter(({ modelVariant }) => modelVariant === 'CHAT');
|
|
9767
|
-
if (chatModels.length === 0) {
|
|
9768
|
-
throw new Error('No CHAT models available for agent model selection');
|
|
9769
|
-
}
|
|
9770
|
-
return chatModels[0].modelName;
|
|
9822
|
+
pipelineString = templateParameters(pipelineString, parameters);
|
|
9771
9823
|
}
|
|
9772
9824
|
catch (error) {
|
|
9773
|
-
|
|
9774
|
-
|
|
9775
|
-
const availableModels = await llmTools.listModels();
|
|
9776
|
-
const chatModels = availableModels.filter(({ modelVariant }) => modelVariant === 'CHAT');
|
|
9777
|
-
if (chatModels.length === 0) {
|
|
9778
|
-
throw new Error('No CHAT models available for agent model selection');
|
|
9825
|
+
if (!(error instanceof PipelineExecutionError)) {
|
|
9826
|
+
throw error;
|
|
9779
9827
|
}
|
|
9780
|
-
|
|
9828
|
+
console.error({ pipelineString, parameters, placeholderParameterNames, error });
|
|
9829
|
+
throw new UnexpectedError(spaceTrim$1((block) => `
|
|
9830
|
+
Internal error in prompt template literal
|
|
9831
|
+
|
|
9832
|
+
${block(JSON.stringify({ strings, values }, null, 4))}}
|
|
9833
|
+
|
|
9834
|
+
`));
|
|
9781
9835
|
}
|
|
9836
|
+
// TODO: [0] DRY
|
|
9837
|
+
pipelineString = pipelineString
|
|
9838
|
+
.split(`${REPLACING_NONCE}beginbracket`)
|
|
9839
|
+
.join('{')
|
|
9840
|
+
.split(`${REPLACING_NONCE}endbracket`)
|
|
9841
|
+
.join('}');
|
|
9842
|
+
return pipelineString;
|
|
9782
9843
|
}
|
|
9783
9844
|
/**
|
|
9784
|
-
*
|
|
9845
|
+
* TODO: [š§ ][š“] Where is the best location for this file
|
|
9846
|
+
* Note: [š] Ignore a discrepancy between file name and entity name
|
|
9847
|
+
*/
|
|
9848
|
+
|
|
9849
|
+
/**
|
|
9850
|
+
* Detects if the code is running in a browser environment in main thread (Not in a web worker)
|
|
9785
9851
|
*
|
|
9786
|
-
*
|
|
9787
|
-
* @returns Array of MCP server identifiers
|
|
9852
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9788
9853
|
*
|
|
9789
|
-
* @
|
|
9854
|
+
* @public exported from `@promptbook/utils`
|
|
9790
9855
|
*/
|
|
9791
|
-
|
|
9792
|
-
|
|
9793
|
-
return
|
|
9794
|
-
}
|
|
9795
|
-
|
|
9796
|
-
|
|
9856
|
+
const $isRunningInBrowser = new Function(`
|
|
9857
|
+
try {
|
|
9858
|
+
return this === window;
|
|
9859
|
+
} catch (e) {
|
|
9860
|
+
return false;
|
|
9861
|
+
}
|
|
9862
|
+
`);
|
|
9863
|
+
/**
|
|
9864
|
+
* TODO: [šŗ]
|
|
9865
|
+
*/
|
|
9866
|
+
|
|
9867
|
+
/**
|
|
9868
|
+
* Detects if the code is running in jest environment
|
|
9869
|
+
*
|
|
9870
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9871
|
+
*
|
|
9872
|
+
* @public exported from `@promptbook/utils`
|
|
9873
|
+
*/
|
|
9874
|
+
const $isRunningInJest = new Function(`
|
|
9875
|
+
try {
|
|
9876
|
+
return process.env.JEST_WORKER_ID !== undefined;
|
|
9877
|
+
} catch (e) {
|
|
9878
|
+
return false;
|
|
9879
|
+
}
|
|
9880
|
+
`);
|
|
9881
|
+
/**
|
|
9882
|
+
* TODO: [šŗ]
|
|
9883
|
+
*/
|
|
9884
|
+
|
|
9885
|
+
/**
|
|
9886
|
+
* Detects if the code is running in a Node.js environment
|
|
9887
|
+
*
|
|
9888
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9889
|
+
*
|
|
9890
|
+
* @public exported from `@promptbook/utils`
|
|
9891
|
+
*/
|
|
9892
|
+
const $isRunningInNode = new Function(`
|
|
9893
|
+
try {
|
|
9894
|
+
return this === global;
|
|
9895
|
+
} catch (e) {
|
|
9896
|
+
return false;
|
|
9897
|
+
}
|
|
9898
|
+
`);
|
|
9899
|
+
/**
|
|
9900
|
+
* TODO: [šŗ]
|
|
9901
|
+
*/
|
|
9902
|
+
|
|
9903
|
+
/**
|
|
9904
|
+
* Detects if the code is running in a web worker
|
|
9905
|
+
*
|
|
9906
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9907
|
+
*
|
|
9908
|
+
* @public exported from `@promptbook/utils`
|
|
9909
|
+
*/
|
|
9910
|
+
const $isRunningInWebWorker = new Function(`
|
|
9911
|
+
try {
|
|
9912
|
+
if (typeof WorkerGlobalScope !== 'undefined' && self instanceof WorkerGlobalScope) {
|
|
9913
|
+
return true;
|
|
9914
|
+
} else {
|
|
9915
|
+
return false;
|
|
9916
|
+
}
|
|
9917
|
+
} catch (e) {
|
|
9918
|
+
return false;
|
|
9919
|
+
}
|
|
9920
|
+
`);
|
|
9921
|
+
/**
|
|
9922
|
+
* TODO: [šŗ]
|
|
9923
|
+
*/
|
|
9924
|
+
|
|
9925
|
+
/**
|
|
9926
|
+
* Returns information about the current runtime environment
|
|
9927
|
+
*
|
|
9928
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environments
|
|
9929
|
+
*
|
|
9930
|
+
* @public exported from `@promptbook/utils`
|
|
9931
|
+
*/
|
|
9932
|
+
function $detectRuntimeEnvironment() {
|
|
9933
|
+
return {
|
|
9934
|
+
isRunningInBrowser: $isRunningInBrowser(),
|
|
9935
|
+
isRunningInJest: $isRunningInJest(),
|
|
9936
|
+
isRunningInNode: $isRunningInNode(),
|
|
9937
|
+
isRunningInWebWorker: $isRunningInWebWorker(),
|
|
9938
|
+
};
|
|
9939
|
+
}
|
|
9940
|
+
/**
|
|
9941
|
+
* TODO: [šŗ] Also detect and report node version here
|
|
9942
|
+
*/
|
|
9943
|
+
|
|
9944
|
+
/**
|
|
9945
|
+
* Simple wrapper `new Date().toISOString()`
|
|
9946
|
+
*
|
|
9947
|
+
* Note: `$` is used to indicate that this function is not a pure function - it is not deterministic because it depends on the current time
|
|
9948
|
+
*
|
|
9949
|
+
* @returns string_date branded type
|
|
9950
|
+
* @public exported from `@promptbook/utils`
|
|
9951
|
+
*/
|
|
9952
|
+
function $getCurrentDate() {
|
|
9953
|
+
return new Date().toISOString();
|
|
9954
|
+
}
|
|
9955
|
+
|
|
9956
|
+
/**
|
|
9957
|
+
* Function parseNumber will parse number from string
|
|
9958
|
+
*
|
|
9959
|
+
* Note: [š] This function is idempotent.
|
|
9960
|
+
* Unlike Number.parseInt, Number.parseFloat it will never ever result in NaN
|
|
9961
|
+
* Note: it also works only with decimal numbers
|
|
9962
|
+
*
|
|
9963
|
+
* @returns parsed number
|
|
9964
|
+
* @throws {ParseError} if the value is not a number
|
|
9965
|
+
*
|
|
9966
|
+
* @public exported from `@promptbook/utils`
|
|
9967
|
+
*/
|
|
9968
|
+
function parseNumber(value) {
|
|
9969
|
+
const originalValue = value;
|
|
9970
|
+
if (typeof value === 'number') {
|
|
9971
|
+
value = value.toString(); // <- TODO: Maybe more efficient way to do this
|
|
9972
|
+
}
|
|
9973
|
+
if (typeof value !== 'string') {
|
|
9974
|
+
return 0;
|
|
9975
|
+
}
|
|
9976
|
+
value = value.trim();
|
|
9977
|
+
if (value.startsWith('+')) {
|
|
9978
|
+
return parseNumber(value.substring(1));
|
|
9979
|
+
}
|
|
9980
|
+
if (value.startsWith('-')) {
|
|
9981
|
+
const number = parseNumber(value.substring(1));
|
|
9982
|
+
if (number === 0) {
|
|
9983
|
+
return 0; // <- Note: To prevent -0
|
|
9984
|
+
}
|
|
9985
|
+
return -number;
|
|
9986
|
+
}
|
|
9987
|
+
value = value.replace(/,/g, '.');
|
|
9988
|
+
value = value.toUpperCase();
|
|
9989
|
+
if (value === '') {
|
|
9990
|
+
return 0;
|
|
9991
|
+
}
|
|
9992
|
+
if (value === 'ā¾' || value.startsWith('INF')) {
|
|
9993
|
+
return Infinity;
|
|
9994
|
+
}
|
|
9995
|
+
if (value.includes('/')) {
|
|
9996
|
+
const [numerator_, denominator_] = value.split('/');
|
|
9997
|
+
const numerator = parseNumber(numerator_);
|
|
9998
|
+
const denominator = parseNumber(denominator_);
|
|
9999
|
+
if (denominator === 0) {
|
|
10000
|
+
throw new ParseError(`Unable to parse number from "${originalValue}" because denominator is zero`);
|
|
10001
|
+
}
|
|
10002
|
+
return numerator / denominator;
|
|
10003
|
+
}
|
|
10004
|
+
if (/^(NAN|NULL|NONE|UNDEFINED|ZERO|NO.*)$/.test(value)) {
|
|
10005
|
+
return 0;
|
|
10006
|
+
}
|
|
10007
|
+
if (value.includes('E')) {
|
|
10008
|
+
const [significand, exponent] = value.split('E');
|
|
10009
|
+
return parseNumber(significand) * 10 ** parseNumber(exponent);
|
|
10010
|
+
}
|
|
10011
|
+
if (!/^[0-9.]+$/.test(value) || value.split('.').length > 2) {
|
|
10012
|
+
throw new ParseError(`Unable to parse number from "${originalValue}"`);
|
|
10013
|
+
}
|
|
10014
|
+
const num = parseFloat(value);
|
|
10015
|
+
if (isNaN(num)) {
|
|
10016
|
+
throw new ParseError(`Unexpected NaN when parsing number from "${originalValue}"`);
|
|
10017
|
+
}
|
|
10018
|
+
return num;
|
|
10019
|
+
}
|
|
10020
|
+
/**
|
|
10021
|
+
* TODO: Maybe use sth. like safe-eval in fraction/calculation case @see https://www.npmjs.com/package/safe-eval
|
|
10022
|
+
* TODO: [š§ ][š»] Maybe export through `@promptbook/markdown-utils` not `@promptbook/utils`
|
|
10023
|
+
*/
|
|
10024
|
+
|
|
10025
|
+
/**
|
|
10026
|
+
* Removes quotes from a string
|
|
10027
|
+
*
|
|
10028
|
+
* Note: [š] This function is idempotent.
|
|
10029
|
+
* Tip: This is very useful for post-processing of the result of the LLM model
|
|
10030
|
+
* Note: This function removes only the same quotes from the beginning and the end of the string
|
|
10031
|
+
* Note: There are two similar functions:
|
|
10032
|
+
* - `removeQuotes` which removes only bounding quotes
|
|
10033
|
+
* - `unwrapResult` which removes whole introduce sentence
|
|
10034
|
+
*
|
|
10035
|
+
* @param text optionally quoted text
|
|
10036
|
+
* @returns text without quotes
|
|
10037
|
+
* @public exported from `@promptbook/utils`
|
|
10038
|
+
*/
|
|
10039
|
+
function removeQuotes(text) {
|
|
10040
|
+
if (text.startsWith('"') && text.endsWith('"')) {
|
|
10041
|
+
return text.slice(1, -1);
|
|
10042
|
+
}
|
|
10043
|
+
if (text.startsWith("'") && text.endsWith("'")) {
|
|
10044
|
+
return text.slice(1, -1);
|
|
10045
|
+
}
|
|
10046
|
+
return text;
|
|
10047
|
+
}
|
|
10048
|
+
|
|
10049
|
+
/**
|
|
10050
|
+
* Trims string from all 4 sides
|
|
10051
|
+
*
|
|
10052
|
+
* Note: This is a re-exported function from the `spacetrim` package which is
|
|
10053
|
+
* Developed by same author @hejny as this package
|
|
10054
|
+
*
|
|
10055
|
+
* @public exported from `@promptbook/utils`
|
|
10056
|
+
* @see https://github.com/hejny/spacetrim#usage
|
|
10057
|
+
*/
|
|
10058
|
+
const spaceTrim = spaceTrim$2;
|
|
10059
|
+
|
|
10060
|
+
/**
|
|
10061
|
+
* Checks if the given value is a valid JavaScript identifier name.
|
|
10062
|
+
*
|
|
10063
|
+
* @param javascriptName The value to check for JavaScript identifier validity.
|
|
10064
|
+
* @returns `true` if the value is a valid JavaScript name, false otherwise.
|
|
10065
|
+
* @public exported from `@promptbook/utils`
|
|
10066
|
+
*/
|
|
10067
|
+
function isValidJavascriptName(javascriptName) {
|
|
10068
|
+
if (typeof javascriptName !== 'string') {
|
|
10069
|
+
return false;
|
|
10070
|
+
}
|
|
10071
|
+
return /^[a-zA-Z_$][0-9a-zA-Z_$]*$/i.test(javascriptName);
|
|
10072
|
+
}
|
|
10073
|
+
|
|
10074
|
+
/**
|
|
10075
|
+
* Normalizes agent name from arbitrary string to valid agent name
|
|
10076
|
+
*
|
|
10077
|
+
* Note: [š] This function is idempotent.
|
|
10078
|
+
*
|
|
10079
|
+
* @public exported from `@promptbook/core`
|
|
10080
|
+
*/
|
|
10081
|
+
function normalizeAgentName(rawAgentName) {
|
|
10082
|
+
return titleToName(spaceTrim$1(rawAgentName));
|
|
10083
|
+
}
|
|
10084
|
+
|
|
10085
|
+
/**
|
|
10086
|
+
* Creates temporary default agent name based on agent source hash
|
|
10087
|
+
*
|
|
10088
|
+
* @public exported from `@promptbook/core`
|
|
10089
|
+
*/
|
|
10090
|
+
function createDefaultAgentName(agentSource) {
|
|
10091
|
+
const agentHash = computeAgentHash(agentSource);
|
|
10092
|
+
return normalizeAgentName(`Agent ${agentHash.substring(0, 6)}`);
|
|
10093
|
+
}
|
|
10094
|
+
|
|
10095
|
+
/**
|
|
10096
|
+
* Parses basic information from agent source
|
|
10097
|
+
*
|
|
10098
|
+
* There are 2 similar functions:
|
|
10099
|
+
* - `parseAgentSource` which is a lightweight parser for agent source, it parses basic information and its purpose is to be quick and synchronous. The commitments there are hardcoded.
|
|
10100
|
+
* - `createAgentModelRequirements` which is an asynchronous function that creates model requirements it applies each commitment one by one and works asynchronously.
|
|
10101
|
+
*
|
|
10102
|
+
* @public exported from `@promptbook/core`
|
|
10103
|
+
*/
|
|
10104
|
+
function parseAgentSource(agentSource) {
|
|
10105
|
+
const parseResult = parseAgentSourceWithCommitments(agentSource);
|
|
10106
|
+
// Find PERSONA and META commitments
|
|
10107
|
+
let personaDescription = null;
|
|
10108
|
+
for (const commitment of parseResult.commitments) {
|
|
10109
|
+
if (commitment.type !== 'PERSONA') {
|
|
10110
|
+
continue;
|
|
10111
|
+
}
|
|
10112
|
+
if (personaDescription === null) {
|
|
10113
|
+
personaDescription = '';
|
|
10114
|
+
}
|
|
10115
|
+
else {
|
|
10116
|
+
personaDescription += `\n\n${personaDescription}`;
|
|
10117
|
+
}
|
|
10118
|
+
personaDescription += commitment.content;
|
|
10119
|
+
}
|
|
10120
|
+
const meta = {};
|
|
10121
|
+
for (const commitment of parseResult.commitments) {
|
|
10122
|
+
if (commitment.type !== 'META') {
|
|
10123
|
+
continue;
|
|
10124
|
+
}
|
|
10125
|
+
// Parse META commitments - format is "META TYPE content"
|
|
10126
|
+
const metaTypeRaw = commitment.content.split(' ')[0] || 'NONE';
|
|
10127
|
+
const metaType = normalizeTo_camelCase(metaTypeRaw);
|
|
10128
|
+
meta[metaType] = spaceTrim$1(commitment.content.substring(metaTypeRaw.length));
|
|
10129
|
+
}
|
|
10130
|
+
// Generate gravatar fallback if no meta image specified
|
|
10131
|
+
if (!meta.image) {
|
|
10132
|
+
meta.image = generatePlaceholderAgentProfileImageUrl(parseResult.agentName || '!!');
|
|
10133
|
+
}
|
|
10134
|
+
// Parse parameters using unified approach - both @Parameter and {parameter} notations
|
|
10135
|
+
// are treated as the same syntax feature with unified representation
|
|
10136
|
+
const parameters = parseParameters(agentSource);
|
|
10137
|
+
const agentHash = computeAgentHash(agentSource);
|
|
10138
|
+
return {
|
|
10139
|
+
agentName: normalizeAgentName(parseResult.agentName || createDefaultAgentName(agentSource)),
|
|
10140
|
+
agentHash,
|
|
10141
|
+
personaDescription,
|
|
10142
|
+
meta,
|
|
10143
|
+
parameters,
|
|
10144
|
+
};
|
|
10145
|
+
}
|
|
10146
|
+
/**
|
|
10147
|
+
* TODO: [š] Unite `AgentBasicInformation`, `ChatParticipant`, `LlmExecutionTools` + `LlmToolsMetadata`
|
|
10148
|
+
*/
|
|
10149
|
+
|
|
10150
|
+
/**
|
|
10151
|
+
* Creates model requirements for an agent based on its source
|
|
10152
|
+
*
|
|
10153
|
+
* There are 2 similar functions:
|
|
10154
|
+
* - `parseAgentSource` which is a lightweight parser for agent source, it parses basic information and its purpose is to be quick and synchronous. The commitments there are hardcoded.
|
|
10155
|
+
* - `createAgentModelRequirements` which is an asynchronous function that creates model requirements it applies each commitment one by one and works asynchronous.
|
|
10156
|
+
*
|
|
10157
|
+
* @public exported from `@promptbook/core`
|
|
10158
|
+
*/
|
|
10159
|
+
async function createAgentModelRequirements(agentSource, modelName, availableModels, llmTools) {
|
|
10160
|
+
// If availableModels are provided and no specific modelName is given,
|
|
10161
|
+
// use preparePersona to select the best model
|
|
10162
|
+
if (availableModels && !modelName && llmTools) {
|
|
10163
|
+
const selectedModelName = await selectBestModelUsingPersona(agentSource, llmTools);
|
|
10164
|
+
return createAgentModelRequirementsWithCommitments(agentSource, selectedModelName);
|
|
10165
|
+
}
|
|
10166
|
+
// Use the new commitment-based system with provided or default model
|
|
10167
|
+
return createAgentModelRequirementsWithCommitments(agentSource, modelName);
|
|
10168
|
+
}
|
|
10169
|
+
/**
|
|
10170
|
+
* Selects the best model using the preparePersona function
|
|
10171
|
+
* This directly uses preparePersona to ensure DRY principle
|
|
10172
|
+
*
|
|
10173
|
+
* @param agentSource The agent source to derive persona description from
|
|
10174
|
+
* @param llmTools LLM tools for preparing persona
|
|
10175
|
+
* @returns The name of the best selected model
|
|
10176
|
+
* @private function of `createAgentModelRequirements`
|
|
10177
|
+
*/
|
|
10178
|
+
async function selectBestModelUsingPersona(agentSource, llmTools) {
|
|
10179
|
+
var _a;
|
|
10180
|
+
// Parse agent source to get persona description
|
|
10181
|
+
const { agentName, personaDescription } = parseAgentSource(agentSource);
|
|
10182
|
+
// Use agent name as fallback if no persona description is available
|
|
10183
|
+
const description = personaDescription || agentName || 'AI Agent';
|
|
10184
|
+
try {
|
|
10185
|
+
// Use preparePersona directly
|
|
10186
|
+
const { modelsRequirements } = await preparePersona(description, { llm: llmTools }, { isVerbose: false });
|
|
10187
|
+
// Extract the first model name from the requirements
|
|
10188
|
+
if (modelsRequirements.length > 0 && ((_a = modelsRequirements[0]) === null || _a === void 0 ? void 0 : _a.modelName)) {
|
|
10189
|
+
return modelsRequirements[0].modelName;
|
|
10190
|
+
}
|
|
10191
|
+
// Fallback: get available models and return the first CHAT model
|
|
10192
|
+
const availableModels = await llmTools.listModels();
|
|
10193
|
+
const chatModels = availableModels.filter(({ modelVariant }) => modelVariant === 'CHAT');
|
|
10194
|
+
if (chatModels.length === 0) {
|
|
10195
|
+
throw new Error('No CHAT models available for agent model selection');
|
|
10196
|
+
}
|
|
10197
|
+
return chatModels[0].modelName;
|
|
10198
|
+
}
|
|
10199
|
+
catch (error) {
|
|
10200
|
+
console.warn('Failed to use preparePersona for model selection, falling back to first available model:', error);
|
|
10201
|
+
// Fallback: get available models and return the first CHAT model
|
|
10202
|
+
const availableModels = await llmTools.listModels();
|
|
10203
|
+
const chatModels = availableModels.filter(({ modelVariant }) => modelVariant === 'CHAT');
|
|
10204
|
+
if (chatModels.length === 0) {
|
|
10205
|
+
throw new Error('No CHAT models available for agent model selection');
|
|
10206
|
+
}
|
|
10207
|
+
return chatModels[0].modelName;
|
|
10208
|
+
}
|
|
10209
|
+
}
|
|
10210
|
+
/**
|
|
10211
|
+
* Extracts MCP servers from agent source
|
|
10212
|
+
*
|
|
10213
|
+
* @param agentSource The agent source string that may contain MCP lines
|
|
10214
|
+
* @returns Array of MCP server identifiers
|
|
10215
|
+
*
|
|
10216
|
+
* @private TODO: [š§ ] Maybe should be public
|
|
10217
|
+
*/
|
|
10218
|
+
function extractMcpServers(agentSource) {
|
|
10219
|
+
if (!agentSource) {
|
|
10220
|
+
return [];
|
|
10221
|
+
}
|
|
10222
|
+
const lines = agentSource.split('\n');
|
|
10223
|
+
const mcpRegex = /^\s*MCP\s+(.+)$/i;
|
|
9797
10224
|
const mcpServers = [];
|
|
9798
10225
|
// Look for MCP lines
|
|
9799
10226
|
for (const line of lines) {
|
|
@@ -9887,17 +10314,6 @@ const DEFAULT_BOOK = padBook(validateBook(spaceTrim$1(`
|
|
|
9887
10314
|
// <- !!! Buttons into genesis book
|
|
9888
10315
|
// <- TODO: !!! generateBookBoilerplate and deprecate `DEFAULT_BOOK`
|
|
9889
10316
|
|
|
9890
|
-
/**
|
|
9891
|
-
* Trims string from all 4 sides
|
|
9892
|
-
*
|
|
9893
|
-
* Note: This is a re-exported function from the `spacetrim` package which is
|
|
9894
|
-
* Developed by same author @hejny as this package
|
|
9895
|
-
*
|
|
9896
|
-
* @public exported from `@promptbook/utils`
|
|
9897
|
-
* @see https://github.com/hejny/spacetrim#usage
|
|
9898
|
-
*/
|
|
9899
|
-
const spaceTrim = spaceTrim$2;
|
|
9900
|
-
|
|
9901
10317
|
/**
|
|
9902
10318
|
* Agent collection stored in Supabase table
|
|
9903
10319
|
*
|
|
@@ -9906,7 +10322,7 @@ const spaceTrim = spaceTrim$2;
|
|
|
9906
10322
|
* @public exported from `@promptbook/core`
|
|
9907
10323
|
* <- TODO: !!! Move to `@promptbook/supabase` package
|
|
9908
10324
|
*/
|
|
9909
|
-
class AgentCollectionInSupabase /* TODO:
|
|
10325
|
+
class AgentCollectionInSupabase /* TODO: !!!!!! implements Agent */ {
|
|
9910
10326
|
/**
|
|
9911
10327
|
* @param rootPath - path to the directory with agents
|
|
9912
10328
|
* @param tools - Execution tools to be used in !!! `Agent` itself and listing the agents
|
|
@@ -9927,9 +10343,7 @@ class AgentCollectionInSupabase /* TODO: !!!! implements AgentCollection */ {
|
|
|
9927
10343
|
*/
|
|
9928
10344
|
async listAgents( /* TODO: [š§ ] Allow to pass some condition here */) {
|
|
9929
10345
|
const { isVerbose = DEFAULT_IS_VERBOSE } = this.options || {};
|
|
9930
|
-
const selectResult = await this.supabaseClient
|
|
9931
|
-
.from('AgentCollection' /* <- TODO: !!!! Change to `Agent` */)
|
|
9932
|
-
.select('agentProfile');
|
|
10346
|
+
const selectResult = await this.supabaseClient.from('Agent').select('agentName,agentProfile');
|
|
9933
10347
|
if (selectResult.error) {
|
|
9934
10348
|
throw new DatabaseError(spaceTrim((block) => `
|
|
9935
10349
|
|
|
@@ -9941,14 +10355,27 @@ class AgentCollectionInSupabase /* TODO: !!!! implements AgentCollection */ {
|
|
|
9941
10355
|
if (isVerbose) {
|
|
9942
10356
|
console.info(`Found ${selectResult.data.length} agents in directory`);
|
|
9943
10357
|
}
|
|
9944
|
-
return selectResult.data.map((
|
|
10358
|
+
return selectResult.data.map(({ agentName, agentProfile }) => {
|
|
10359
|
+
if (isVerbose && agentProfile.agentName !== agentName) {
|
|
10360
|
+
console.warn(spaceTrim(`
|
|
10361
|
+
Agent name mismatch for agent "${agentName}". Using name from database.
|
|
10362
|
+
|
|
10363
|
+
agentName: "${agentName}"
|
|
10364
|
+
agentProfile.agentName: "${agentProfile.agentName}"
|
|
10365
|
+
`));
|
|
10366
|
+
}
|
|
10367
|
+
return {
|
|
10368
|
+
...agentProfile,
|
|
10369
|
+
agentName,
|
|
10370
|
+
};
|
|
10371
|
+
});
|
|
9945
10372
|
}
|
|
9946
10373
|
/**
|
|
9947
10374
|
* !!!@@@
|
|
9948
10375
|
*/
|
|
9949
10376
|
async getAgentSource(agentName) {
|
|
9950
10377
|
const selectResult = await this.supabaseClient
|
|
9951
|
-
.from('
|
|
10378
|
+
.from('Agent')
|
|
9952
10379
|
.select('agentSource')
|
|
9953
10380
|
.eq('agentName', agentName)
|
|
9954
10381
|
.single();
|
|
@@ -9976,65 +10403,88 @@ class AgentCollectionInSupabase /* TODO: !!!! implements AgentCollection */ {
|
|
|
9976
10403
|
async createAgent(agentSource) {
|
|
9977
10404
|
const agentProfile = parseAgentSource(agentSource);
|
|
9978
10405
|
// <- TODO: [š]
|
|
9979
|
-
const
|
|
9980
|
-
|
|
9981
|
-
|
|
9982
|
-
|
|
10406
|
+
const { agentName, agentHash } = agentProfile;
|
|
10407
|
+
const insertAgentResult = await this.supabaseClient.from('Agent').insert({
|
|
10408
|
+
agentName,
|
|
10409
|
+
agentHash,
|
|
9983
10410
|
agentProfile,
|
|
9984
10411
|
createdAt: new Date().toISOString(),
|
|
9985
10412
|
updatedAt: null,
|
|
9986
|
-
agentVersion: 0,
|
|
9987
10413
|
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
9988
10414
|
usage: ZERO_USAGE,
|
|
9989
10415
|
agentSource: agentSource,
|
|
9990
10416
|
});
|
|
9991
|
-
if (
|
|
10417
|
+
if (insertAgentResult.error) {
|
|
9992
10418
|
throw new DatabaseError(spaceTrim((block) => `
|
|
9993
10419
|
Error creating agent "${agentProfile.agentName}" in Supabase:
|
|
9994
10420
|
|
|
9995
|
-
${block(
|
|
10421
|
+
${block(insertAgentResult.error.message)}
|
|
9996
10422
|
`));
|
|
9997
10423
|
}
|
|
10424
|
+
await this.supabaseClient.from('AgentHistory').insert({
|
|
10425
|
+
createdAt: new Date().toISOString(),
|
|
10426
|
+
agentName,
|
|
10427
|
+
agentHash,
|
|
10428
|
+
previousAgentHash: null,
|
|
10429
|
+
agentSource,
|
|
10430
|
+
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10431
|
+
});
|
|
10432
|
+
// <- TODO: [š§ ] What to do with `insertAgentHistoryResult.error`, ignore? wait?
|
|
9998
10433
|
return agentProfile;
|
|
9999
10434
|
}
|
|
10000
10435
|
/**
|
|
10001
10436
|
* Updates an existing agent in the collection
|
|
10002
10437
|
*/
|
|
10003
10438
|
async updateAgentSource(agentName, agentSource) {
|
|
10004
|
-
const
|
|
10005
|
-
.from('
|
|
10006
|
-
.select('
|
|
10439
|
+
const selectPreviousAgentResult = await this.supabaseClient
|
|
10440
|
+
.from('Agent')
|
|
10441
|
+
.select('agentHash,agentName')
|
|
10007
10442
|
.eq('agentName', agentName)
|
|
10008
10443
|
.single();
|
|
10009
|
-
if (
|
|
10010
|
-
throw new
|
|
10444
|
+
if (selectPreviousAgentResult.error) {
|
|
10445
|
+
throw new DatabaseError(spaceTrim((block) => `
|
|
10446
|
+
|
|
10447
|
+
Error fetching agent "${agentName}" from Supabase:
|
|
10448
|
+
|
|
10449
|
+
${block(selectPreviousAgentResult.error.message)}
|
|
10450
|
+
`));
|
|
10451
|
+
// <- TODO: !!! First check if the error is "not found" and throw `NotFoundError` instead then throw `DatabaseError`
|
|
10011
10452
|
}
|
|
10453
|
+
selectPreviousAgentResult.data.agentName;
|
|
10454
|
+
const previousAgentHash = selectPreviousAgentResult.data.agentHash;
|
|
10012
10455
|
const agentProfile = parseAgentSource(agentSource);
|
|
10013
|
-
// TODO:
|
|
10014
|
-
|
|
10015
|
-
const
|
|
10016
|
-
|
|
10017
|
-
.from('AgentCollection' /* <- TODO: !!!! Change to `Agent` */)
|
|
10456
|
+
// <- TODO: [š]
|
|
10457
|
+
const { agentHash } = agentProfile;
|
|
10458
|
+
const updateAgentResult = await this.supabaseClient
|
|
10459
|
+
.from('Agent')
|
|
10018
10460
|
.update({
|
|
10019
10461
|
// TODO: !!!! Compare not update> agentName: agentProfile.agentName || '!!!!!' /* <- TODO: !!!! Remove */,
|
|
10020
10462
|
agentProfile,
|
|
10021
10463
|
updatedAt: new Date().toISOString(),
|
|
10022
|
-
|
|
10464
|
+
agentHash: agentProfile.agentHash,
|
|
10023
10465
|
agentSource,
|
|
10024
10466
|
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10025
10467
|
})
|
|
10026
10468
|
.eq('agentName', agentName);
|
|
10027
|
-
|
|
10028
|
-
console.log('!!!
|
|
10029
|
-
console.log('!!!
|
|
10030
|
-
|
|
10031
|
-
if (updateResult.error) {
|
|
10469
|
+
// console.log('!!! updateAgent', updateResult);
|
|
10470
|
+
// console.log('!!! old', oldAgentSource);
|
|
10471
|
+
// console.log('!!! new', newAgentSource);
|
|
10472
|
+
if (updateAgentResult.error) {
|
|
10032
10473
|
throw new DatabaseError(spaceTrim((block) => `
|
|
10033
10474
|
Error updating agent "${agentName}" in Supabase:
|
|
10034
10475
|
|
|
10035
|
-
${block(
|
|
10476
|
+
${block(updateAgentResult.error.message)}
|
|
10036
10477
|
`));
|
|
10037
10478
|
}
|
|
10479
|
+
await this.supabaseClient.from('AgentHistory').insert({
|
|
10480
|
+
createdAt: new Date().toISOString(),
|
|
10481
|
+
agentName,
|
|
10482
|
+
agentHash,
|
|
10483
|
+
previousAgentHash,
|
|
10484
|
+
agentSource,
|
|
10485
|
+
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10486
|
+
});
|
|
10487
|
+
// <- TODO: [š§ ] What to do with `insertAgentHistoryResult.error`, ignore? wait?
|
|
10038
10488
|
}
|
|
10039
10489
|
// TODO: !!!! public async getAgentSourceSubject(agentName: string_agent_name): Promise<BehaviorSubject<string_book>>
|
|
10040
10490
|
// Use Supabase realtime logic
|
|
@@ -10680,83 +11130,14 @@ const bookVersionCommandParser = {
|
|
|
10680
11130
|
};
|
|
10681
11131
|
|
|
10682
11132
|
/**
|
|
10683
|
-
* Units of text measurement
|
|
10684
|
-
*
|
|
10685
|
-
* @see https://github.com/webgptorg/promptbook/discussions/30
|
|
10686
|
-
* @public exported from `@promptbook/core`
|
|
10687
|
-
*/
|
|
10688
|
-
const EXPECTATION_UNITS = ['CHARACTERS', 'WORDS', 'SENTENCES', 'LINES', 'PARAGRAPHS', 'PAGES'];
|
|
10689
|
-
/**
|
|
10690
|
-
* TODO: [š] Unite object for expecting amount and format - remove format
|
|
10691
|
-
*/
|
|
10692
|
-
|
|
10693
|
-
/**
|
|
10694
|
-
* Function parseNumber will parse number from string
|
|
10695
|
-
*
|
|
10696
|
-
* Note: [š] This function is idempotent.
|
|
10697
|
-
* Unlike Number.parseInt, Number.parseFloat it will never ever result in NaN
|
|
10698
|
-
* Note: it also works only with decimal numbers
|
|
10699
|
-
*
|
|
10700
|
-
* @returns parsed number
|
|
10701
|
-
* @throws {ParseError} if the value is not a number
|
|
11133
|
+
* Units of text measurement
|
|
10702
11134
|
*
|
|
10703
|
-
* @
|
|
11135
|
+
* @see https://github.com/webgptorg/promptbook/discussions/30
|
|
11136
|
+
* @public exported from `@promptbook/core`
|
|
10704
11137
|
*/
|
|
10705
|
-
|
|
10706
|
-
const originalValue = value;
|
|
10707
|
-
if (typeof value === 'number') {
|
|
10708
|
-
value = value.toString(); // <- TODO: Maybe more efficient way to do this
|
|
10709
|
-
}
|
|
10710
|
-
if (typeof value !== 'string') {
|
|
10711
|
-
return 0;
|
|
10712
|
-
}
|
|
10713
|
-
value = value.trim();
|
|
10714
|
-
if (value.startsWith('+')) {
|
|
10715
|
-
return parseNumber(value.substring(1));
|
|
10716
|
-
}
|
|
10717
|
-
if (value.startsWith('-')) {
|
|
10718
|
-
const number = parseNumber(value.substring(1));
|
|
10719
|
-
if (number === 0) {
|
|
10720
|
-
return 0; // <- Note: To prevent -0
|
|
10721
|
-
}
|
|
10722
|
-
return -number;
|
|
10723
|
-
}
|
|
10724
|
-
value = value.replace(/,/g, '.');
|
|
10725
|
-
value = value.toUpperCase();
|
|
10726
|
-
if (value === '') {
|
|
10727
|
-
return 0;
|
|
10728
|
-
}
|
|
10729
|
-
if (value === 'ā¾' || value.startsWith('INF')) {
|
|
10730
|
-
return Infinity;
|
|
10731
|
-
}
|
|
10732
|
-
if (value.includes('/')) {
|
|
10733
|
-
const [numerator_, denominator_] = value.split('/');
|
|
10734
|
-
const numerator = parseNumber(numerator_);
|
|
10735
|
-
const denominator = parseNumber(denominator_);
|
|
10736
|
-
if (denominator === 0) {
|
|
10737
|
-
throw new ParseError(`Unable to parse number from "${originalValue}" because denominator is zero`);
|
|
10738
|
-
}
|
|
10739
|
-
return numerator / denominator;
|
|
10740
|
-
}
|
|
10741
|
-
if (/^(NAN|NULL|NONE|UNDEFINED|ZERO|NO.*)$/.test(value)) {
|
|
10742
|
-
return 0;
|
|
10743
|
-
}
|
|
10744
|
-
if (value.includes('E')) {
|
|
10745
|
-
const [significand, exponent] = value.split('E');
|
|
10746
|
-
return parseNumber(significand) * 10 ** parseNumber(exponent);
|
|
10747
|
-
}
|
|
10748
|
-
if (!/^[0-9.]+$/.test(value) || value.split('.').length > 2) {
|
|
10749
|
-
throw new ParseError(`Unable to parse number from "${originalValue}"`);
|
|
10750
|
-
}
|
|
10751
|
-
const num = parseFloat(value);
|
|
10752
|
-
if (isNaN(num)) {
|
|
10753
|
-
throw new ParseError(`Unexpected NaN when parsing number from "${originalValue}"`);
|
|
10754
|
-
}
|
|
10755
|
-
return num;
|
|
10756
|
-
}
|
|
11138
|
+
const EXPECTATION_UNITS = ['CHARACTERS', 'WORDS', 'SENTENCES', 'LINES', 'PARAGRAPHS', 'PAGES'];
|
|
10757
11139
|
/**
|
|
10758
|
-
* TODO:
|
|
10759
|
-
* TODO: [š§ ][š»] Maybe export through `@promptbook/markdown-utils` not `@promptbook/utils`
|
|
11140
|
+
* TODO: [š] Unite object for expecting amount and format - remove format
|
|
10760
11141
|
*/
|
|
10761
11142
|
|
|
10762
11143
|
/**
|
|
@@ -10901,30 +11282,6 @@ const expectCommandParser = {
|
|
|
10901
11282
|
},
|
|
10902
11283
|
};
|
|
10903
11284
|
|
|
10904
|
-
/**
|
|
10905
|
-
* Removes quotes from a string
|
|
10906
|
-
*
|
|
10907
|
-
* Note: [š] This function is idempotent.
|
|
10908
|
-
* Tip: This is very useful for post-processing of the result of the LLM model
|
|
10909
|
-
* Note: This function removes only the same quotes from the beginning and the end of the string
|
|
10910
|
-
* Note: There are two similar functions:
|
|
10911
|
-
* - `removeQuotes` which removes only bounding quotes
|
|
10912
|
-
* - `unwrapResult` which removes whole introduce sentence
|
|
10913
|
-
*
|
|
10914
|
-
* @param text optionally quoted text
|
|
10915
|
-
* @returns text without quotes
|
|
10916
|
-
* @public exported from `@promptbook/utils`
|
|
10917
|
-
*/
|
|
10918
|
-
function removeQuotes(text) {
|
|
10919
|
-
if (text.startsWith('"') && text.endsWith('"')) {
|
|
10920
|
-
return text.slice(1, -1);
|
|
10921
|
-
}
|
|
10922
|
-
if (text.startsWith("'") && text.endsWith("'")) {
|
|
10923
|
-
return text.slice(1, -1);
|
|
10924
|
-
}
|
|
10925
|
-
return text;
|
|
10926
|
-
}
|
|
10927
|
-
|
|
10928
11285
|
/**
|
|
10929
11286
|
* Function `validateParameterName` will normalize and validate a parameter name for use in pipelines.
|
|
10930
11287
|
* It removes diacritics, emojis, and quotes, normalizes to camelCase, and checks for reserved names and invalid characters.
|
|
@@ -12111,20 +12468,6 @@ function $applyToTaskJson(command, $taskJson, $pipelineJson) {
|
|
|
12111
12468
|
persona.description += spaceTrim$1('\n\n' + personaDescription);
|
|
12112
12469
|
}
|
|
12113
12470
|
|
|
12114
|
-
/**
|
|
12115
|
-
* Checks if the given value is a valid JavaScript identifier name.
|
|
12116
|
-
*
|
|
12117
|
-
* @param javascriptName The value to check for JavaScript identifier validity.
|
|
12118
|
-
* @returns `true` if the value is a valid JavaScript name, false otherwise.
|
|
12119
|
-
* @public exported from `@promptbook/utils`
|
|
12120
|
-
*/
|
|
12121
|
-
function isValidJavascriptName(javascriptName) {
|
|
12122
|
-
if (typeof javascriptName !== 'string') {
|
|
12123
|
-
return false;
|
|
12124
|
-
}
|
|
12125
|
-
return /^[a-zA-Z_$][0-9a-zA-Z_$]*$/i.test(javascriptName);
|
|
12126
|
-
}
|
|
12127
|
-
|
|
12128
12471
|
/**
|
|
12129
12472
|
* Parses the postprocess command
|
|
12130
12473
|
*
|
|
@@ -13693,114 +14036,6 @@ function addAutoGeneratedSection(content, options) {
|
|
|
13693
14036
|
* TODO: [š] This can be part of markdown builder
|
|
13694
14037
|
*/
|
|
13695
14038
|
|
|
13696
|
-
/**
|
|
13697
|
-
* Creates a Mermaid graph based on the promptbook
|
|
13698
|
-
*
|
|
13699
|
-
* Note: The result is not wrapped in a Markdown code block
|
|
13700
|
-
*
|
|
13701
|
-
* @public exported from `@promptbook/utils`
|
|
13702
|
-
*/
|
|
13703
|
-
function renderPromptbookMermaid(pipelineJson, options) {
|
|
13704
|
-
const { linkTask = () => null } = options || {};
|
|
13705
|
-
const MERMAID_PREFIX = 'pipeline_';
|
|
13706
|
-
const MERMAID_KNOWLEDGE_NAME = MERMAID_PREFIX + 'knowledge';
|
|
13707
|
-
const MERMAID_RESERVED_NAME = MERMAID_PREFIX + 'reserved';
|
|
13708
|
-
const MERMAID_INPUT_NAME = MERMAID_PREFIX + 'input';
|
|
13709
|
-
const MERMAID_OUTPUT_NAME = MERMAID_PREFIX + 'output';
|
|
13710
|
-
const parameterNameToTaskName = (parameterName) => {
|
|
13711
|
-
if (parameterName === 'knowledge') {
|
|
13712
|
-
return MERMAID_KNOWLEDGE_NAME;
|
|
13713
|
-
}
|
|
13714
|
-
else if (RESERVED_PARAMETER_NAMES.includes(parameterName)) {
|
|
13715
|
-
return MERMAID_RESERVED_NAME;
|
|
13716
|
-
}
|
|
13717
|
-
const parameter = pipelineJson.parameters.find((parameter) => parameter.name === parameterName);
|
|
13718
|
-
if (!parameter) {
|
|
13719
|
-
throw new UnexpectedError(`Could not find {${parameterName}}`);
|
|
13720
|
-
// <- TODO: This causes problems when {knowledge} and other reserved parameters are used
|
|
13721
|
-
}
|
|
13722
|
-
if (parameter.isInput) {
|
|
13723
|
-
return MERMAID_INPUT_NAME;
|
|
13724
|
-
}
|
|
13725
|
-
const task = pipelineJson.tasks.find((task) => task.resultingParameterName === parameterName);
|
|
13726
|
-
if (!task) {
|
|
13727
|
-
throw new Error(`Could not find task for {${parameterName}}`);
|
|
13728
|
-
}
|
|
13729
|
-
return MERMAID_PREFIX + (task.name || normalizeTo_camelCase('task-' + titleToName(task.title)));
|
|
13730
|
-
};
|
|
13731
|
-
const inputAndIntermediateParametersMermaid = pipelineJson.tasks
|
|
13732
|
-
.flatMap(({ title, dependentParameterNames, resultingParameterName }) => [
|
|
13733
|
-
`${parameterNameToTaskName(resultingParameterName)}("${title}")`,
|
|
13734
|
-
...dependentParameterNames.map((dependentParameterName) => `${parameterNameToTaskName(dependentParameterName)}--"{${dependentParameterName}}"-->${parameterNameToTaskName(resultingParameterName)}`),
|
|
13735
|
-
])
|
|
13736
|
-
.join('\n');
|
|
13737
|
-
const outputParametersMermaid = pipelineJson.parameters
|
|
13738
|
-
.filter(({ isOutput }) => isOutput)
|
|
13739
|
-
.map(({ name }) => `${parameterNameToTaskName(name)}--"{${name}}"-->${MERMAID_OUTPUT_NAME}`)
|
|
13740
|
-
.join('\n');
|
|
13741
|
-
const linksMermaid = pipelineJson.tasks
|
|
13742
|
-
.map((task) => {
|
|
13743
|
-
const link = linkTask(task);
|
|
13744
|
-
if (link === null) {
|
|
13745
|
-
return '';
|
|
13746
|
-
}
|
|
13747
|
-
const { href, title } = link;
|
|
13748
|
-
const taskName = parameterNameToTaskName(task.resultingParameterName);
|
|
13749
|
-
return `click ${taskName} href "${href}" "${title}";`;
|
|
13750
|
-
})
|
|
13751
|
-
.filter((line) => line !== '')
|
|
13752
|
-
.join('\n');
|
|
13753
|
-
const interactionPointsMermaid = Object.entries({
|
|
13754
|
-
[MERMAID_INPUT_NAME]: 'Input',
|
|
13755
|
-
[MERMAID_OUTPUT_NAME]: 'Output',
|
|
13756
|
-
[MERMAID_RESERVED_NAME]: 'Other',
|
|
13757
|
-
[MERMAID_KNOWLEDGE_NAME]: 'Knowledge',
|
|
13758
|
-
})
|
|
13759
|
-
.filter(([MERMAID_NAME]) => (inputAndIntermediateParametersMermaid + outputParametersMermaid).includes(MERMAID_NAME))
|
|
13760
|
-
.map(([MERMAID_NAME, title]) => `${MERMAID_NAME}((${title})):::${MERMAID_NAME}`)
|
|
13761
|
-
.join('\n');
|
|
13762
|
-
const promptbookMermaid = spaceTrim$2((block) => `
|
|
13763
|
-
|
|
13764
|
-
%% š® Tip: Open this on GitHub or in the VSCode website to see the Mermaid graph visually
|
|
13765
|
-
|
|
13766
|
-
flowchart LR
|
|
13767
|
-
subgraph "${pipelineJson.title}"
|
|
13768
|
-
|
|
13769
|
-
%% Basic configuration
|
|
13770
|
-
direction TB
|
|
13771
|
-
|
|
13772
|
-
%% Interaction points from pipeline to outside
|
|
13773
|
-
${block(interactionPointsMermaid)}
|
|
13774
|
-
|
|
13775
|
-
%% Input and intermediate parameters
|
|
13776
|
-
${block(inputAndIntermediateParametersMermaid)}
|
|
13777
|
-
|
|
13778
|
-
|
|
13779
|
-
%% Output parameters
|
|
13780
|
-
${block(outputParametersMermaid)}
|
|
13781
|
-
|
|
13782
|
-
%% Links
|
|
13783
|
-
${block(linksMermaid)}
|
|
13784
|
-
|
|
13785
|
-
%% Styles
|
|
13786
|
-
classDef ${MERMAID_INPUT_NAME} color: grey;
|
|
13787
|
-
classDef ${MERMAID_OUTPUT_NAME} color: grey;
|
|
13788
|
-
classDef ${MERMAID_RESERVED_NAME} color: grey;
|
|
13789
|
-
classDef ${MERMAID_KNOWLEDGE_NAME} color: grey;
|
|
13790
|
-
|
|
13791
|
-
end;
|
|
13792
|
-
|
|
13793
|
-
`);
|
|
13794
|
-
return promptbookMermaid;
|
|
13795
|
-
}
|
|
13796
|
-
/**
|
|
13797
|
-
* TODO: [š§ ] FOREACH in mermaid graph
|
|
13798
|
-
* TODO: [š§ ] Knowledge in mermaid graph
|
|
13799
|
-
* TODO: [š§ ] Personas in mermaid graph
|
|
13800
|
-
* TODO: Maybe use some Mermaid package instead of string templating
|
|
13801
|
-
* TODO: [š] When more than 2 functionalities, split into separate functions
|
|
13802
|
-
*/
|
|
13803
|
-
|
|
13804
14039
|
/**
|
|
13805
14040
|
* Prettyfies Promptbook string and adds Mermaid graph
|
|
13806
14041
|
*
|
|
@@ -14352,71 +14587,13 @@ const $llmToolsMetadataRegister = new $Register('llm_tools_metadata');
|
|
|
14352
14587
|
/**
|
|
14353
14588
|
* Register for LLM tools.
|
|
14354
14589
|
*
|
|
14355
|
-
* Note: `$` is used to indicate that this interacts with the global scope
|
|
14356
|
-
* @singleton Only one instance of each register is created per build, but there can be more instances across different builds or environments.
|
|
14357
|
-
* @public exported from `@promptbook/core`
|
|
14358
|
-
*/
|
|
14359
|
-
const $llmToolsRegister = new $Register('llm_execution_tools_constructors');
|
|
14360
|
-
/**
|
|
14361
|
-
* TODO: [Ā®] DRY Register logic
|
|
14362
|
-
*/
|
|
14363
|
-
|
|
14364
|
-
/**
|
|
14365
|
-
* Detects if the code is running in a browser environment in main thread (Not in a web worker)
|
|
14366
|
-
*
|
|
14367
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
14368
|
-
*
|
|
14369
|
-
* @public exported from `@promptbook/utils`
|
|
14370
|
-
*/
|
|
14371
|
-
const $isRunningInBrowser = new Function(`
|
|
14372
|
-
try {
|
|
14373
|
-
return this === window;
|
|
14374
|
-
} catch (e) {
|
|
14375
|
-
return false;
|
|
14376
|
-
}
|
|
14377
|
-
`);
|
|
14378
|
-
/**
|
|
14379
|
-
* TODO: [šŗ]
|
|
14380
|
-
*/
|
|
14381
|
-
|
|
14382
|
-
/**
|
|
14383
|
-
* Detects if the code is running in a Node.js environment
|
|
14384
|
-
*
|
|
14385
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
14386
|
-
*
|
|
14387
|
-
* @public exported from `@promptbook/utils`
|
|
14388
|
-
*/
|
|
14389
|
-
const $isRunningInNode = new Function(`
|
|
14390
|
-
try {
|
|
14391
|
-
return this === global;
|
|
14392
|
-
} catch (e) {
|
|
14393
|
-
return false;
|
|
14394
|
-
}
|
|
14395
|
-
`);
|
|
14396
|
-
/**
|
|
14397
|
-
* TODO: [šŗ]
|
|
14398
|
-
*/
|
|
14399
|
-
|
|
14400
|
-
/**
|
|
14401
|
-
* Detects if the code is running in a web worker
|
|
14402
|
-
*
|
|
14403
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
14404
|
-
*
|
|
14405
|
-
* @public exported from `@promptbook/utils`
|
|
14590
|
+
* Note: `$` is used to indicate that this interacts with the global scope
|
|
14591
|
+
* @singleton Only one instance of each register is created per build, but there can be more instances across different builds or environments.
|
|
14592
|
+
* @public exported from `@promptbook/core`
|
|
14406
14593
|
*/
|
|
14407
|
-
const $
|
|
14408
|
-
try {
|
|
14409
|
-
if (typeof WorkerGlobalScope !== 'undefined' && self instanceof WorkerGlobalScope) {
|
|
14410
|
-
return true;
|
|
14411
|
-
} else {
|
|
14412
|
-
return false;
|
|
14413
|
-
}
|
|
14414
|
-
} catch (e) {
|
|
14415
|
-
return false;
|
|
14416
|
-
}
|
|
14417
|
-
`);
|
|
14594
|
+
const $llmToolsRegister = new $Register('llm_execution_tools_constructors');
|
|
14418
14595
|
/**
|
|
14419
|
-
* TODO: [
|
|
14596
|
+
* TODO: [Ā®] DRY Register logic
|
|
14420
14597
|
*/
|
|
14421
14598
|
|
|
14422
14599
|
/**
|
|
@@ -14652,18 +14829,6 @@ class MemoryStorage {
|
|
|
14652
14829
|
}
|
|
14653
14830
|
}
|
|
14654
14831
|
|
|
14655
|
-
/**
|
|
14656
|
-
* Simple wrapper `new Date().toISOString()`
|
|
14657
|
-
*
|
|
14658
|
-
* Note: `$` is used to indicate that this function is not a pure function - it is not deterministic because it depends on the current time
|
|
14659
|
-
*
|
|
14660
|
-
* @returns string_date branded type
|
|
14661
|
-
* @public exported from `@promptbook/utils`
|
|
14662
|
-
*/
|
|
14663
|
-
function $getCurrentDate() {
|
|
14664
|
-
return new Date().toISOString();
|
|
14665
|
-
}
|
|
14666
|
-
|
|
14667
14832
|
/**
|
|
14668
14833
|
* Intercepts LLM tools and counts total usage of the tools
|
|
14669
14834
|
*
|
|
@@ -15290,17 +15455,17 @@ const OPENAI_MODELS = exportJson({
|
|
|
15290
15455
|
},
|
|
15291
15456
|
/**/
|
|
15292
15457
|
/*/
|
|
15293
|
-
|
|
15294
|
-
|
|
15295
|
-
|
|
15296
|
-
|
|
15297
|
-
|
|
15458
|
+
{
|
|
15459
|
+
modelTitle: 'tts-1-hd-1106',
|
|
15460
|
+
modelName: 'tts-1-hd-1106',
|
|
15461
|
+
},
|
|
15462
|
+
/**/
|
|
15298
15463
|
/*/
|
|
15299
|
-
|
|
15300
|
-
|
|
15301
|
-
|
|
15302
|
-
|
|
15303
|
-
|
|
15464
|
+
{
|
|
15465
|
+
modelTitle: 'tts-1-hd',
|
|
15466
|
+
modelName: 'tts-1-hd',
|
|
15467
|
+
},
|
|
15468
|
+
/**/
|
|
15304
15469
|
/**/
|
|
15305
15470
|
{
|
|
15306
15471
|
modelVariant: 'CHAT',
|
|
@@ -16661,15 +16826,19 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
16661
16826
|
},
|
|
16662
16827
|
});
|
|
16663
16828
|
}
|
|
16664
|
-
|
|
16829
|
+
/*
|
|
16830
|
+
public async playground() {
|
|
16665
16831
|
const client = await this.getClient();
|
|
16832
|
+
|
|
16666
16833
|
// List all assistants
|
|
16667
16834
|
const assistants = await client.beta.assistants.list();
|
|
16668
16835
|
console.log('!!! Assistants:', assistants);
|
|
16836
|
+
|
|
16669
16837
|
// Get details of a specific assistant
|
|
16670
16838
|
const assistantId = 'asst_MO8fhZf4dGloCfXSHeLcIik0';
|
|
16671
16839
|
const assistant = await client.beta.assistants.retrieve(assistantId);
|
|
16672
16840
|
console.log('!!! Assistant Details:', assistant);
|
|
16841
|
+
|
|
16673
16842
|
// Update an assistant
|
|
16674
16843
|
const updatedAssistant = await client.beta.assistants.update(assistantId, {
|
|
16675
16844
|
name: assistant.name + '(M)',
|
|
@@ -16679,8 +16848,19 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
16679
16848
|
},
|
|
16680
16849
|
});
|
|
16681
16850
|
console.log('!!! Updated Assistant:', updatedAssistant);
|
|
16851
|
+
|
|
16682
16852
|
await forEver();
|
|
16683
16853
|
}
|
|
16854
|
+
*/
|
|
16855
|
+
/**
|
|
16856
|
+
* Get an existing assistant tool wrapper
|
|
16857
|
+
*/
|
|
16858
|
+
getAssistant(assistantId) {
|
|
16859
|
+
return new OpenAiAssistantExecutionTools({
|
|
16860
|
+
...this.options,
|
|
16861
|
+
assistantId,
|
|
16862
|
+
});
|
|
16863
|
+
}
|
|
16684
16864
|
async createNewAssistant(options) {
|
|
16685
16865
|
if (!this.isCreatingNewAssistantsAllowed) {
|
|
16686
16866
|
throw new NotAllowed(`Creating new assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
|
|
@@ -16775,6 +16955,95 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
16775
16955
|
assistantId: assistant.id,
|
|
16776
16956
|
});
|
|
16777
16957
|
}
|
|
16958
|
+
async updateAssistant(options) {
|
|
16959
|
+
if (!this.isCreatingNewAssistantsAllowed) {
|
|
16960
|
+
throw new NotAllowed(`Updating assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
|
|
16961
|
+
}
|
|
16962
|
+
const { assistantId, name, instructions, knowledgeSources } = options;
|
|
16963
|
+
const client = await this.getClient();
|
|
16964
|
+
let vectorStoreId;
|
|
16965
|
+
// If knowledge sources are provided, create a vector store with them
|
|
16966
|
+
// TODO: [š§ ] Reuse vector store creation logic from createNewAssistant
|
|
16967
|
+
if (knowledgeSources && knowledgeSources.length > 0) {
|
|
16968
|
+
if (this.options.isVerbose) {
|
|
16969
|
+
console.info(`š Creating vector store for update with ${knowledgeSources.length} knowledge sources...`);
|
|
16970
|
+
}
|
|
16971
|
+
// Create a vector store
|
|
16972
|
+
const vectorStore = await client.beta.vectorStores.create({
|
|
16973
|
+
name: `${name} Knowledge Base`,
|
|
16974
|
+
});
|
|
16975
|
+
vectorStoreId = vectorStore.id;
|
|
16976
|
+
if (this.options.isVerbose) {
|
|
16977
|
+
console.info(`ā
Vector store created: ${vectorStoreId}`);
|
|
16978
|
+
}
|
|
16979
|
+
// Upload files from knowledge sources to the vector store
|
|
16980
|
+
const fileStreams = [];
|
|
16981
|
+
for (const source of knowledgeSources) {
|
|
16982
|
+
try {
|
|
16983
|
+
// Check if it's a URL
|
|
16984
|
+
if (source.startsWith('http://') || source.startsWith('https://')) {
|
|
16985
|
+
// Download the file
|
|
16986
|
+
const response = await fetch(source);
|
|
16987
|
+
if (!response.ok) {
|
|
16988
|
+
console.error(`Failed to download ${source}: ${response.statusText}`);
|
|
16989
|
+
continue;
|
|
16990
|
+
}
|
|
16991
|
+
const buffer = await response.arrayBuffer();
|
|
16992
|
+
const filename = source.split('/').pop() || 'downloaded-file';
|
|
16993
|
+
const blob = new Blob([buffer]);
|
|
16994
|
+
const file = new File([blob], filename);
|
|
16995
|
+
fileStreams.push(file);
|
|
16996
|
+
}
|
|
16997
|
+
else {
|
|
16998
|
+
// Assume it's a local file path
|
|
16999
|
+
// Note: This will work in Node.js environment
|
|
17000
|
+
// For browser environments, this would need different handling
|
|
17001
|
+
const fs = await import('fs');
|
|
17002
|
+
const fileStream = fs.createReadStream(source);
|
|
17003
|
+
fileStreams.push(fileStream);
|
|
17004
|
+
}
|
|
17005
|
+
}
|
|
17006
|
+
catch (error) {
|
|
17007
|
+
console.error(`Error processing knowledge source ${source}:`, error);
|
|
17008
|
+
}
|
|
17009
|
+
}
|
|
17010
|
+
// Batch upload files to the vector store
|
|
17011
|
+
if (fileStreams.length > 0) {
|
|
17012
|
+
try {
|
|
17013
|
+
await client.beta.vectorStores.fileBatches.uploadAndPoll(vectorStoreId, {
|
|
17014
|
+
files: fileStreams,
|
|
17015
|
+
});
|
|
17016
|
+
if (this.options.isVerbose) {
|
|
17017
|
+
console.info(`ā
Uploaded ${fileStreams.length} files to vector store`);
|
|
17018
|
+
}
|
|
17019
|
+
}
|
|
17020
|
+
catch (error) {
|
|
17021
|
+
console.error('Error uploading files to vector store:', error);
|
|
17022
|
+
}
|
|
17023
|
+
}
|
|
17024
|
+
}
|
|
17025
|
+
const assistantUpdate = {
|
|
17026
|
+
name,
|
|
17027
|
+
instructions,
|
|
17028
|
+
tools: [/* TODO: [š§ ] Maybe add { type: 'code_interpreter' }, */ { type: 'file_search' }],
|
|
17029
|
+
};
|
|
17030
|
+
if (vectorStoreId) {
|
|
17031
|
+
assistantUpdate.tool_resources = {
|
|
17032
|
+
file_search: {
|
|
17033
|
+
vector_store_ids: [vectorStoreId],
|
|
17034
|
+
},
|
|
17035
|
+
};
|
|
17036
|
+
}
|
|
17037
|
+
const assistant = await client.beta.assistants.update(assistantId, assistantUpdate);
|
|
17038
|
+
if (this.options.isVerbose) {
|
|
17039
|
+
console.log(`ā
Assistant updated: ${assistant.id}`);
|
|
17040
|
+
}
|
|
17041
|
+
return new OpenAiAssistantExecutionTools({
|
|
17042
|
+
...this.options,
|
|
17043
|
+
isCreatingNewAssistantsAllowed: false,
|
|
17044
|
+
assistantId: assistant.id,
|
|
17045
|
+
});
|
|
17046
|
+
}
|
|
16778
17047
|
/**
|
|
16779
17048
|
* Discriminant for type guards
|
|
16780
17049
|
*/
|
|
@@ -16916,27 +17185,58 @@ class AgentLlmExecutionTools {
|
|
|
16916
17185
|
const chatPrompt = prompt;
|
|
16917
17186
|
let underlyingLlmResult;
|
|
16918
17187
|
if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.options.llmTools)) {
|
|
16919
|
-
|
|
16920
|
-
|
|
17188
|
+
const requirementsHash = SHA256(JSON.stringify(modelRequirements)).toString();
|
|
17189
|
+
const cached = AgentLlmExecutionTools.assistantCache.get(this.title);
|
|
17190
|
+
let assistant;
|
|
17191
|
+
if (cached) {
|
|
17192
|
+
if (cached.requirementsHash === requirementsHash) {
|
|
17193
|
+
if (this.options.isVerbose) {
|
|
17194
|
+
console.log(`1ļøā£ Using cached OpenAI Assistant for agent ${this.title}...`);
|
|
17195
|
+
}
|
|
17196
|
+
assistant = this.options.llmTools.getAssistant(cached.assistantId);
|
|
17197
|
+
}
|
|
17198
|
+
else {
|
|
17199
|
+
if (this.options.isVerbose) {
|
|
17200
|
+
console.log(`1ļøā£ Updating OpenAI Assistant for agent ${this.title}...`);
|
|
17201
|
+
}
|
|
17202
|
+
assistant = await this.options.llmTools.updateAssistant({
|
|
17203
|
+
assistantId: cached.assistantId,
|
|
17204
|
+
name: this.title,
|
|
17205
|
+
instructions: modelRequirements.systemMessage,
|
|
17206
|
+
knowledgeSources: modelRequirements.knowledgeSources,
|
|
17207
|
+
});
|
|
17208
|
+
AgentLlmExecutionTools.assistantCache.set(this.title, {
|
|
17209
|
+
assistantId: assistant.assistantId,
|
|
17210
|
+
requirementsHash,
|
|
17211
|
+
});
|
|
17212
|
+
}
|
|
16921
17213
|
}
|
|
16922
|
-
|
|
16923
|
-
|
|
16924
|
-
|
|
16925
|
-
instructions: modelRequirements.systemMessage,
|
|
16926
|
-
knowledgeSources: modelRequirements.knowledgeSources,
|
|
16927
|
-
/*
|
|
16928
|
-
!!!
|
|
16929
|
-
metadata: {
|
|
16930
|
-
agentModelName: this.modelName,
|
|
17214
|
+
else {
|
|
17215
|
+
if (this.options.isVerbose) {
|
|
17216
|
+
console.log(`1ļøā£ Creating new OpenAI Assistant for agent ${this.title}...`);
|
|
16931
17217
|
}
|
|
16932
|
-
|
|
16933
|
-
|
|
16934
|
-
|
|
17218
|
+
// <- TODO: !!! Check also `isCreatingNewAssistantsAllowed` and warn about it
|
|
17219
|
+
assistant = await this.options.llmTools.createNewAssistant({
|
|
17220
|
+
name: this.title,
|
|
17221
|
+
instructions: modelRequirements.systemMessage,
|
|
17222
|
+
knowledgeSources: modelRequirements.knowledgeSources,
|
|
17223
|
+
/*
|
|
17224
|
+
!!!
|
|
17225
|
+
metadata: {
|
|
17226
|
+
agentModelName: this.modelName,
|
|
17227
|
+
}
|
|
17228
|
+
*/
|
|
17229
|
+
});
|
|
17230
|
+
AgentLlmExecutionTools.assistantCache.set(this.title, {
|
|
17231
|
+
assistantId: assistant.assistantId,
|
|
17232
|
+
requirementsHash,
|
|
17233
|
+
});
|
|
17234
|
+
}
|
|
16935
17235
|
underlyingLlmResult = await assistant.callChatModel(chatPrompt);
|
|
16936
17236
|
}
|
|
16937
17237
|
else {
|
|
16938
17238
|
if (this.options.isVerbose) {
|
|
16939
|
-
console.log(`Creating Assistant ${this.title} on generic LLM execution tools...`);
|
|
17239
|
+
console.log(`2ļøā£ Creating Assistant ${this.title} on generic LLM execution tools...`);
|
|
16940
17240
|
}
|
|
16941
17241
|
// Create modified chat prompt with agent system message
|
|
16942
17242
|
const modifiedChatPrompt = {
|
|
@@ -16966,6 +17266,10 @@ class AgentLlmExecutionTools {
|
|
|
16966
17266
|
return agentResult;
|
|
16967
17267
|
}
|
|
16968
17268
|
}
|
|
17269
|
+
/**
|
|
17270
|
+
* Cache of OpenAI assistants to avoid creating duplicates
|
|
17271
|
+
*/
|
|
17272
|
+
AgentLlmExecutionTools.assistantCache = new Map();
|
|
16969
17273
|
/**
|
|
16970
17274
|
* TODO: [š] Implement Destroyable pattern to free resources
|
|
16971
17275
|
* TODO: [š§ ] Adding parameter substitution support (here or should be responsibility of the underlying LLM Tools)
|
|
@@ -16983,6 +17287,18 @@ class AgentLlmExecutionTools {
|
|
|
16983
17287
|
* @public exported from `@promptbook/core`
|
|
16984
17288
|
*/
|
|
16985
17289
|
class Agent extends AgentLlmExecutionTools {
|
|
17290
|
+
/**
|
|
17291
|
+
* Name of the agent
|
|
17292
|
+
*/
|
|
17293
|
+
get agentName() {
|
|
17294
|
+
return this._agentName || createDefaultAgentName(this.agentSource.value);
|
|
17295
|
+
}
|
|
17296
|
+
/**
|
|
17297
|
+
* Computed hash of the agent source for integrity verification
|
|
17298
|
+
*/
|
|
17299
|
+
get agentHash() {
|
|
17300
|
+
return computeAgentHash(this.agentSource.value);
|
|
17301
|
+
}
|
|
16986
17302
|
/**
|
|
16987
17303
|
* Not used in Agent, always returns empty array
|
|
16988
17304
|
*/
|
|
@@ -16998,10 +17314,7 @@ class Agent extends AgentLlmExecutionTools {
|
|
|
16998
17314
|
llmTools: getSingleLlmExecutionTools(options.executionTools.llm),
|
|
16999
17315
|
agentSource: agentSource.value, // <- TODO: !!!! Allow to pass BehaviorSubject<string_book> OR refresh llmExecutionTools.callChat on agentSource change
|
|
17000
17316
|
});
|
|
17001
|
-
|
|
17002
|
-
* Name of the agent
|
|
17003
|
-
*/
|
|
17004
|
-
this.agentName = null;
|
|
17317
|
+
this._agentName = undefined;
|
|
17005
17318
|
/**
|
|
17006
17319
|
* Description of the agent
|
|
17007
17320
|
*/
|
|
@@ -17010,12 +17323,12 @@ class Agent extends AgentLlmExecutionTools {
|
|
|
17010
17323
|
* Metadata like image or color
|
|
17011
17324
|
*/
|
|
17012
17325
|
this.meta = {};
|
|
17013
|
-
// TODO:
|
|
17014
|
-
// TODO:
|
|
17326
|
+
// TODO: !!!!! Add `Agent` simple "mocked" learning by appending to agent source
|
|
17327
|
+
// TODO: !!!!! Add `Agent` learning by promptbookAgent
|
|
17015
17328
|
this.agentSource = agentSource;
|
|
17016
17329
|
this.agentSource.subscribe((source) => {
|
|
17017
17330
|
const { agentName, personaDescription, meta } = parseAgentSource(source);
|
|
17018
|
-
this.
|
|
17331
|
+
this._agentName = agentName;
|
|
17019
17332
|
this.personaDescription = personaDescription;
|
|
17020
17333
|
this.meta = { ...this.meta, ...meta };
|
|
17021
17334
|
});
|
|
@@ -17089,9 +17402,9 @@ const _AgentRegistration = $llmToolsRegister.register(createAgentLlmExecutionToo
|
|
|
17089
17402
|
/**
|
|
17090
17403
|
* Represents one AI Agent
|
|
17091
17404
|
*
|
|
17092
|
-
*
|
|
17405
|
+
* !!!!!! Note: [š¦] There are several different things in Promptbook:
|
|
17093
17406
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
17094
|
-
*
|
|
17407
|
+
* !!!!!! `RemoteAgent`
|
|
17095
17408
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
17096
17409
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
17097
17410
|
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
@@ -17106,7 +17419,7 @@ class RemoteAgent extends Agent {
|
|
|
17106
17419
|
// <- TODO: !!!! Maybe use promptbookFetch
|
|
17107
17420
|
const agentSourceValue = (await bookResponse.text());
|
|
17108
17421
|
const agentSource = new BehaviorSubject(agentSourceValue);
|
|
17109
|
-
// <- TODO:
|
|
17422
|
+
// <- TODO: !!!! Support updating and self-updating
|
|
17110
17423
|
return new RemoteAgent({
|
|
17111
17424
|
...options,
|
|
17112
17425
|
executionTools: {
|
|
@@ -17167,7 +17480,7 @@ class RemoteAgent extends Agent {
|
|
|
17167
17480
|
reader.releaseLock();
|
|
17168
17481
|
}
|
|
17169
17482
|
}
|
|
17170
|
-
// <- TODO:
|
|
17483
|
+
// <- TODO: !!!! Transfer metadata
|
|
17171
17484
|
const agentResult = {
|
|
17172
17485
|
content,
|
|
17173
17486
|
modelName: this.modelName,
|
|
@@ -17176,7 +17489,7 @@ class RemoteAgent extends Agent {
|
|
|
17176
17489
|
rawPromptContent: {},
|
|
17177
17490
|
rawRequest: {},
|
|
17178
17491
|
rawResponse: {},
|
|
17179
|
-
// <- TODO:
|
|
17492
|
+
// <- TODO: !!!! Transfer and proxy the metadata
|
|
17180
17493
|
};
|
|
17181
17494
|
return agentResult;
|
|
17182
17495
|
}
|
|
@@ -17307,24 +17620,6 @@ const _AzureOpenAiMetadataRegistration = $llmToolsMetadataRegister.register({
|
|
|
17307
17620
|
* Note: [š] Ignore a discrepancy between file name and entity name
|
|
17308
17621
|
*/
|
|
17309
17622
|
|
|
17310
|
-
/**
|
|
17311
|
-
* Detects if the code is running in jest environment
|
|
17312
|
-
*
|
|
17313
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
17314
|
-
*
|
|
17315
|
-
* @public exported from `@promptbook/utils`
|
|
17316
|
-
*/
|
|
17317
|
-
const $isRunningInJest = new Function(`
|
|
17318
|
-
try {
|
|
17319
|
-
return process.env.JEST_WORKER_ID !== undefined;
|
|
17320
|
-
} catch (e) {
|
|
17321
|
-
return false;
|
|
17322
|
-
}
|
|
17323
|
-
`);
|
|
17324
|
-
/**
|
|
17325
|
-
* TODO: [šŗ]
|
|
17326
|
-
*/
|
|
17327
|
-
|
|
17328
17623
|
/**
|
|
17329
17624
|
* Registration of LLM provider metadata
|
|
17330
17625
|
*
|
|
@@ -17677,61 +17972,6 @@ function isValidPipelineString(pipelineString) {
|
|
|
17677
17972
|
* TODO: [š§ ][š“] Where is the best location for this file
|
|
17678
17973
|
*/
|
|
17679
17974
|
|
|
17680
|
-
/**
|
|
17681
|
-
* Tag function for notating a prompt as template literal
|
|
17682
|
-
*
|
|
17683
|
-
* Note: There are 3 similar functions:
|
|
17684
|
-
* 1) `prompt` for notating single prompt exported from `@promptbook/utils`
|
|
17685
|
-
* 2) `promptTemplate` alias for `prompt`
|
|
17686
|
-
* 3) `book` for notating and validating entire books exported from `@promptbook/utils`
|
|
17687
|
-
*
|
|
17688
|
-
* @param strings
|
|
17689
|
-
* @param values
|
|
17690
|
-
* @returns the prompt string
|
|
17691
|
-
* @public exported from `@promptbook/utils`
|
|
17692
|
-
*/
|
|
17693
|
-
function prompt(strings, ...values) {
|
|
17694
|
-
if (values.length === 0) {
|
|
17695
|
-
return spaceTrim$1(strings.join(''));
|
|
17696
|
-
}
|
|
17697
|
-
const stringsWithHiddenParameters = strings.map((stringsItem) =>
|
|
17698
|
-
// TODO: [0] DRY
|
|
17699
|
-
stringsItem.split('{').join(`${REPLACING_NONCE}beginbracket`).split('}').join(`${REPLACING_NONCE}endbracket`));
|
|
17700
|
-
const placeholderParameterNames = values.map((value, i) => `${REPLACING_NONCE}${i}`);
|
|
17701
|
-
const parameters = Object.fromEntries(values.map((value, i) => [placeholderParameterNames[i], value]));
|
|
17702
|
-
// Combine strings and values
|
|
17703
|
-
let pipelineString = stringsWithHiddenParameters.reduce((result, stringsItem, i) => placeholderParameterNames[i] === undefined
|
|
17704
|
-
? `${result}${stringsItem}`
|
|
17705
|
-
: `${result}${stringsItem}{${placeholderParameterNames[i]}}`, '');
|
|
17706
|
-
pipelineString = spaceTrim$1(pipelineString);
|
|
17707
|
-
try {
|
|
17708
|
-
pipelineString = templateParameters(pipelineString, parameters);
|
|
17709
|
-
}
|
|
17710
|
-
catch (error) {
|
|
17711
|
-
if (!(error instanceof PipelineExecutionError)) {
|
|
17712
|
-
throw error;
|
|
17713
|
-
}
|
|
17714
|
-
console.error({ pipelineString, parameters, placeholderParameterNames, error });
|
|
17715
|
-
throw new UnexpectedError(spaceTrim$1((block) => `
|
|
17716
|
-
Internal error in prompt template literal
|
|
17717
|
-
|
|
17718
|
-
${block(JSON.stringify({ strings, values }, null, 4))}}
|
|
17719
|
-
|
|
17720
|
-
`));
|
|
17721
|
-
}
|
|
17722
|
-
// TODO: [0] DRY
|
|
17723
|
-
pipelineString = pipelineString
|
|
17724
|
-
.split(`${REPLACING_NONCE}beginbracket`)
|
|
17725
|
-
.join('{')
|
|
17726
|
-
.split(`${REPLACING_NONCE}endbracket`)
|
|
17727
|
-
.join('}');
|
|
17728
|
-
return pipelineString;
|
|
17729
|
-
}
|
|
17730
|
-
/**
|
|
17731
|
-
* TODO: [š§ ][š“] Where is the best location for this file
|
|
17732
|
-
* Note: [š] Ignore a discrepancy between file name and entity name
|
|
17733
|
-
*/
|
|
17734
|
-
|
|
17735
17975
|
/**
|
|
17736
17976
|
* Tag function for notating a pipeline with a book\`...\ notation as template literal
|
|
17737
17977
|
*
|
|
@@ -18267,7 +18507,7 @@ const OpenAiSdkTranspiler = {
|
|
|
18267
18507
|
});
|
|
18268
18508
|
|
|
18269
18509
|
const answer = response.choices[0].message.content;
|
|
18270
|
-
console.log('\\nš§ ${agentName}:', answer, '\\n');
|
|
18510
|
+
console.log('\\nš§ ${agentName /* <- TODO: [š] There should be `agentFullname` not `agentName` */}:', answer, '\\n');
|
|
18271
18511
|
|
|
18272
18512
|
chatHistory.push({ role: 'assistant', content: answer });
|
|
18273
18513
|
promptUser();
|
|
@@ -18286,7 +18526,7 @@ const OpenAiSdkTranspiler = {
|
|
|
18286
18526
|
|
|
18287
18527
|
(async () => {
|
|
18288
18528
|
await setupKnowledge();
|
|
18289
|
-
console.log("š¤ Chat with ${agentName} (type 'exit' to quit)\\n");
|
|
18529
|
+
console.log("š¤ Chat with ${agentName /* <- TODO: [š] There should be `agentFullname` not `agentName` */} (type 'exit' to quit)\\n");
|
|
18290
18530
|
promptUser();
|
|
18291
18531
|
})();
|
|
18292
18532
|
`);
|
|
@@ -18333,7 +18573,7 @@ const OpenAiSdkTranspiler = {
|
|
|
18333
18573
|
});
|
|
18334
18574
|
|
|
18335
18575
|
const answer = response.choices[0].message.content;
|
|
18336
|
-
console.log('\\nš§ ${agentName}:', answer, '\\n');
|
|
18576
|
+
console.log('\\nš§ ${agentName /* <- TODO: [š] There should be `agentFullname` not `agentName` */}:', answer, '\\n');
|
|
18337
18577
|
|
|
18338
18578
|
chatHistory.push({ role: 'assistant', content: answer });
|
|
18339
18579
|
promptUser();
|
|
@@ -18350,7 +18590,7 @@ const OpenAiSdkTranspiler = {
|
|
|
18350
18590
|
});
|
|
18351
18591
|
}
|
|
18352
18592
|
|
|
18353
|
-
console.log("š¤ Chat with ${agentName} (type 'exit' to quit)\\n");
|
|
18593
|
+
console.log("š¤ Chat with ${agentName /* <- TODO: [š] There should be `agentFullname` not `agentName` */} (type 'exit' to quit)\\n");
|
|
18354
18594
|
promptUser();
|
|
18355
18595
|
|
|
18356
18596
|
`);
|
|
@@ -18358,25 +18598,6 @@ const OpenAiSdkTranspiler = {
|
|
|
18358
18598
|
},
|
|
18359
18599
|
};
|
|
18360
18600
|
|
|
18361
|
-
/**
|
|
18362
|
-
* Returns information about the current runtime environment
|
|
18363
|
-
*
|
|
18364
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environments
|
|
18365
|
-
*
|
|
18366
|
-
* @public exported from `@promptbook/utils`
|
|
18367
|
-
*/
|
|
18368
|
-
function $detectRuntimeEnvironment() {
|
|
18369
|
-
return {
|
|
18370
|
-
isRunningInBrowser: $isRunningInBrowser(),
|
|
18371
|
-
isRunningInJest: $isRunningInJest(),
|
|
18372
|
-
isRunningInNode: $isRunningInNode(),
|
|
18373
|
-
isRunningInWebWorker: $isRunningInWebWorker(),
|
|
18374
|
-
};
|
|
18375
|
-
}
|
|
18376
|
-
/**
|
|
18377
|
-
* TODO: [šŗ] Also detect and report node version here
|
|
18378
|
-
*/
|
|
18379
|
-
|
|
18380
18601
|
/**
|
|
18381
18602
|
* Provide information about Promptbook, engine version, book language version, servers, ...
|
|
18382
18603
|
*
|
|
@@ -18555,7 +18776,7 @@ function $generateBookBoilerplate(options) {
|
|
|
18555
18776
|
const agentSource = validateBook(spaceTrim$1((block) => `
|
|
18556
18777
|
${agentName}
|
|
18557
18778
|
|
|
18558
|
-
META COLOR ${color || '#3498db' /* <- TODO: !!!! Best default color */}
|
|
18779
|
+
META COLOR ${color || '#3498db' /* <- TODO: [š§ ] !!!! Best default color */}
|
|
18559
18780
|
PERSONA ${block(personaDescription)}
|
|
18560
18781
|
`));
|
|
18561
18782
|
return agentSource;
|
|
@@ -18564,5 +18785,5 @@ function $generateBookBoilerplate(options) {
|
|
|
18564
18785
|
* TODO: [š¤¶] Maybe export through `@promptbook/utils` or `@promptbook/random` package
|
|
18565
18786
|
*/
|
|
18566
18787
|
|
|
18567
|
-
export { $bookTranspilersRegister, $generateBookBoilerplate, $llmToolsMetadataRegister, $llmToolsRegister, $scrapersMetadataRegister, $scrapersRegister, ADMIN_EMAIL, ADMIN_GITHUB_NAME, API_REQUEST_TIMEOUT, AbstractFormatError, Agent, AgentCollectionInSupabase, AgentLlmExecutionTools, AuthenticationError, BIG_DATASET_TRESHOLD, BOOK_LANGUAGE_VERSION, BlackholeStorage, BoilerplateError, BoilerplateFormfactorDefinition, CLAIM, CLI_APP_ID, CallbackInterfaceTools, ChatbotFormfactorDefinition, CollectionError, CompletionFormfactorDefinition, CsvFormatError, CsvFormatParser, DEFAULT_AGENTS_DIRNAME, DEFAULT_BOOK, DEFAULT_BOOKS_DIRNAME, DEFAULT_BOOK_OUTPUT_PARAMETER_NAME, DEFAULT_BOOK_TITLE, DEFAULT_CSV_SETTINGS, DEFAULT_DOWNLOAD_CACHE_DIRNAME, DEFAULT_EXECUTION_CACHE_DIRNAME, DEFAULT_GET_PIPELINE_COLLECTION_FUNCTION_NAME, DEFAULT_INTERMEDIATE_FILES_STRATEGY, DEFAULT_IS_AUTO_INSTALLED, DEFAULT_IS_VERBOSE, DEFAULT_MAX_EXECUTION_ATTEMPTS, DEFAULT_MAX_FILE_SIZE, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_DEPTH, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_TOTAL, DEFAULT_MAX_PARALLEL_COUNT, DEFAULT_MAX_REQUESTS_PER_MINUTE, DEFAULT_PIPELINE_COLLECTION_BASE_FILENAME, DEFAULT_PROMPT_TASK_TITLE, DEFAULT_REMOTE_SERVER_URL, DEFAULT_SCRAPE_CACHE_DIRNAME, DEFAULT_TASK_SIMULATED_DURATION_MS, DEFAULT_TASK_TITLE, DatabaseError, EXPECTATION_UNITS, EnvironmentMismatchError, ExecutionReportStringOptionsDefaults, ExpectError, FAILED_VALUE_PLACEHOLDER, FORMFACTOR_DEFINITIONS, FormattedBookInMarkdownTranspiler, GENERIC_PIPELINE_INTERFACE, GeneratorFormfactorDefinition, GenericFormfactorDefinition, ImageGeneratorFormfactorDefinition, KnowledgeScrapeError, LimitReachedError, MANDATORY_CSV_SETTINGS, MAX_FILENAME_LENGTH, MODEL_ORDERS, MODEL_TRUST_LEVELS, MODEL_VARIANTS, MatcherFormfactorDefinition, MemoryStorage, MissingToolsError, MultipleLlmExecutionTools, NAME, NonTaskSectionTypes, NotAllowed, NotFoundError, NotYetImplementedCommitmentDefinition, NotYetImplementedError, ORDER_OF_PIPELINE_JSON, OpenAiSdkTranspiler, PADDING_LINES, PENDING_VALUE_PLACEHOLDER, PLAYGROUND_APP_ID, PROMPTBOOK_CHAT_COLOR, PROMPTBOOK_COLOR, PROMPTBOOK_ENGINE_VERSION, PROMPTBOOK_ERRORS, PROMPTBOOK_LOGO_URL, PROMPTBOOK_SYNTAX_COLORS, ParseError, PipelineExecutionError, PipelineLogicError, PipelineUrlError, PrefixStorage, PromptbookFetchError, REMOTE_SERVER_URLS, RESERVED_PARAMETER_NAMES, RemoteAgent, SET_IS_VERBOSE, SectionTypes, SheetsFormfactorDefinition, TaskTypes, TextFormatParser, TranslatorFormfactorDefinition, UNCERTAIN_USAGE, UNCERTAIN_ZERO_VALUE, USER_CHAT_COLOR, UnexpectedError, WrappedError, ZERO_USAGE, ZERO_VALUE, _AgentMetadata, _AgentRegistration, _AnthropicClaudeMetadataRegistration, _AzureOpenAiMetadataRegistration, _BoilerplateScraperMetadataRegistration, _DeepseekMetadataRegistration, _DocumentScraperMetadataRegistration, _GoogleMetadataRegistration, _LegacyDocumentScraperMetadataRegistration, _MarkdownScraperMetadataRegistration, _MarkitdownScraperMetadataRegistration, _OllamaMetadataRegistration, _OpenAiAssistantMetadataRegistration, _OpenAiCompatibleMetadataRegistration, _OpenAiMetadataRegistration, _PdfScraperMetadataRegistration, _WebsiteScraperMetadataRegistration, aboutPromptbookInformation, addUsage, book, cacheLlmTools, compilePipeline, computeCosineSimilarity, countUsage, createAgentLlmExecutionTools, createAgentModelRequirements, createAgentModelRequirementsWithCommitments, createBasicAgentModelRequirements, createEmptyAgentModelRequirements, createLlmToolsFromConfiguration, createPipelineCollectionFromJson, createPipelineCollectionFromPromise, createPipelineCollectionFromUrl, createPipelineExecutor, createPipelineSubcollection, embeddingVectorToString, executionReportJsonToString, extractParameterNamesFromTask, filterModels, generatePlaceholderAgentProfileImageUrl, getAllCommitmentDefinitions, getAllCommitmentTypes, getCommitmentDefinition, getPipelineInterface, getSingleLlmExecutionTools, identificationToPromptbookToken, isCommitmentSupported, isPassingExpectations, isPipelineImplementingInterface, isPipelineInterfacesEqual, isPipelinePrepared, isValidBook, isValidPipelineString, joinLlmExecutionTools, limitTotalUsage, makeKnowledgeSourceHandler, migratePipeline, padBook, parseAgentSource, parseParameters, parsePipeline, pipelineCollectionToJson, pipelineJsonToString, prepareKnowledgePieces, preparePersona, preparePipeline, prettifyPipelineString, promptbookFetch, promptbookTokenToIdentification, unpreparePipeline, usageToHuman, usageToWorktime, validateBook, validatePipeline, validatePipelineString };
|
|
18788
|
+
export { $bookTranspilersRegister, $generateBookBoilerplate, $llmToolsMetadataRegister, $llmToolsRegister, $scrapersMetadataRegister, $scrapersRegister, ADMIN_EMAIL, ADMIN_GITHUB_NAME, API_REQUEST_TIMEOUT, AbstractFormatError, Agent, AgentCollectionInSupabase, AgentLlmExecutionTools, AuthenticationError, BIG_DATASET_TRESHOLD, BOOK_LANGUAGE_VERSION, BlackholeStorage, BoilerplateError, BoilerplateFormfactorDefinition, CLAIM, CLI_APP_ID, CallbackInterfaceTools, ChatbotFormfactorDefinition, CollectionError, CompletionFormfactorDefinition, CsvFormatError, CsvFormatParser, DEFAULT_AGENTS_DIRNAME, DEFAULT_BOOK, DEFAULT_BOOKS_DIRNAME, DEFAULT_BOOK_OUTPUT_PARAMETER_NAME, DEFAULT_BOOK_TITLE, DEFAULT_CSV_SETTINGS, DEFAULT_DOWNLOAD_CACHE_DIRNAME, DEFAULT_EXECUTION_CACHE_DIRNAME, DEFAULT_GET_PIPELINE_COLLECTION_FUNCTION_NAME, DEFAULT_INTERMEDIATE_FILES_STRATEGY, DEFAULT_IS_AUTO_INSTALLED, DEFAULT_IS_VERBOSE, DEFAULT_MAX_EXECUTION_ATTEMPTS, DEFAULT_MAX_FILE_SIZE, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_DEPTH, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_TOTAL, DEFAULT_MAX_PARALLEL_COUNT, DEFAULT_MAX_REQUESTS_PER_MINUTE, DEFAULT_PIPELINE_COLLECTION_BASE_FILENAME, DEFAULT_PROMPT_TASK_TITLE, DEFAULT_REMOTE_SERVER_URL, DEFAULT_SCRAPE_CACHE_DIRNAME, DEFAULT_TASK_SIMULATED_DURATION_MS, DEFAULT_TASK_TITLE, DatabaseError, EXPECTATION_UNITS, EnvironmentMismatchError, ExecutionReportStringOptionsDefaults, ExpectError, FAILED_VALUE_PLACEHOLDER, FORMFACTOR_DEFINITIONS, FormattedBookInMarkdownTranspiler, GENERIC_PIPELINE_INTERFACE, GeneratorFormfactorDefinition, GenericFormfactorDefinition, ImageGeneratorFormfactorDefinition, KnowledgeScrapeError, LimitReachedError, MANDATORY_CSV_SETTINGS, MAX_FILENAME_LENGTH, MODEL_ORDERS, MODEL_TRUST_LEVELS, MODEL_VARIANTS, MatcherFormfactorDefinition, MemoryStorage, MissingToolsError, MultipleLlmExecutionTools, NAME, NonTaskSectionTypes, NotAllowed, NotFoundError, NotYetImplementedCommitmentDefinition, NotYetImplementedError, ORDER_OF_PIPELINE_JSON, OpenAiSdkTranspiler, PADDING_LINES, PENDING_VALUE_PLACEHOLDER, PLAYGROUND_APP_ID, PROMPTBOOK_CHAT_COLOR, PROMPTBOOK_COLOR, PROMPTBOOK_ENGINE_VERSION, PROMPTBOOK_ERRORS, PROMPTBOOK_LOGO_URL, PROMPTBOOK_SYNTAX_COLORS, ParseError, PipelineExecutionError, PipelineLogicError, PipelineUrlError, PrefixStorage, PromptbookFetchError, REMOTE_SERVER_URLS, RESERVED_PARAMETER_NAMES, RemoteAgent, SET_IS_VERBOSE, SectionTypes, SheetsFormfactorDefinition, TaskTypes, TextFormatParser, TranslatorFormfactorDefinition, UNCERTAIN_USAGE, UNCERTAIN_ZERO_VALUE, USER_CHAT_COLOR, UnexpectedError, WrappedError, ZERO_USAGE, ZERO_VALUE, _AgentMetadata, _AgentRegistration, _AnthropicClaudeMetadataRegistration, _AzureOpenAiMetadataRegistration, _BoilerplateScraperMetadataRegistration, _DeepseekMetadataRegistration, _DocumentScraperMetadataRegistration, _GoogleMetadataRegistration, _LegacyDocumentScraperMetadataRegistration, _MarkdownScraperMetadataRegistration, _MarkitdownScraperMetadataRegistration, _OllamaMetadataRegistration, _OpenAiAssistantMetadataRegistration, _OpenAiCompatibleMetadataRegistration, _OpenAiMetadataRegistration, _PdfScraperMetadataRegistration, _WebsiteScraperMetadataRegistration, aboutPromptbookInformation, addUsage, book, cacheLlmTools, compilePipeline, computeAgentHash, computeCosineSimilarity, countUsage, createAgentLlmExecutionTools, createAgentModelRequirements, createAgentModelRequirementsWithCommitments, createBasicAgentModelRequirements, createDefaultAgentName, createEmptyAgentModelRequirements, createLlmToolsFromConfiguration, createPipelineCollectionFromJson, createPipelineCollectionFromPromise, createPipelineCollectionFromUrl, createPipelineExecutor, createPipelineSubcollection, embeddingVectorToString, executionReportJsonToString, extractParameterNamesFromTask, filterModels, generatePlaceholderAgentProfileImageUrl, getAllCommitmentDefinitions, getAllCommitmentTypes, getCommitmentDefinition, getPipelineInterface, getSingleLlmExecutionTools, identificationToPromptbookToken, isCommitmentSupported, isPassingExpectations, isPipelineImplementingInterface, isPipelineInterfacesEqual, isPipelinePrepared, isValidBook, isValidPipelineString, joinLlmExecutionTools, limitTotalUsage, makeKnowledgeSourceHandler, migratePipeline, normalizeAgentName, padBook, parseAgentSource, parseParameters, parsePipeline, pipelineCollectionToJson, pipelineJsonToString, prepareKnowledgePieces, preparePersona, preparePipeline, prettifyPipelineString, promptbookFetch, promptbookTokenToIdentification, unpreparePipeline, usageToHuman, usageToWorktime, validateBook, validatePipeline, validatePipelineString };
|
|
18568
18789
|
//# sourceMappingURL=index.es.js.map
|