@promptbook/core 0.103.0-46 → 0.103.0-48
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +1043 -779
- package/esm/index.es.js.map +1 -1
- package/esm/typings/servers.d.ts +1 -7
- package/esm/typings/src/_packages/components.index.d.ts +4 -0
- package/esm/typings/src/_packages/core.index.d.ts +22 -14
- package/esm/typings/src/_packages/types.index.d.ts +14 -6
- package/esm/typings/src/book-2.0/agent-source/AgentBasicInformation.d.ts +7 -3
- package/esm/typings/src/book-2.0/agent-source/AgentModelRequirements.d.ts +6 -1
- package/esm/typings/src/book-2.0/agent-source/AgentSourceParseResult.d.ts +3 -2
- package/esm/typings/src/book-2.0/agent-source/computeAgentHash.d.ts +8 -0
- package/esm/typings/src/book-2.0/agent-source/computeAgentHash.test.d.ts +1 -0
- package/esm/typings/src/book-2.0/agent-source/createCommitmentRegex.d.ts +1 -1
- package/esm/typings/src/book-2.0/agent-source/createDefaultAgentName.d.ts +8 -0
- package/esm/typings/src/book-2.0/agent-source/normalizeAgentName.d.ts +9 -0
- package/esm/typings/src/book-2.0/agent-source/normalizeAgentName.test.d.ts +1 -0
- package/esm/typings/src/book-2.0/agent-source/parseAgentSourceWithCommitments.d.ts +1 -1
- package/esm/typings/src/book-components/Chat/AgentChat/AgentChat.d.ts +14 -0
- package/esm/typings/src/book-components/Chat/AgentChat/AgentChat.test.d.ts +1 -0
- package/esm/typings/src/book-components/Chat/AgentChat/AgentChatProps.d.ts +13 -0
- package/esm/typings/src/collection/agent-collection/constructors/agent-collection-in-supabase/AgentCollectionInSupabase.d.ts +1 -60
- package/esm/typings/src/collection/agent-collection/constructors/agent-collection-in-supabase/AgentsDatabaseSchema.d.ts +57 -32
- package/esm/typings/src/{book-2.0/commitments → commitments}/ACTION/ACTION.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/DELETE/DELETE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/FORMAT/FORMAT.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/GOAL/GOAL.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/KNOWLEDGE/KNOWLEDGE.d.ts +1 -5
- package/esm/typings/src/{book-2.0/commitments → commitments}/MEMORY/MEMORY.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/MESSAGE/MESSAGE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/META/META.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/META_IMAGE/META_IMAGE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/META_LINK/META_LINK.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/MODEL/MODEL.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/NOTE/NOTE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/PERSONA/PERSONA.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/RULE/RULE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/SAMPLE/SAMPLE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/SCENARIO/SCENARIO.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/STYLE/STYLE.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/_base/BaseCommitmentDefinition.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/_base/CommitmentDefinition.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/_base/NotYetImplementedCommitmentDefinition.d.ts +1 -1
- package/esm/typings/src/{book-2.0/commitments → commitments}/_base/createEmptyAgentModelRequirements.d.ts +1 -1
- package/esm/typings/src/execution/LlmExecutionTools.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/utils/assertUniqueModels.d.ts +12 -0
- package/esm/typings/src/llm-providers/agent/Agent.d.ts +10 -9
- package/esm/typings/src/llm-providers/agent/AgentLlmExecutionTools.d.ts +5 -1
- package/esm/typings/src/llm-providers/agent/CreateAgentLlmExecutionToolsOptions.d.ts +1 -1
- package/esm/typings/src/llm-providers/agent/RemoteAgent.d.ts +32 -0
- package/esm/typings/src/llm-providers/agent/RemoteAgentOptions.d.ts +11 -0
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +29 -4
- package/esm/typings/src/llm-providers/openai/openai-models.test.d.ts +4 -0
- package/esm/typings/src/remote-server/startAgentServer.d.ts +1 -1
- package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -2
- package/esm/typings/src/storage/_common/PromptbookStorage.d.ts +1 -0
- package/esm/typings/src/transpilers/openai-sdk/register.d.ts +1 -1
- package/esm/typings/src/types/typeAliases.d.ts +12 -0
- package/esm/typings/src/utils/color/internal-utils/checkChannelValue.d.ts +0 -3
- package/esm/typings/src/utils/normalization/normalize-to-kebab-case.d.ts +2 -0
- package/esm/typings/src/utils/normalization/normalizeTo_PascalCase.d.ts +3 -0
- package/esm/typings/src/utils/normalization/normalizeTo_camelCase.d.ts +2 -0
- package/esm/typings/src/utils/normalization/titleToName.d.ts +2 -0
- package/esm/typings/src/utils/random/$generateBookBoilerplate.d.ts +2 -2
- package/esm/typings/src/utils/random/$randomFullnameWithColor.d.ts +1 -1
- package/esm/typings/src/version.d.ts +1 -1
- package/package.json +1 -1
- package/umd/index.umd.js +1051 -783
- package/umd/index.umd.js.map +1 -1
- /package/esm/typings/src/{book-2.0/commitments → commitments}/_base/BookCommitment.d.ts +0 -0
- /package/esm/typings/src/{book-2.0/commitments → commitments}/_base/ParsedCommitment.d.ts +0 -0
- /package/esm/typings/src/{book-2.0/commitments → commitments}/index.d.ts +0 -0
package/umd/index.umd.js
CHANGED
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
(function (global, factory) {
|
|
2
|
-
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('
|
|
3
|
-
typeof define === 'function' && define.amd ? define(['exports', '
|
|
4
|
-
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global["promptbook-core"] = {}, global.spaceTrim$1, global.crypto, global.rxjs, global.waitasecond, global.
|
|
5
|
-
})(this, (function (exports, spaceTrim$1, crypto, rxjs, waitasecond,
|
|
2
|
+
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('crypto-js'), require('crypto-js/enc-hex'), require('spacetrim'), require('crypto'), require('rxjs'), require('waitasecond'), require('crypto-js/sha256'), require('path'), require('mime-types'), require('papaparse'), require('moment'), require('colors'), require('bottleneck'), require('openai')) :
|
|
3
|
+
typeof define === 'function' && define.amd ? define(['exports', 'crypto-js', 'crypto-js/enc-hex', 'spacetrim', 'crypto', 'rxjs', 'waitasecond', 'crypto-js/sha256', 'path', 'mime-types', 'papaparse', 'moment', 'colors', 'bottleneck', 'openai'], factory) :
|
|
4
|
+
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global["promptbook-core"] = {}, global.cryptoJs, global.hexEncoder, global.spaceTrim$1, global.crypto, global.rxjs, global.waitasecond, global.sha256, global.path, global.mimeTypes, global.papaparse, global.moment, global.colors, global.Bottleneck, global.OpenAI));
|
|
5
|
+
})(this, (function (exports, cryptoJs, hexEncoder, spaceTrim$1, crypto, rxjs, waitasecond, sha256, path, mimeTypes, papaparse, moment, colors, Bottleneck, OpenAI) { 'use strict';
|
|
6
6
|
|
|
7
7
|
function _interopDefaultLegacy (e) { return e && typeof e === 'object' && 'default' in e ? e : { 'default': e }; }
|
|
8
8
|
|
|
9
|
-
var spaceTrim__default = /*#__PURE__*/_interopDefaultLegacy(spaceTrim$1);
|
|
10
9
|
var hexEncoder__default = /*#__PURE__*/_interopDefaultLegacy(hexEncoder);
|
|
10
|
+
var spaceTrim__default = /*#__PURE__*/_interopDefaultLegacy(spaceTrim$1);
|
|
11
11
|
var sha256__default = /*#__PURE__*/_interopDefaultLegacy(sha256);
|
|
12
12
|
var moment__default = /*#__PURE__*/_interopDefaultLegacy(moment);
|
|
13
13
|
var colors__default = /*#__PURE__*/_interopDefaultLegacy(colors);
|
|
@@ -28,12 +28,21 @@
|
|
|
28
28
|
* @generated
|
|
29
29
|
* @see https://github.com/webgptorg/promptbook
|
|
30
30
|
*/
|
|
31
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-
|
|
31
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-48';
|
|
32
32
|
/**
|
|
33
33
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
34
34
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
35
35
|
*/
|
|
36
36
|
|
|
37
|
+
/**
|
|
38
|
+
* Computes SHA-256 hash of the agent source
|
|
39
|
+
*
|
|
40
|
+
* @public exported from `@promptbook/core`
|
|
41
|
+
*/
|
|
42
|
+
function computeAgentHash(agentSource) {
|
|
43
|
+
return cryptoJs.SHA256(hexEncoder__default["default"].parse(agentSource /* <- TODO: !!!!! spaceTrim */)).toString( /* hex */);
|
|
44
|
+
}
|
|
45
|
+
|
|
37
46
|
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
38
47
|
|
|
39
48
|
/**
|
|
@@ -160,15 +169,20 @@
|
|
|
160
169
|
*/
|
|
161
170
|
const REMOTE_SERVER_URLS = [
|
|
162
171
|
{
|
|
163
|
-
title: 'Promptbook',
|
|
164
|
-
description: `
|
|
172
|
+
title: 'Promptbook.Studio',
|
|
173
|
+
description: `Server of Promptbook.studio`,
|
|
165
174
|
owner: 'AI Web, LLC <legal@ptbk.io> (https://www.ptbk.io/)',
|
|
166
|
-
isAnonymousModeAllowed: true,
|
|
167
175
|
urls: [
|
|
168
176
|
'https://promptbook.s5.ptbk.io/',
|
|
169
177
|
// Note: Servers 1-4 are not running
|
|
170
178
|
],
|
|
171
179
|
},
|
|
180
|
+
{
|
|
181
|
+
title: 'Testing Agents',
|
|
182
|
+
description: `Testing Agents server on Vercel`,
|
|
183
|
+
owner: 'AI Web, LLC <legal@ptbk.io> (https://www.ptbk.io/)',
|
|
184
|
+
urls: ['https://s6.ptbk.io/'],
|
|
185
|
+
},
|
|
172
186
|
/*
|
|
173
187
|
Note: Working on older version of Promptbook and not supported anymore
|
|
174
188
|
{
|
|
@@ -413,9 +427,6 @@
|
|
|
413
427
|
throw new Error(`${channelName} channel is greater than 255, it is ${value}`);
|
|
414
428
|
}
|
|
415
429
|
}
|
|
416
|
-
/**
|
|
417
|
-
* TODO: [🧠][🚓] Is/which combination it better to use asserts/check, validate or is utility function?
|
|
418
|
-
*/
|
|
419
430
|
|
|
420
431
|
/**
|
|
421
432
|
* Color object represents an RGB color with alpha channel
|
|
@@ -4324,6 +4335,8 @@
|
|
|
4324
4335
|
/**
|
|
4325
4336
|
* Converts a given text to kebab-case format.
|
|
4326
4337
|
*
|
|
4338
|
+
* Note: [🔂] This function is idempotent.
|
|
4339
|
+
*
|
|
4327
4340
|
* @param text The text to be converted.
|
|
4328
4341
|
* @returns The kebab-case formatted string.
|
|
4329
4342
|
* @example 'hello-world'
|
|
@@ -4479,6 +4492,8 @@
|
|
|
4479
4492
|
/**
|
|
4480
4493
|
* Converts a title string into a normalized name.
|
|
4481
4494
|
*
|
|
4495
|
+
* Note: [🔂] This function is idempotent.
|
|
4496
|
+
*
|
|
4482
4497
|
* @param value The title string to be converted to a name.
|
|
4483
4498
|
* @returns A normalized name derived from the input title.
|
|
4484
4499
|
* @example 'Hello World!' -> 'hello-world'
|
|
@@ -7391,40 +7406,6 @@
|
|
|
7391
7406
|
* TODO: [🏢] Check validity of `temperature` in pipeline
|
|
7392
7407
|
*/
|
|
7393
7408
|
|
|
7394
|
-
/**
|
|
7395
|
-
* Creates an empty/basic agent model requirements object
|
|
7396
|
-
* This serves as the starting point for the reduce-like pattern
|
|
7397
|
-
* where each commitment applies its changes to build the final requirements
|
|
7398
|
-
*
|
|
7399
|
-
* @public exported from `@promptbook/core`
|
|
7400
|
-
*/
|
|
7401
|
-
function createEmptyAgentModelRequirements() {
|
|
7402
|
-
return {
|
|
7403
|
-
systemMessage: '',
|
|
7404
|
-
// modelName: 'gpt-5',
|
|
7405
|
-
modelName: 'gemini-2.5-flash-lite',
|
|
7406
|
-
temperature: 0.7,
|
|
7407
|
-
topP: 0.9,
|
|
7408
|
-
topK: 50,
|
|
7409
|
-
};
|
|
7410
|
-
}
|
|
7411
|
-
/**
|
|
7412
|
-
* Creates a basic agent model requirements with just the agent name
|
|
7413
|
-
* This is used when we have an agent name but no commitments
|
|
7414
|
-
*
|
|
7415
|
-
* @public exported from `@promptbook/core`
|
|
7416
|
-
*/
|
|
7417
|
-
function createBasicAgentModelRequirements(agentName) {
|
|
7418
|
-
const empty = createEmptyAgentModelRequirements();
|
|
7419
|
-
return {
|
|
7420
|
-
...empty,
|
|
7421
|
-
systemMessage: `You are ${agentName || 'AI Agent'}`,
|
|
7422
|
-
};
|
|
7423
|
-
}
|
|
7424
|
-
/**
|
|
7425
|
-
* TODO: [🐤] Deduplicate `AgentModelRequirements` and `ModelRequirements` model requirements
|
|
7426
|
-
*/
|
|
7427
|
-
|
|
7428
7409
|
/**
|
|
7429
7410
|
* Generates a regex pattern to match a specific commitment
|
|
7430
7411
|
*
|
|
@@ -7958,23 +7939,19 @@
|
|
|
7958
7939
|
`);
|
|
7959
7940
|
}
|
|
7960
7941
|
applyToAgentModelRequirements(requirements, content) {
|
|
7961
|
-
var _a;
|
|
7962
7942
|
const trimmedContent = content.trim();
|
|
7963
7943
|
if (!trimmedContent) {
|
|
7964
7944
|
return requirements;
|
|
7965
7945
|
}
|
|
7966
7946
|
// Check if content is a URL (external knowledge source)
|
|
7967
|
-
if (
|
|
7947
|
+
if (isValidUrl(trimmedContent)) {
|
|
7968
7948
|
// Store the URL for later async processing
|
|
7969
7949
|
const updatedRequirements = {
|
|
7970
7950
|
...requirements,
|
|
7971
|
-
|
|
7972
|
-
...requirements.
|
|
7973
|
-
|
|
7974
|
-
|
|
7975
|
-
trimmedContent,
|
|
7976
|
-
],
|
|
7977
|
-
},
|
|
7951
|
+
knowledgeSources: [
|
|
7952
|
+
...(requirements.knowledgeSources || []),
|
|
7953
|
+
trimmedContent,
|
|
7954
|
+
],
|
|
7978
7955
|
};
|
|
7979
7956
|
// Add placeholder information about knowledge sources to system message
|
|
7980
7957
|
const knowledgeInfo = `Knowledge Source URL: ${trimmedContent} (will be processed for retrieval during chat)`;
|
|
@@ -7986,18 +7963,6 @@
|
|
|
7986
7963
|
return this.appendToSystemMessage(requirements, knowledgeSection, '\n\n');
|
|
7987
7964
|
}
|
|
7988
7965
|
}
|
|
7989
|
-
/**
|
|
7990
|
-
* Check if content is a URL
|
|
7991
|
-
*/
|
|
7992
|
-
isUrl(content) {
|
|
7993
|
-
try {
|
|
7994
|
-
new URL(content);
|
|
7995
|
-
return true;
|
|
7996
|
-
}
|
|
7997
|
-
catch (_a) {
|
|
7998
|
-
return false;
|
|
7999
|
-
}
|
|
8000
|
-
}
|
|
8001
7966
|
}
|
|
8002
7967
|
/**
|
|
8003
7968
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -8808,6 +8773,7 @@
|
|
|
8808
8773
|
// Keep everything after the PERSONA section
|
|
8809
8774
|
cleanedMessage = lines.slice(personaEndIndex).join('\n').trim();
|
|
8810
8775
|
}
|
|
8776
|
+
// TODO: [🕛] There should be `agentFullname` not `agentName`
|
|
8811
8777
|
// Create new system message with persona at the beginning
|
|
8812
8778
|
// Format: "You are {agentName}\n{personaContent}"
|
|
8813
8779
|
// The # PERSONA comment will be removed later by removeCommentsFromSystemMessage
|
|
@@ -9323,6 +9289,40 @@
|
|
|
9323
9289
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
9324
9290
|
*/
|
|
9325
9291
|
|
|
9292
|
+
/**
|
|
9293
|
+
* Creates an empty/basic agent model requirements object
|
|
9294
|
+
* This serves as the starting point for the reduce-like pattern
|
|
9295
|
+
* where each commitment applies its changes to build the final requirements
|
|
9296
|
+
*
|
|
9297
|
+
* @public exported from `@promptbook/core`
|
|
9298
|
+
*/
|
|
9299
|
+
function createEmptyAgentModelRequirements() {
|
|
9300
|
+
return {
|
|
9301
|
+
systemMessage: '',
|
|
9302
|
+
// modelName: 'gpt-5',
|
|
9303
|
+
modelName: 'gemini-2.5-flash-lite',
|
|
9304
|
+
temperature: 0.7,
|
|
9305
|
+
topP: 0.9,
|
|
9306
|
+
topK: 50,
|
|
9307
|
+
};
|
|
9308
|
+
}
|
|
9309
|
+
/**
|
|
9310
|
+
* Creates a basic agent model requirements with just the agent name
|
|
9311
|
+
* This is used when we have an agent name but no commitments
|
|
9312
|
+
*
|
|
9313
|
+
* @public exported from `@promptbook/core`
|
|
9314
|
+
*/
|
|
9315
|
+
function createBasicAgentModelRequirements(agentName) {
|
|
9316
|
+
const empty = createEmptyAgentModelRequirements();
|
|
9317
|
+
return {
|
|
9318
|
+
...empty,
|
|
9319
|
+
systemMessage: `You are ${agentName || 'AI Agent'}`,
|
|
9320
|
+
};
|
|
9321
|
+
}
|
|
9322
|
+
/**
|
|
9323
|
+
* TODO: [🐤] Deduplicate `AgentModelRequirements` and `ModelRequirements` model requirements
|
|
9324
|
+
*/
|
|
9325
|
+
|
|
9326
9326
|
/**
|
|
9327
9327
|
* Parses agent source using the new commitment system with multiline support
|
|
9328
9328
|
* This function replaces the hardcoded commitment parsing in the original parseAgentSource
|
|
@@ -9413,29 +9413,6 @@
|
|
|
9413
9413
|
};
|
|
9414
9414
|
}
|
|
9415
9415
|
|
|
9416
|
-
/**
|
|
9417
|
-
* Removes comment lines (lines starting with #) from a system message
|
|
9418
|
-
* This is used to clean up the final system message before sending it to the AI model
|
|
9419
|
-
* while preserving the original content with comments in metadata
|
|
9420
|
-
*
|
|
9421
|
-
* @param systemMessage The system message that may contain comment lines
|
|
9422
|
-
* @returns The system message with comment lines removed
|
|
9423
|
-
*
|
|
9424
|
-
* @private - TODO: [🧠] Maybe should be public?
|
|
9425
|
-
*/
|
|
9426
|
-
function removeCommentsFromSystemMessage(systemMessage) {
|
|
9427
|
-
if (!systemMessage) {
|
|
9428
|
-
return systemMessage;
|
|
9429
|
-
}
|
|
9430
|
-
const lines = systemMessage.split('\n');
|
|
9431
|
-
const filteredLines = lines.filter((line) => {
|
|
9432
|
-
const trimmedLine = line.trim();
|
|
9433
|
-
// Remove lines that start with # (comments)
|
|
9434
|
-
return !trimmedLine.startsWith('#');
|
|
9435
|
-
});
|
|
9436
|
-
return filteredLines.join('\n').trim();
|
|
9437
|
-
}
|
|
9438
|
-
|
|
9439
9416
|
/**
|
|
9440
9417
|
* Parses parameters from text using both supported notations:
|
|
9441
9418
|
* 1. @Parameter - single word parameter starting with @
|
|
@@ -9494,6 +9471,29 @@
|
|
|
9494
9471
|
return uniqueParameters;
|
|
9495
9472
|
}
|
|
9496
9473
|
|
|
9474
|
+
/**
|
|
9475
|
+
* Removes comment lines (lines starting with #) from a system message
|
|
9476
|
+
* This is used to clean up the final system message before sending it to the AI model
|
|
9477
|
+
* while preserving the original content with comments in metadata
|
|
9478
|
+
*
|
|
9479
|
+
* @param systemMessage The system message that may contain comment lines
|
|
9480
|
+
* @returns The system message with comment lines removed
|
|
9481
|
+
*
|
|
9482
|
+
* @private - TODO: [🧠] Maybe should be public?
|
|
9483
|
+
*/
|
|
9484
|
+
function removeCommentsFromSystemMessage(systemMessage) {
|
|
9485
|
+
if (!systemMessage) {
|
|
9486
|
+
return systemMessage;
|
|
9487
|
+
}
|
|
9488
|
+
const lines = systemMessage.split('\n');
|
|
9489
|
+
const filteredLines = lines.filter((line) => {
|
|
9490
|
+
const trimmedLine = line.trim();
|
|
9491
|
+
// Remove lines that start with # (comments)
|
|
9492
|
+
return !trimmedLine.startsWith('#');
|
|
9493
|
+
});
|
|
9494
|
+
return filteredLines.join('\n').trim();
|
|
9495
|
+
}
|
|
9496
|
+
|
|
9497
9497
|
/**
|
|
9498
9498
|
* Creates agent model requirements using the new commitment system
|
|
9499
9499
|
* This function uses a reduce-like pattern where each commitment applies its changes
|
|
@@ -9595,6 +9595,8 @@
|
|
|
9595
9595
|
/**
|
|
9596
9596
|
* Normalizes a given text to camelCase format.
|
|
9597
9597
|
*
|
|
9598
|
+
* Note: [🔂] This function is idempotent.
|
|
9599
|
+
*
|
|
9598
9600
|
* @param text The text to be normalized.
|
|
9599
9601
|
* @param _isFirstLetterCapital Whether the first letter should be capitalized.
|
|
9600
9602
|
* @returns The camelCase formatted string.
|
|
@@ -9683,68 +9685,479 @@
|
|
|
9683
9685
|
*/
|
|
9684
9686
|
|
|
9685
9687
|
/**
|
|
9686
|
-
*
|
|
9688
|
+
* Creates a Mermaid graph based on the promptbook
|
|
9687
9689
|
*
|
|
9688
|
-
*
|
|
9689
|
-
* - `parseAgentSource` which is a lightweight parser for agent source, it parses basic information and its purpose is to be quick and synchronous. The commitments there are hardcoded.
|
|
9690
|
-
* - `createAgentModelRequirements` which is an asynchronous function that creates model requirements it applies each commitment one by one and works asynchronously.
|
|
9690
|
+
* Note: The result is not wrapped in a Markdown code block
|
|
9691
9691
|
*
|
|
9692
|
-
* @public exported from `@promptbook/
|
|
9692
|
+
* @public exported from `@promptbook/utils`
|
|
9693
9693
|
*/
|
|
9694
|
-
function
|
|
9695
|
-
const
|
|
9696
|
-
|
|
9697
|
-
|
|
9698
|
-
|
|
9699
|
-
|
|
9700
|
-
|
|
9694
|
+
function renderPromptbookMermaid(pipelineJson, options) {
|
|
9695
|
+
const { linkTask = () => null } = options || {};
|
|
9696
|
+
const MERMAID_PREFIX = 'pipeline_';
|
|
9697
|
+
const MERMAID_KNOWLEDGE_NAME = MERMAID_PREFIX + 'knowledge';
|
|
9698
|
+
const MERMAID_RESERVED_NAME = MERMAID_PREFIX + 'reserved';
|
|
9699
|
+
const MERMAID_INPUT_NAME = MERMAID_PREFIX + 'input';
|
|
9700
|
+
const MERMAID_OUTPUT_NAME = MERMAID_PREFIX + 'output';
|
|
9701
|
+
const parameterNameToTaskName = (parameterName) => {
|
|
9702
|
+
if (parameterName === 'knowledge') {
|
|
9703
|
+
return MERMAID_KNOWLEDGE_NAME;
|
|
9701
9704
|
}
|
|
9702
|
-
if (
|
|
9703
|
-
|
|
9705
|
+
else if (RESERVED_PARAMETER_NAMES.includes(parameterName)) {
|
|
9706
|
+
return MERMAID_RESERVED_NAME;
|
|
9704
9707
|
}
|
|
9705
|
-
|
|
9706
|
-
|
|
9708
|
+
const parameter = pipelineJson.parameters.find((parameter) => parameter.name === parameterName);
|
|
9709
|
+
if (!parameter) {
|
|
9710
|
+
throw new UnexpectedError(`Could not find {${parameterName}}`);
|
|
9711
|
+
// <- TODO: This causes problems when {knowledge} and other reserved parameters are used
|
|
9707
9712
|
}
|
|
9708
|
-
|
|
9709
|
-
|
|
9710
|
-
const meta = {};
|
|
9711
|
-
for (const commitment of parseResult.commitments) {
|
|
9712
|
-
if (commitment.type !== 'META') {
|
|
9713
|
-
continue;
|
|
9713
|
+
if (parameter.isInput) {
|
|
9714
|
+
return MERMAID_INPUT_NAME;
|
|
9714
9715
|
}
|
|
9715
|
-
|
|
9716
|
-
|
|
9717
|
-
|
|
9718
|
-
|
|
9719
|
-
|
|
9720
|
-
// Generate gravatar fallback if no meta image specified
|
|
9721
|
-
if (!meta.image) {
|
|
9722
|
-
meta.image = generatePlaceholderAgentProfileImageUrl(parseResult.agentName || '!!');
|
|
9723
|
-
}
|
|
9724
|
-
// Parse parameters using unified approach - both @Parameter and {parameter} notations
|
|
9725
|
-
// are treated as the same syntax feature with unified representation
|
|
9726
|
-
const parameters = parseParameters(agentSource);
|
|
9727
|
-
return {
|
|
9728
|
-
agentName: parseResult.agentName,
|
|
9729
|
-
personaDescription,
|
|
9730
|
-
meta,
|
|
9731
|
-
parameters,
|
|
9716
|
+
const task = pipelineJson.tasks.find((task) => task.resultingParameterName === parameterName);
|
|
9717
|
+
if (!task) {
|
|
9718
|
+
throw new Error(`Could not find task for {${parameterName}}`);
|
|
9719
|
+
}
|
|
9720
|
+
return MERMAID_PREFIX + (task.name || normalizeTo_camelCase('task-' + titleToName(task.title)));
|
|
9732
9721
|
};
|
|
9733
|
-
|
|
9734
|
-
|
|
9735
|
-
|
|
9736
|
-
|
|
9722
|
+
const inputAndIntermediateParametersMermaid = pipelineJson.tasks
|
|
9723
|
+
.flatMap(({ title, dependentParameterNames, resultingParameterName }) => [
|
|
9724
|
+
`${parameterNameToTaskName(resultingParameterName)}("${title}")`,
|
|
9725
|
+
...dependentParameterNames.map((dependentParameterName) => `${parameterNameToTaskName(dependentParameterName)}--"{${dependentParameterName}}"-->${parameterNameToTaskName(resultingParameterName)}`),
|
|
9726
|
+
])
|
|
9727
|
+
.join('\n');
|
|
9728
|
+
const outputParametersMermaid = pipelineJson.parameters
|
|
9729
|
+
.filter(({ isOutput }) => isOutput)
|
|
9730
|
+
.map(({ name }) => `${parameterNameToTaskName(name)}--"{${name}}"-->${MERMAID_OUTPUT_NAME}`)
|
|
9731
|
+
.join('\n');
|
|
9732
|
+
const linksMermaid = pipelineJson.tasks
|
|
9733
|
+
.map((task) => {
|
|
9734
|
+
const link = linkTask(task);
|
|
9735
|
+
if (link === null) {
|
|
9736
|
+
return '';
|
|
9737
|
+
}
|
|
9738
|
+
const { href, title } = link;
|
|
9739
|
+
const taskName = parameterNameToTaskName(task.resultingParameterName);
|
|
9740
|
+
return `click ${taskName} href "${href}" "${title}";`;
|
|
9741
|
+
})
|
|
9742
|
+
.filter((line) => line !== '')
|
|
9743
|
+
.join('\n');
|
|
9744
|
+
const interactionPointsMermaid = Object.entries({
|
|
9745
|
+
[MERMAID_INPUT_NAME]: 'Input',
|
|
9746
|
+
[MERMAID_OUTPUT_NAME]: 'Output',
|
|
9747
|
+
[MERMAID_RESERVED_NAME]: 'Other',
|
|
9748
|
+
[MERMAID_KNOWLEDGE_NAME]: 'Knowledge',
|
|
9749
|
+
})
|
|
9750
|
+
.filter(([MERMAID_NAME]) => (inputAndIntermediateParametersMermaid + outputParametersMermaid).includes(MERMAID_NAME))
|
|
9751
|
+
.map(([MERMAID_NAME, title]) => `${MERMAID_NAME}((${title})):::${MERMAID_NAME}`)
|
|
9752
|
+
.join('\n');
|
|
9753
|
+
const promptbookMermaid = spaceTrim$1.spaceTrim((block) => `
|
|
9737
9754
|
|
|
9738
|
-
|
|
9739
|
-
|
|
9740
|
-
|
|
9741
|
-
|
|
9742
|
-
|
|
9743
|
-
|
|
9744
|
-
|
|
9745
|
-
|
|
9746
|
-
|
|
9747
|
-
|
|
9755
|
+
%% 🔮 Tip: Open this on GitHub or in the VSCode website to see the Mermaid graph visually
|
|
9756
|
+
|
|
9757
|
+
flowchart LR
|
|
9758
|
+
subgraph "${pipelineJson.title}"
|
|
9759
|
+
|
|
9760
|
+
%% Basic configuration
|
|
9761
|
+
direction TB
|
|
9762
|
+
|
|
9763
|
+
%% Interaction points from pipeline to outside
|
|
9764
|
+
${block(interactionPointsMermaid)}
|
|
9765
|
+
|
|
9766
|
+
%% Input and intermediate parameters
|
|
9767
|
+
${block(inputAndIntermediateParametersMermaid)}
|
|
9768
|
+
|
|
9769
|
+
|
|
9770
|
+
%% Output parameters
|
|
9771
|
+
${block(outputParametersMermaid)}
|
|
9772
|
+
|
|
9773
|
+
%% Links
|
|
9774
|
+
${block(linksMermaid)}
|
|
9775
|
+
|
|
9776
|
+
%% Styles
|
|
9777
|
+
classDef ${MERMAID_INPUT_NAME} color: grey;
|
|
9778
|
+
classDef ${MERMAID_OUTPUT_NAME} color: grey;
|
|
9779
|
+
classDef ${MERMAID_RESERVED_NAME} color: grey;
|
|
9780
|
+
classDef ${MERMAID_KNOWLEDGE_NAME} color: grey;
|
|
9781
|
+
|
|
9782
|
+
end;
|
|
9783
|
+
|
|
9784
|
+
`);
|
|
9785
|
+
return promptbookMermaid;
|
|
9786
|
+
}
|
|
9787
|
+
/**
|
|
9788
|
+
* TODO: [🧠] FOREACH in mermaid graph
|
|
9789
|
+
* TODO: [🧠] Knowledge in mermaid graph
|
|
9790
|
+
* TODO: [🧠] Personas in mermaid graph
|
|
9791
|
+
* TODO: Maybe use some Mermaid package instead of string templating
|
|
9792
|
+
* TODO: [🕌] When more than 2 functionalities, split into separate functions
|
|
9793
|
+
*/
|
|
9794
|
+
|
|
9795
|
+
/**
|
|
9796
|
+
* Tag function for notating a prompt as template literal
|
|
9797
|
+
*
|
|
9798
|
+
* Note: There are 3 similar functions:
|
|
9799
|
+
* 1) `prompt` for notating single prompt exported from `@promptbook/utils`
|
|
9800
|
+
* 2) `promptTemplate` alias for `prompt`
|
|
9801
|
+
* 3) `book` for notating and validating entire books exported from `@promptbook/utils`
|
|
9802
|
+
*
|
|
9803
|
+
* @param strings
|
|
9804
|
+
* @param values
|
|
9805
|
+
* @returns the prompt string
|
|
9806
|
+
* @public exported from `@promptbook/utils`
|
|
9807
|
+
*/
|
|
9808
|
+
function prompt(strings, ...values) {
|
|
9809
|
+
if (values.length === 0) {
|
|
9810
|
+
return spaceTrim__default["default"](strings.join(''));
|
|
9811
|
+
}
|
|
9812
|
+
const stringsWithHiddenParameters = strings.map((stringsItem) =>
|
|
9813
|
+
// TODO: [0] DRY
|
|
9814
|
+
stringsItem.split('{').join(`${REPLACING_NONCE}beginbracket`).split('}').join(`${REPLACING_NONCE}endbracket`));
|
|
9815
|
+
const placeholderParameterNames = values.map((value, i) => `${REPLACING_NONCE}${i}`);
|
|
9816
|
+
const parameters = Object.fromEntries(values.map((value, i) => [placeholderParameterNames[i], value]));
|
|
9817
|
+
// Combine strings and values
|
|
9818
|
+
let pipelineString = stringsWithHiddenParameters.reduce((result, stringsItem, i) => placeholderParameterNames[i] === undefined
|
|
9819
|
+
? `${result}${stringsItem}`
|
|
9820
|
+
: `${result}${stringsItem}{${placeholderParameterNames[i]}}`, '');
|
|
9821
|
+
pipelineString = spaceTrim__default["default"](pipelineString);
|
|
9822
|
+
try {
|
|
9823
|
+
pipelineString = templateParameters(pipelineString, parameters);
|
|
9824
|
+
}
|
|
9825
|
+
catch (error) {
|
|
9826
|
+
if (!(error instanceof PipelineExecutionError)) {
|
|
9827
|
+
throw error;
|
|
9828
|
+
}
|
|
9829
|
+
console.error({ pipelineString, parameters, placeholderParameterNames, error });
|
|
9830
|
+
throw new UnexpectedError(spaceTrim__default["default"]((block) => `
|
|
9831
|
+
Internal error in prompt template literal
|
|
9832
|
+
|
|
9833
|
+
${block(JSON.stringify({ strings, values }, null, 4))}}
|
|
9834
|
+
|
|
9835
|
+
`));
|
|
9836
|
+
}
|
|
9837
|
+
// TODO: [0] DRY
|
|
9838
|
+
pipelineString = pipelineString
|
|
9839
|
+
.split(`${REPLACING_NONCE}beginbracket`)
|
|
9840
|
+
.join('{')
|
|
9841
|
+
.split(`${REPLACING_NONCE}endbracket`)
|
|
9842
|
+
.join('}');
|
|
9843
|
+
return pipelineString;
|
|
9844
|
+
}
|
|
9845
|
+
/**
|
|
9846
|
+
* TODO: [🧠][🈴] Where is the best location for this file
|
|
9847
|
+
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
9848
|
+
*/
|
|
9849
|
+
|
|
9850
|
+
/**
|
|
9851
|
+
* Detects if the code is running in a browser environment in main thread (Not in a web worker)
|
|
9852
|
+
*
|
|
9853
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9854
|
+
*
|
|
9855
|
+
* @public exported from `@promptbook/utils`
|
|
9856
|
+
*/
|
|
9857
|
+
const $isRunningInBrowser = new Function(`
|
|
9858
|
+
try {
|
|
9859
|
+
return this === window;
|
|
9860
|
+
} catch (e) {
|
|
9861
|
+
return false;
|
|
9862
|
+
}
|
|
9863
|
+
`);
|
|
9864
|
+
/**
|
|
9865
|
+
* TODO: [🎺]
|
|
9866
|
+
*/
|
|
9867
|
+
|
|
9868
|
+
/**
|
|
9869
|
+
* Detects if the code is running in jest environment
|
|
9870
|
+
*
|
|
9871
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9872
|
+
*
|
|
9873
|
+
* @public exported from `@promptbook/utils`
|
|
9874
|
+
*/
|
|
9875
|
+
const $isRunningInJest = new Function(`
|
|
9876
|
+
try {
|
|
9877
|
+
return process.env.JEST_WORKER_ID !== undefined;
|
|
9878
|
+
} catch (e) {
|
|
9879
|
+
return false;
|
|
9880
|
+
}
|
|
9881
|
+
`);
|
|
9882
|
+
/**
|
|
9883
|
+
* TODO: [🎺]
|
|
9884
|
+
*/
|
|
9885
|
+
|
|
9886
|
+
/**
|
|
9887
|
+
* Detects if the code is running in a Node.js environment
|
|
9888
|
+
*
|
|
9889
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9890
|
+
*
|
|
9891
|
+
* @public exported from `@promptbook/utils`
|
|
9892
|
+
*/
|
|
9893
|
+
const $isRunningInNode = new Function(`
|
|
9894
|
+
try {
|
|
9895
|
+
return this === global;
|
|
9896
|
+
} catch (e) {
|
|
9897
|
+
return false;
|
|
9898
|
+
}
|
|
9899
|
+
`);
|
|
9900
|
+
/**
|
|
9901
|
+
* TODO: [🎺]
|
|
9902
|
+
*/
|
|
9903
|
+
|
|
9904
|
+
/**
|
|
9905
|
+
* Detects if the code is running in a web worker
|
|
9906
|
+
*
|
|
9907
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
9908
|
+
*
|
|
9909
|
+
* @public exported from `@promptbook/utils`
|
|
9910
|
+
*/
|
|
9911
|
+
const $isRunningInWebWorker = new Function(`
|
|
9912
|
+
try {
|
|
9913
|
+
if (typeof WorkerGlobalScope !== 'undefined' && self instanceof WorkerGlobalScope) {
|
|
9914
|
+
return true;
|
|
9915
|
+
} else {
|
|
9916
|
+
return false;
|
|
9917
|
+
}
|
|
9918
|
+
} catch (e) {
|
|
9919
|
+
return false;
|
|
9920
|
+
}
|
|
9921
|
+
`);
|
|
9922
|
+
/**
|
|
9923
|
+
* TODO: [🎺]
|
|
9924
|
+
*/
|
|
9925
|
+
|
|
9926
|
+
/**
|
|
9927
|
+
* Returns information about the current runtime environment
|
|
9928
|
+
*
|
|
9929
|
+
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environments
|
|
9930
|
+
*
|
|
9931
|
+
* @public exported from `@promptbook/utils`
|
|
9932
|
+
*/
|
|
9933
|
+
function $detectRuntimeEnvironment() {
|
|
9934
|
+
return {
|
|
9935
|
+
isRunningInBrowser: $isRunningInBrowser(),
|
|
9936
|
+
isRunningInJest: $isRunningInJest(),
|
|
9937
|
+
isRunningInNode: $isRunningInNode(),
|
|
9938
|
+
isRunningInWebWorker: $isRunningInWebWorker(),
|
|
9939
|
+
};
|
|
9940
|
+
}
|
|
9941
|
+
/**
|
|
9942
|
+
* TODO: [🎺] Also detect and report node version here
|
|
9943
|
+
*/
|
|
9944
|
+
|
|
9945
|
+
/**
|
|
9946
|
+
* Simple wrapper `new Date().toISOString()`
|
|
9947
|
+
*
|
|
9948
|
+
* Note: `$` is used to indicate that this function is not a pure function - it is not deterministic because it depends on the current time
|
|
9949
|
+
*
|
|
9950
|
+
* @returns string_date branded type
|
|
9951
|
+
* @public exported from `@promptbook/utils`
|
|
9952
|
+
*/
|
|
9953
|
+
function $getCurrentDate() {
|
|
9954
|
+
return new Date().toISOString();
|
|
9955
|
+
}
|
|
9956
|
+
|
|
9957
|
+
/**
|
|
9958
|
+
* Function parseNumber will parse number from string
|
|
9959
|
+
*
|
|
9960
|
+
* Note: [🔂] This function is idempotent.
|
|
9961
|
+
* Unlike Number.parseInt, Number.parseFloat it will never ever result in NaN
|
|
9962
|
+
* Note: it also works only with decimal numbers
|
|
9963
|
+
*
|
|
9964
|
+
* @returns parsed number
|
|
9965
|
+
* @throws {ParseError} if the value is not a number
|
|
9966
|
+
*
|
|
9967
|
+
* @public exported from `@promptbook/utils`
|
|
9968
|
+
*/
|
|
9969
|
+
function parseNumber(value) {
|
|
9970
|
+
const originalValue = value;
|
|
9971
|
+
if (typeof value === 'number') {
|
|
9972
|
+
value = value.toString(); // <- TODO: Maybe more efficient way to do this
|
|
9973
|
+
}
|
|
9974
|
+
if (typeof value !== 'string') {
|
|
9975
|
+
return 0;
|
|
9976
|
+
}
|
|
9977
|
+
value = value.trim();
|
|
9978
|
+
if (value.startsWith('+')) {
|
|
9979
|
+
return parseNumber(value.substring(1));
|
|
9980
|
+
}
|
|
9981
|
+
if (value.startsWith('-')) {
|
|
9982
|
+
const number = parseNumber(value.substring(1));
|
|
9983
|
+
if (number === 0) {
|
|
9984
|
+
return 0; // <- Note: To prevent -0
|
|
9985
|
+
}
|
|
9986
|
+
return -number;
|
|
9987
|
+
}
|
|
9988
|
+
value = value.replace(/,/g, '.');
|
|
9989
|
+
value = value.toUpperCase();
|
|
9990
|
+
if (value === '') {
|
|
9991
|
+
return 0;
|
|
9992
|
+
}
|
|
9993
|
+
if (value === '♾' || value.startsWith('INF')) {
|
|
9994
|
+
return Infinity;
|
|
9995
|
+
}
|
|
9996
|
+
if (value.includes('/')) {
|
|
9997
|
+
const [numerator_, denominator_] = value.split('/');
|
|
9998
|
+
const numerator = parseNumber(numerator_);
|
|
9999
|
+
const denominator = parseNumber(denominator_);
|
|
10000
|
+
if (denominator === 0) {
|
|
10001
|
+
throw new ParseError(`Unable to parse number from "${originalValue}" because denominator is zero`);
|
|
10002
|
+
}
|
|
10003
|
+
return numerator / denominator;
|
|
10004
|
+
}
|
|
10005
|
+
if (/^(NAN|NULL|NONE|UNDEFINED|ZERO|NO.*)$/.test(value)) {
|
|
10006
|
+
return 0;
|
|
10007
|
+
}
|
|
10008
|
+
if (value.includes('E')) {
|
|
10009
|
+
const [significand, exponent] = value.split('E');
|
|
10010
|
+
return parseNumber(significand) * 10 ** parseNumber(exponent);
|
|
10011
|
+
}
|
|
10012
|
+
if (!/^[0-9.]+$/.test(value) || value.split('.').length > 2) {
|
|
10013
|
+
throw new ParseError(`Unable to parse number from "${originalValue}"`);
|
|
10014
|
+
}
|
|
10015
|
+
const num = parseFloat(value);
|
|
10016
|
+
if (isNaN(num)) {
|
|
10017
|
+
throw new ParseError(`Unexpected NaN when parsing number from "${originalValue}"`);
|
|
10018
|
+
}
|
|
10019
|
+
return num;
|
|
10020
|
+
}
|
|
10021
|
+
/**
|
|
10022
|
+
* TODO: Maybe use sth. like safe-eval in fraction/calculation case @see https://www.npmjs.com/package/safe-eval
|
|
10023
|
+
* TODO: [🧠][🌻] Maybe export through `@promptbook/markdown-utils` not `@promptbook/utils`
|
|
10024
|
+
*/
|
|
10025
|
+
|
|
10026
|
+
/**
|
|
10027
|
+
* Removes quotes from a string
|
|
10028
|
+
*
|
|
10029
|
+
* Note: [🔂] This function is idempotent.
|
|
10030
|
+
* Tip: This is very useful for post-processing of the result of the LLM model
|
|
10031
|
+
* Note: This function removes only the same quotes from the beginning and the end of the string
|
|
10032
|
+
* Note: There are two similar functions:
|
|
10033
|
+
* - `removeQuotes` which removes only bounding quotes
|
|
10034
|
+
* - `unwrapResult` which removes whole introduce sentence
|
|
10035
|
+
*
|
|
10036
|
+
* @param text optionally quoted text
|
|
10037
|
+
* @returns text without quotes
|
|
10038
|
+
* @public exported from `@promptbook/utils`
|
|
10039
|
+
*/
|
|
10040
|
+
function removeQuotes(text) {
|
|
10041
|
+
if (text.startsWith('"') && text.endsWith('"')) {
|
|
10042
|
+
return text.slice(1, -1);
|
|
10043
|
+
}
|
|
10044
|
+
if (text.startsWith("'") && text.endsWith("'")) {
|
|
10045
|
+
return text.slice(1, -1);
|
|
10046
|
+
}
|
|
10047
|
+
return text;
|
|
10048
|
+
}
|
|
10049
|
+
|
|
10050
|
+
/**
|
|
10051
|
+
* Trims string from all 4 sides
|
|
10052
|
+
*
|
|
10053
|
+
* Note: This is a re-exported function from the `spacetrim` package which is
|
|
10054
|
+
* Developed by same author @hejny as this package
|
|
10055
|
+
*
|
|
10056
|
+
* @public exported from `@promptbook/utils`
|
|
10057
|
+
* @see https://github.com/hejny/spacetrim#usage
|
|
10058
|
+
*/
|
|
10059
|
+
const spaceTrim = spaceTrim$1.spaceTrim;
|
|
10060
|
+
|
|
10061
|
+
/**
|
|
10062
|
+
* Checks if the given value is a valid JavaScript identifier name.
|
|
10063
|
+
*
|
|
10064
|
+
* @param javascriptName The value to check for JavaScript identifier validity.
|
|
10065
|
+
* @returns `true` if the value is a valid JavaScript name, false otherwise.
|
|
10066
|
+
* @public exported from `@promptbook/utils`
|
|
10067
|
+
*/
|
|
10068
|
+
function isValidJavascriptName(javascriptName) {
|
|
10069
|
+
if (typeof javascriptName !== 'string') {
|
|
10070
|
+
return false;
|
|
10071
|
+
}
|
|
10072
|
+
return /^[a-zA-Z_$][0-9a-zA-Z_$]*$/i.test(javascriptName);
|
|
10073
|
+
}
|
|
10074
|
+
|
|
10075
|
+
/**
|
|
10076
|
+
* Normalizes agent name from arbitrary string to valid agent name
|
|
10077
|
+
*
|
|
10078
|
+
* Note: [🔂] This function is idempotent.
|
|
10079
|
+
*
|
|
10080
|
+
* @public exported from `@promptbook/core`
|
|
10081
|
+
*/
|
|
10082
|
+
function normalizeAgentName(rawAgentName) {
|
|
10083
|
+
return titleToName(spaceTrim__default["default"](rawAgentName));
|
|
10084
|
+
}
|
|
10085
|
+
|
|
10086
|
+
/**
|
|
10087
|
+
* Creates temporary default agent name based on agent source hash
|
|
10088
|
+
*
|
|
10089
|
+
* @public exported from `@promptbook/core`
|
|
10090
|
+
*/
|
|
10091
|
+
function createDefaultAgentName(agentSource) {
|
|
10092
|
+
const agentHash = computeAgentHash(agentSource);
|
|
10093
|
+
return normalizeAgentName(`Agent ${agentHash.substring(0, 6)}`);
|
|
10094
|
+
}
|
|
10095
|
+
|
|
10096
|
+
/**
|
|
10097
|
+
* Parses basic information from agent source
|
|
10098
|
+
*
|
|
10099
|
+
* There are 2 similar functions:
|
|
10100
|
+
* - `parseAgentSource` which is a lightweight parser for agent source, it parses basic information and its purpose is to be quick and synchronous. The commitments there are hardcoded.
|
|
10101
|
+
* - `createAgentModelRequirements` which is an asynchronous function that creates model requirements it applies each commitment one by one and works asynchronously.
|
|
10102
|
+
*
|
|
10103
|
+
* @public exported from `@promptbook/core`
|
|
10104
|
+
*/
|
|
10105
|
+
function parseAgentSource(agentSource) {
|
|
10106
|
+
const parseResult = parseAgentSourceWithCommitments(agentSource);
|
|
10107
|
+
// Find PERSONA and META commitments
|
|
10108
|
+
let personaDescription = null;
|
|
10109
|
+
for (const commitment of parseResult.commitments) {
|
|
10110
|
+
if (commitment.type !== 'PERSONA') {
|
|
10111
|
+
continue;
|
|
10112
|
+
}
|
|
10113
|
+
if (personaDescription === null) {
|
|
10114
|
+
personaDescription = '';
|
|
10115
|
+
}
|
|
10116
|
+
else {
|
|
10117
|
+
personaDescription += `\n\n${personaDescription}`;
|
|
10118
|
+
}
|
|
10119
|
+
personaDescription += commitment.content;
|
|
10120
|
+
}
|
|
10121
|
+
const meta = {};
|
|
10122
|
+
for (const commitment of parseResult.commitments) {
|
|
10123
|
+
if (commitment.type !== 'META') {
|
|
10124
|
+
continue;
|
|
10125
|
+
}
|
|
10126
|
+
// Parse META commitments - format is "META TYPE content"
|
|
10127
|
+
const metaTypeRaw = commitment.content.split(' ')[0] || 'NONE';
|
|
10128
|
+
const metaType = normalizeTo_camelCase(metaTypeRaw);
|
|
10129
|
+
meta[metaType] = spaceTrim__default["default"](commitment.content.substring(metaTypeRaw.length));
|
|
10130
|
+
}
|
|
10131
|
+
// Generate gravatar fallback if no meta image specified
|
|
10132
|
+
if (!meta.image) {
|
|
10133
|
+
meta.image = generatePlaceholderAgentProfileImageUrl(parseResult.agentName || '!!');
|
|
10134
|
+
}
|
|
10135
|
+
// Parse parameters using unified approach - both @Parameter and {parameter} notations
|
|
10136
|
+
// are treated as the same syntax feature with unified representation
|
|
10137
|
+
const parameters = parseParameters(agentSource);
|
|
10138
|
+
const agentHash = computeAgentHash(agentSource);
|
|
10139
|
+
return {
|
|
10140
|
+
agentName: normalizeAgentName(parseResult.agentName || createDefaultAgentName(agentSource)),
|
|
10141
|
+
agentHash,
|
|
10142
|
+
personaDescription,
|
|
10143
|
+
meta,
|
|
10144
|
+
parameters,
|
|
10145
|
+
};
|
|
10146
|
+
}
|
|
10147
|
+
/**
|
|
10148
|
+
* TODO: [🕛] Unite `AgentBasicInformation`, `ChatParticipant`, `LlmExecutionTools` + `LlmToolsMetadata`
|
|
10149
|
+
*/
|
|
10150
|
+
|
|
10151
|
+
/**
|
|
10152
|
+
* Creates model requirements for an agent based on its source
|
|
10153
|
+
*
|
|
10154
|
+
* There are 2 similar functions:
|
|
10155
|
+
* - `parseAgentSource` which is a lightweight parser for agent source, it parses basic information and its purpose is to be quick and synchronous. The commitments there are hardcoded.
|
|
10156
|
+
* - `createAgentModelRequirements` which is an asynchronous function that creates model requirements it applies each commitment one by one and works asynchronous.
|
|
10157
|
+
*
|
|
10158
|
+
* @public exported from `@promptbook/core`
|
|
10159
|
+
*/
|
|
10160
|
+
async function createAgentModelRequirements(agentSource, modelName, availableModels, llmTools) {
|
|
9748
10161
|
// If availableModels are provided and no specific modelName is given,
|
|
9749
10162
|
// use preparePersona to select the best model
|
|
9750
10163
|
if (availableModels && !modelName && llmTools) {
|
|
@@ -9902,17 +10315,6 @@
|
|
|
9902
10315
|
// <- !!! Buttons into genesis book
|
|
9903
10316
|
// <- TODO: !!! generateBookBoilerplate and deprecate `DEFAULT_BOOK`
|
|
9904
10317
|
|
|
9905
|
-
/**
|
|
9906
|
-
* Trims string from all 4 sides
|
|
9907
|
-
*
|
|
9908
|
-
* Note: This is a re-exported function from the `spacetrim` package which is
|
|
9909
|
-
* Developed by same author @hejny as this package
|
|
9910
|
-
*
|
|
9911
|
-
* @public exported from `@promptbook/utils`
|
|
9912
|
-
* @see https://github.com/hejny/spacetrim#usage
|
|
9913
|
-
*/
|
|
9914
|
-
const spaceTrim = spaceTrim$1.spaceTrim;
|
|
9915
|
-
|
|
9916
10318
|
/**
|
|
9917
10319
|
* Agent collection stored in Supabase table
|
|
9918
10320
|
*
|
|
@@ -9921,7 +10323,7 @@
|
|
|
9921
10323
|
* @public exported from `@promptbook/core`
|
|
9922
10324
|
* <- TODO: !!! Move to `@promptbook/supabase` package
|
|
9923
10325
|
*/
|
|
9924
|
-
class AgentCollectionInSupabase /* TODO:
|
|
10326
|
+
class AgentCollectionInSupabase /* TODO: !!!!!! implements Agent */ {
|
|
9925
10327
|
/**
|
|
9926
10328
|
* @param rootPath - path to the directory with agents
|
|
9927
10329
|
* @param tools - Execution tools to be used in !!! `Agent` itself and listing the agents
|
|
@@ -9937,125 +10339,62 @@
|
|
|
9937
10339
|
console.info(`Creating pipeline collection from supabase...`);
|
|
9938
10340
|
}
|
|
9939
10341
|
}
|
|
9940
|
-
/**
|
|
9941
|
-
* Cached defined execution tools
|
|
9942
|
-
*/
|
|
9943
|
-
// !!! private _definedTools: ExecutionTools | null = null;
|
|
9944
|
-
/*
|
|
9945
|
-
TODO: !!! Use or remove
|
|
9946
|
-
/**
|
|
9947
|
-
* Gets or creates execution tools for the collection
|
|
9948
|
-
* /
|
|
9949
|
-
private async getTools(): Promise<ExecutionTools> {
|
|
9950
|
-
if (this._definedTools !== null) {
|
|
9951
|
-
return this._definedTools;
|
|
9952
|
-
}
|
|
9953
|
-
|
|
9954
|
-
this._definedTools = {
|
|
9955
|
-
...(this.tools === undefined || this.tools.fs === undefined ? await $provideExecutionToolsForNode() : {}),
|
|
9956
|
-
...this.tools,
|
|
9957
|
-
};
|
|
9958
|
-
return this._definedTools;
|
|
9959
|
-
}
|
|
9960
|
-
// <- TODO: [👪] Maybe create some common abstraction *(or parent abstract class)*
|
|
9961
|
-
*/
|
|
9962
10342
|
/**
|
|
9963
10343
|
* Gets all agents in the collection
|
|
9964
10344
|
*/
|
|
9965
10345
|
async listAgents( /* TODO: [🧠] Allow to pass some condition here */) {
|
|
9966
10346
|
const { isVerbose = exports.DEFAULT_IS_VERBOSE } = this.options || {};
|
|
9967
|
-
const
|
|
9968
|
-
|
|
9969
|
-
.select('agentProfile');
|
|
9970
|
-
if (result.error) {
|
|
10347
|
+
const selectResult = await this.supabaseClient.from('Agent').select('agentName,agentProfile');
|
|
10348
|
+
if (selectResult.error) {
|
|
9971
10349
|
throw new DatabaseError(spaceTrim((block) => `
|
|
9972
10350
|
|
|
9973
10351
|
Error fetching agents from Supabase:
|
|
9974
10352
|
|
|
9975
|
-
${block(
|
|
10353
|
+
${block(selectResult.error.message)}
|
|
9976
10354
|
`));
|
|
9977
10355
|
}
|
|
9978
10356
|
if (isVerbose) {
|
|
9979
|
-
console.info(`Found ${
|
|
10357
|
+
console.info(`Found ${selectResult.data.length} agents in directory`);
|
|
9980
10358
|
}
|
|
9981
|
-
return
|
|
9982
|
-
|
|
9983
|
-
|
|
9984
|
-
|
|
9985
|
-
* /
|
|
9986
|
-
public async spawnAgent(agentName: string_agent_name): Promise<Agent> {
|
|
9987
|
-
|
|
9988
|
-
// <- TODO: !!! ENOENT: no such file or directory, open 'C:\Users\me\work\ai\promptbook\agents\examples\Asistent pro LŠVP.book
|
|
9989
|
-
const { isVerbose = DEFAULT_IS_VERBOSE } = this.options || {};
|
|
9990
|
-
const tools = await this.getTools();
|
|
10359
|
+
return selectResult.data.map(({ agentName, agentProfile }) => {
|
|
10360
|
+
if (isVerbose && agentProfile.agentName !== agentName) {
|
|
10361
|
+
console.warn(spaceTrim(`
|
|
10362
|
+
Agent name mismatch for agent "${agentName}". Using name from database.
|
|
9991
10363
|
|
|
9992
|
-
|
|
9993
|
-
|
|
9994
|
-
|
|
9995
|
-
// Note: Write file whenever agent source changes
|
|
9996
|
-
agentSource.subscribe(async (newSource) => {
|
|
9997
|
-
if (isVerbose) {
|
|
9998
|
-
console.info(colors.cyan(`Writing agent source to file ${agentSourcePath}`));
|
|
9999
|
-
}
|
|
10000
|
-
await forTime(500); // <- TODO: [🙌] !!! Remove
|
|
10001
|
-
await tools.fs!.writeFile(agentSourcePath, newSource, 'utf-8');
|
|
10002
|
-
});
|
|
10003
|
-
|
|
10004
|
-
// Note: Watch file for external changes
|
|
10005
|
-
for await (const event of tools.fs!.watch(agentSourcePath)) {
|
|
10006
|
-
// <- TODO: !!!! Solve the memory freeing when the watching is no longer needed
|
|
10007
|
-
|
|
10008
|
-
if (event.eventType !== 'change') {
|
|
10009
|
-
continue;
|
|
10010
|
-
}
|
|
10011
|
-
|
|
10012
|
-
if (isVerbose) {
|
|
10013
|
-
console.info(
|
|
10014
|
-
colors.cyan(`Detected external change in agent source file ${agentSourcePath}, reloading`),
|
|
10015
|
-
);
|
|
10364
|
+
agentName: "${agentName}"
|
|
10365
|
+
agentProfile.agentName: "${agentProfile.agentName}"
|
|
10366
|
+
`));
|
|
10016
10367
|
}
|
|
10017
|
-
|
|
10018
|
-
|
|
10019
|
-
|
|
10020
|
-
|
|
10021
|
-
|
|
10022
|
-
// TODO: [🙌] !!!! Debug the infinite loop when file is changed externally and agent source is updated which causes file to be written again
|
|
10023
|
-
|
|
10024
|
-
const agent = new Agent({
|
|
10025
|
-
...this.options,
|
|
10026
|
-
agentSource,
|
|
10027
|
-
executionTools: this.tools || {},
|
|
10368
|
+
return {
|
|
10369
|
+
...agentProfile,
|
|
10370
|
+
agentName,
|
|
10371
|
+
};
|
|
10028
10372
|
});
|
|
10029
|
-
|
|
10030
|
-
if (isVerbose) {
|
|
10031
|
-
console.info(colors.cyan(`Created agent "${agent.agentName}" from source file ${agentSourcePath}`));
|
|
10032
|
-
}
|
|
10033
|
-
|
|
10034
|
-
return agent;
|
|
10035
|
-
* /
|
|
10036
10373
|
}
|
|
10037
|
-
*/
|
|
10038
10374
|
/**
|
|
10039
10375
|
* !!!@@@
|
|
10040
10376
|
*/
|
|
10041
10377
|
async getAgentSource(agentName) {
|
|
10042
|
-
const
|
|
10043
|
-
.from('
|
|
10378
|
+
const selectResult = await this.supabaseClient
|
|
10379
|
+
.from('Agent')
|
|
10044
10380
|
.select('agentSource')
|
|
10045
10381
|
.eq('agentName', agentName)
|
|
10046
10382
|
.single();
|
|
10047
|
-
|
|
10383
|
+
/*
|
|
10384
|
+
if (selectResult.data===null) {
|
|
10385
|
+
throw new NotFoundError(`Agent "${agentName}" not found`);
|
|
10386
|
+
}
|
|
10387
|
+
*/
|
|
10388
|
+
if (selectResult.error) {
|
|
10048
10389
|
throw new DatabaseError(spaceTrim((block) => `
|
|
10049
10390
|
|
|
10050
10391
|
Error fetching agent "${agentName}" from Supabase:
|
|
10051
10392
|
|
|
10052
|
-
${block(
|
|
10393
|
+
${block(selectResult.error.message)}
|
|
10053
10394
|
`));
|
|
10054
10395
|
// <- TODO: !!! First check if the error is "not found" and throw `NotFoundError` instead then throw `DatabaseError`
|
|
10055
10396
|
}
|
|
10056
|
-
|
|
10057
|
-
// <- TODO: !!!! Dynamic updates
|
|
10058
|
-
return agentSource;
|
|
10397
|
+
return selectResult.data.agentSource;
|
|
10059
10398
|
}
|
|
10060
10399
|
/**
|
|
10061
10400
|
* Creates a new agent in the collection
|
|
@@ -10065,56 +10404,91 @@
|
|
|
10065
10404
|
async createAgent(agentSource) {
|
|
10066
10405
|
const agentProfile = parseAgentSource(agentSource);
|
|
10067
10406
|
// <- TODO: [🕛]
|
|
10068
|
-
const
|
|
10069
|
-
|
|
10407
|
+
const { agentName, agentHash } = agentProfile;
|
|
10408
|
+
const insertAgentResult = await this.supabaseClient.from('Agent').insert({
|
|
10409
|
+
agentName,
|
|
10410
|
+
agentHash,
|
|
10070
10411
|
agentProfile,
|
|
10071
10412
|
createdAt: new Date().toISOString(),
|
|
10072
10413
|
updatedAt: null,
|
|
10073
|
-
agentVersion: 0,
|
|
10074
10414
|
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10075
10415
|
usage: ZERO_USAGE,
|
|
10076
10416
|
agentSource: agentSource,
|
|
10077
10417
|
});
|
|
10078
|
-
if (
|
|
10418
|
+
if (insertAgentResult.error) {
|
|
10079
10419
|
throw new DatabaseError(spaceTrim((block) => `
|
|
10080
10420
|
Error creating agent "${agentProfile.agentName}" in Supabase:
|
|
10081
10421
|
|
|
10082
|
-
${block(
|
|
10422
|
+
${block(insertAgentResult.error.message)}
|
|
10083
10423
|
`));
|
|
10084
10424
|
}
|
|
10425
|
+
await this.supabaseClient.from('AgentHistory').insert({
|
|
10426
|
+
createdAt: new Date().toISOString(),
|
|
10427
|
+
agentName,
|
|
10428
|
+
agentHash,
|
|
10429
|
+
previousAgentHash: null,
|
|
10430
|
+
agentSource,
|
|
10431
|
+
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10432
|
+
});
|
|
10433
|
+
// <- TODO: [🧠] What to do with `insertAgentHistoryResult.error`, ignore? wait?
|
|
10085
10434
|
return agentProfile;
|
|
10086
10435
|
}
|
|
10087
10436
|
/**
|
|
10088
10437
|
* Updates an existing agent in the collection
|
|
10089
10438
|
*/
|
|
10090
10439
|
async updateAgentSource(agentName, agentSource) {
|
|
10440
|
+
const selectPreviousAgentResult = await this.supabaseClient
|
|
10441
|
+
.from('Agent')
|
|
10442
|
+
.select('agentHash,agentName')
|
|
10443
|
+
.eq('agentName', agentName)
|
|
10444
|
+
.single();
|
|
10445
|
+
if (selectPreviousAgentResult.error) {
|
|
10446
|
+
throw new DatabaseError(spaceTrim((block) => `
|
|
10447
|
+
|
|
10448
|
+
Error fetching agent "${agentName}" from Supabase:
|
|
10449
|
+
|
|
10450
|
+
${block(selectPreviousAgentResult.error.message)}
|
|
10451
|
+
`));
|
|
10452
|
+
// <- TODO: !!! First check if the error is "not found" and throw `NotFoundError` instead then throw `DatabaseError`
|
|
10453
|
+
}
|
|
10454
|
+
selectPreviousAgentResult.data.agentName;
|
|
10455
|
+
const previousAgentHash = selectPreviousAgentResult.data.agentHash;
|
|
10091
10456
|
const agentProfile = parseAgentSource(agentSource);
|
|
10092
|
-
// TODO:
|
|
10093
|
-
|
|
10094
|
-
const
|
|
10095
|
-
|
|
10096
|
-
.from('AgentCollection' /* <- TODO: !!!! Change to `Agent` */)
|
|
10457
|
+
// <- TODO: [🕛]
|
|
10458
|
+
const { agentHash } = agentProfile;
|
|
10459
|
+
const updateAgentResult = await this.supabaseClient
|
|
10460
|
+
.from('Agent')
|
|
10097
10461
|
.update({
|
|
10098
10462
|
// TODO: !!!! Compare not update> agentName: agentProfile.agentName || '!!!!!' /* <- TODO: !!!! Remove */,
|
|
10099
10463
|
agentProfile,
|
|
10100
10464
|
updatedAt: new Date().toISOString(),
|
|
10101
|
-
|
|
10102
|
-
agentSource
|
|
10465
|
+
agentHash: agentProfile.agentHash,
|
|
10466
|
+
agentSource,
|
|
10467
|
+
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10103
10468
|
})
|
|
10104
10469
|
.eq('agentName', agentName);
|
|
10105
|
-
|
|
10106
|
-
console.log('!!!
|
|
10107
|
-
console.log('!!!
|
|
10108
|
-
|
|
10109
|
-
if (result.error) {
|
|
10470
|
+
// console.log('!!! updateAgent', updateResult);
|
|
10471
|
+
// console.log('!!! old', oldAgentSource);
|
|
10472
|
+
// console.log('!!! new', newAgentSource);
|
|
10473
|
+
if (updateAgentResult.error) {
|
|
10110
10474
|
throw new DatabaseError(spaceTrim((block) => `
|
|
10111
10475
|
Error updating agent "${agentName}" in Supabase:
|
|
10112
10476
|
|
|
10113
|
-
${block(
|
|
10477
|
+
${block(updateAgentResult.error.message)}
|
|
10114
10478
|
`));
|
|
10115
10479
|
}
|
|
10480
|
+
await this.supabaseClient.from('AgentHistory').insert({
|
|
10481
|
+
createdAt: new Date().toISOString(),
|
|
10482
|
+
agentName,
|
|
10483
|
+
agentHash,
|
|
10484
|
+
previousAgentHash,
|
|
10485
|
+
agentSource,
|
|
10486
|
+
promptbookEngineVersion: PROMPTBOOK_ENGINE_VERSION,
|
|
10487
|
+
});
|
|
10488
|
+
// <- TODO: [🧠] What to do with `insertAgentHistoryResult.error`, ignore? wait?
|
|
10116
10489
|
}
|
|
10117
|
-
// TODO: !!!! getAgentSourceSubject
|
|
10490
|
+
// TODO: !!!! public async getAgentSourceSubject(agentName: string_agent_name): Promise<BehaviorSubject<string_book>>
|
|
10491
|
+
// Use Supabase realtime logic
|
|
10118
10492
|
/**
|
|
10119
10493
|
* Deletes an agent from the collection
|
|
10120
10494
|
*/
|
|
@@ -10767,75 +11141,6 @@
|
|
|
10767
11141
|
* TODO: [💝] Unite object for expecting amount and format - remove format
|
|
10768
11142
|
*/
|
|
10769
11143
|
|
|
10770
|
-
/**
|
|
10771
|
-
* Function parseNumber will parse number from string
|
|
10772
|
-
*
|
|
10773
|
-
* Note: [🔂] This function is idempotent.
|
|
10774
|
-
* Unlike Number.parseInt, Number.parseFloat it will never ever result in NaN
|
|
10775
|
-
* Note: it also works only with decimal numbers
|
|
10776
|
-
*
|
|
10777
|
-
* @returns parsed number
|
|
10778
|
-
* @throws {ParseError} if the value is not a number
|
|
10779
|
-
*
|
|
10780
|
-
* @public exported from `@promptbook/utils`
|
|
10781
|
-
*/
|
|
10782
|
-
function parseNumber(value) {
|
|
10783
|
-
const originalValue = value;
|
|
10784
|
-
if (typeof value === 'number') {
|
|
10785
|
-
value = value.toString(); // <- TODO: Maybe more efficient way to do this
|
|
10786
|
-
}
|
|
10787
|
-
if (typeof value !== 'string') {
|
|
10788
|
-
return 0;
|
|
10789
|
-
}
|
|
10790
|
-
value = value.trim();
|
|
10791
|
-
if (value.startsWith('+')) {
|
|
10792
|
-
return parseNumber(value.substring(1));
|
|
10793
|
-
}
|
|
10794
|
-
if (value.startsWith('-')) {
|
|
10795
|
-
const number = parseNumber(value.substring(1));
|
|
10796
|
-
if (number === 0) {
|
|
10797
|
-
return 0; // <- Note: To prevent -0
|
|
10798
|
-
}
|
|
10799
|
-
return -number;
|
|
10800
|
-
}
|
|
10801
|
-
value = value.replace(/,/g, '.');
|
|
10802
|
-
value = value.toUpperCase();
|
|
10803
|
-
if (value === '') {
|
|
10804
|
-
return 0;
|
|
10805
|
-
}
|
|
10806
|
-
if (value === '♾' || value.startsWith('INF')) {
|
|
10807
|
-
return Infinity;
|
|
10808
|
-
}
|
|
10809
|
-
if (value.includes('/')) {
|
|
10810
|
-
const [numerator_, denominator_] = value.split('/');
|
|
10811
|
-
const numerator = parseNumber(numerator_);
|
|
10812
|
-
const denominator = parseNumber(denominator_);
|
|
10813
|
-
if (denominator === 0) {
|
|
10814
|
-
throw new ParseError(`Unable to parse number from "${originalValue}" because denominator is zero`);
|
|
10815
|
-
}
|
|
10816
|
-
return numerator / denominator;
|
|
10817
|
-
}
|
|
10818
|
-
if (/^(NAN|NULL|NONE|UNDEFINED|ZERO|NO.*)$/.test(value)) {
|
|
10819
|
-
return 0;
|
|
10820
|
-
}
|
|
10821
|
-
if (value.includes('E')) {
|
|
10822
|
-
const [significand, exponent] = value.split('E');
|
|
10823
|
-
return parseNumber(significand) * 10 ** parseNumber(exponent);
|
|
10824
|
-
}
|
|
10825
|
-
if (!/^[0-9.]+$/.test(value) || value.split('.').length > 2) {
|
|
10826
|
-
throw new ParseError(`Unable to parse number from "${originalValue}"`);
|
|
10827
|
-
}
|
|
10828
|
-
const num = parseFloat(value);
|
|
10829
|
-
if (isNaN(num)) {
|
|
10830
|
-
throw new ParseError(`Unexpected NaN when parsing number from "${originalValue}"`);
|
|
10831
|
-
}
|
|
10832
|
-
return num;
|
|
10833
|
-
}
|
|
10834
|
-
/**
|
|
10835
|
-
* TODO: Maybe use sth. like safe-eval in fraction/calculation case @see https://www.npmjs.com/package/safe-eval
|
|
10836
|
-
* TODO: [🧠][🌻] Maybe export through `@promptbook/markdown-utils` not `@promptbook/utils`
|
|
10837
|
-
*/
|
|
10838
|
-
|
|
10839
11144
|
/**
|
|
10840
11145
|
import { WrappedError } from '../../errors/WrappedError';
|
|
10841
11146
|
import { assertsError } from '../../errors/assertsError';
|
|
@@ -10978,30 +11283,6 @@
|
|
|
10978
11283
|
},
|
|
10979
11284
|
};
|
|
10980
11285
|
|
|
10981
|
-
/**
|
|
10982
|
-
* Removes quotes from a string
|
|
10983
|
-
*
|
|
10984
|
-
* Note: [🔂] This function is idempotent.
|
|
10985
|
-
* Tip: This is very useful for post-processing of the result of the LLM model
|
|
10986
|
-
* Note: This function removes only the same quotes from the beginning and the end of the string
|
|
10987
|
-
* Note: There are two similar functions:
|
|
10988
|
-
* - `removeQuotes` which removes only bounding quotes
|
|
10989
|
-
* - `unwrapResult` which removes whole introduce sentence
|
|
10990
|
-
*
|
|
10991
|
-
* @param text optionally quoted text
|
|
10992
|
-
* @returns text without quotes
|
|
10993
|
-
* @public exported from `@promptbook/utils`
|
|
10994
|
-
*/
|
|
10995
|
-
function removeQuotes(text) {
|
|
10996
|
-
if (text.startsWith('"') && text.endsWith('"')) {
|
|
10997
|
-
return text.slice(1, -1);
|
|
10998
|
-
}
|
|
10999
|
-
if (text.startsWith("'") && text.endsWith("'")) {
|
|
11000
|
-
return text.slice(1, -1);
|
|
11001
|
-
}
|
|
11002
|
-
return text;
|
|
11003
|
-
}
|
|
11004
|
-
|
|
11005
11286
|
/**
|
|
11006
11287
|
* Function `validateParameterName` will normalize and validate a parameter name for use in pipelines.
|
|
11007
11288
|
* It removes diacritics, emojis, and quotes, normalizes to camelCase, and checks for reserved names and invalid characters.
|
|
@@ -12181,25 +12462,11 @@
|
|
|
12181
12462
|
First definition:
|
|
12182
12463
|
${persona.description}
|
|
12183
12464
|
|
|
12184
|
-
Second definition:
|
|
12185
|
-
${personaDescription}
|
|
12186
|
-
|
|
12187
|
-
`));
|
|
12188
|
-
persona.description += spaceTrim__default["default"]('\n\n' + personaDescription);
|
|
12189
|
-
}
|
|
12190
|
-
|
|
12191
|
-
/**
|
|
12192
|
-
* Checks if the given value is a valid JavaScript identifier name.
|
|
12193
|
-
*
|
|
12194
|
-
* @param javascriptName The value to check for JavaScript identifier validity.
|
|
12195
|
-
* @returns `true` if the value is a valid JavaScript name, false otherwise.
|
|
12196
|
-
* @public exported from `@promptbook/utils`
|
|
12197
|
-
*/
|
|
12198
|
-
function isValidJavascriptName(javascriptName) {
|
|
12199
|
-
if (typeof javascriptName !== 'string') {
|
|
12200
|
-
return false;
|
|
12201
|
-
}
|
|
12202
|
-
return /^[a-zA-Z_$][0-9a-zA-Z_$]*$/i.test(javascriptName);
|
|
12465
|
+
Second definition:
|
|
12466
|
+
${personaDescription}
|
|
12467
|
+
|
|
12468
|
+
`));
|
|
12469
|
+
persona.description += spaceTrim__default["default"]('\n\n' + personaDescription);
|
|
12203
12470
|
}
|
|
12204
12471
|
|
|
12205
12472
|
/**
|
|
@@ -13770,114 +14037,6 @@
|
|
|
13770
14037
|
* TODO: [🏛] This can be part of markdown builder
|
|
13771
14038
|
*/
|
|
13772
14039
|
|
|
13773
|
-
/**
|
|
13774
|
-
* Creates a Mermaid graph based on the promptbook
|
|
13775
|
-
*
|
|
13776
|
-
* Note: The result is not wrapped in a Markdown code block
|
|
13777
|
-
*
|
|
13778
|
-
* @public exported from `@promptbook/utils`
|
|
13779
|
-
*/
|
|
13780
|
-
function renderPromptbookMermaid(pipelineJson, options) {
|
|
13781
|
-
const { linkTask = () => null } = options || {};
|
|
13782
|
-
const MERMAID_PREFIX = 'pipeline_';
|
|
13783
|
-
const MERMAID_KNOWLEDGE_NAME = MERMAID_PREFIX + 'knowledge';
|
|
13784
|
-
const MERMAID_RESERVED_NAME = MERMAID_PREFIX + 'reserved';
|
|
13785
|
-
const MERMAID_INPUT_NAME = MERMAID_PREFIX + 'input';
|
|
13786
|
-
const MERMAID_OUTPUT_NAME = MERMAID_PREFIX + 'output';
|
|
13787
|
-
const parameterNameToTaskName = (parameterName) => {
|
|
13788
|
-
if (parameterName === 'knowledge') {
|
|
13789
|
-
return MERMAID_KNOWLEDGE_NAME;
|
|
13790
|
-
}
|
|
13791
|
-
else if (RESERVED_PARAMETER_NAMES.includes(parameterName)) {
|
|
13792
|
-
return MERMAID_RESERVED_NAME;
|
|
13793
|
-
}
|
|
13794
|
-
const parameter = pipelineJson.parameters.find((parameter) => parameter.name === parameterName);
|
|
13795
|
-
if (!parameter) {
|
|
13796
|
-
throw new UnexpectedError(`Could not find {${parameterName}}`);
|
|
13797
|
-
// <- TODO: This causes problems when {knowledge} and other reserved parameters are used
|
|
13798
|
-
}
|
|
13799
|
-
if (parameter.isInput) {
|
|
13800
|
-
return MERMAID_INPUT_NAME;
|
|
13801
|
-
}
|
|
13802
|
-
const task = pipelineJson.tasks.find((task) => task.resultingParameterName === parameterName);
|
|
13803
|
-
if (!task) {
|
|
13804
|
-
throw new Error(`Could not find task for {${parameterName}}`);
|
|
13805
|
-
}
|
|
13806
|
-
return MERMAID_PREFIX + (task.name || normalizeTo_camelCase('task-' + titleToName(task.title)));
|
|
13807
|
-
};
|
|
13808
|
-
const inputAndIntermediateParametersMermaid = pipelineJson.tasks
|
|
13809
|
-
.flatMap(({ title, dependentParameterNames, resultingParameterName }) => [
|
|
13810
|
-
`${parameterNameToTaskName(resultingParameterName)}("${title}")`,
|
|
13811
|
-
...dependentParameterNames.map((dependentParameterName) => `${parameterNameToTaskName(dependentParameterName)}--"{${dependentParameterName}}"-->${parameterNameToTaskName(resultingParameterName)}`),
|
|
13812
|
-
])
|
|
13813
|
-
.join('\n');
|
|
13814
|
-
const outputParametersMermaid = pipelineJson.parameters
|
|
13815
|
-
.filter(({ isOutput }) => isOutput)
|
|
13816
|
-
.map(({ name }) => `${parameterNameToTaskName(name)}--"{${name}}"-->${MERMAID_OUTPUT_NAME}`)
|
|
13817
|
-
.join('\n');
|
|
13818
|
-
const linksMermaid = pipelineJson.tasks
|
|
13819
|
-
.map((task) => {
|
|
13820
|
-
const link = linkTask(task);
|
|
13821
|
-
if (link === null) {
|
|
13822
|
-
return '';
|
|
13823
|
-
}
|
|
13824
|
-
const { href, title } = link;
|
|
13825
|
-
const taskName = parameterNameToTaskName(task.resultingParameterName);
|
|
13826
|
-
return `click ${taskName} href "${href}" "${title}";`;
|
|
13827
|
-
})
|
|
13828
|
-
.filter((line) => line !== '')
|
|
13829
|
-
.join('\n');
|
|
13830
|
-
const interactionPointsMermaid = Object.entries({
|
|
13831
|
-
[MERMAID_INPUT_NAME]: 'Input',
|
|
13832
|
-
[MERMAID_OUTPUT_NAME]: 'Output',
|
|
13833
|
-
[MERMAID_RESERVED_NAME]: 'Other',
|
|
13834
|
-
[MERMAID_KNOWLEDGE_NAME]: 'Knowledge',
|
|
13835
|
-
})
|
|
13836
|
-
.filter(([MERMAID_NAME]) => (inputAndIntermediateParametersMermaid + outputParametersMermaid).includes(MERMAID_NAME))
|
|
13837
|
-
.map(([MERMAID_NAME, title]) => `${MERMAID_NAME}((${title})):::${MERMAID_NAME}`)
|
|
13838
|
-
.join('\n');
|
|
13839
|
-
const promptbookMermaid = spaceTrim$1.spaceTrim((block) => `
|
|
13840
|
-
|
|
13841
|
-
%% 🔮 Tip: Open this on GitHub or in the VSCode website to see the Mermaid graph visually
|
|
13842
|
-
|
|
13843
|
-
flowchart LR
|
|
13844
|
-
subgraph "${pipelineJson.title}"
|
|
13845
|
-
|
|
13846
|
-
%% Basic configuration
|
|
13847
|
-
direction TB
|
|
13848
|
-
|
|
13849
|
-
%% Interaction points from pipeline to outside
|
|
13850
|
-
${block(interactionPointsMermaid)}
|
|
13851
|
-
|
|
13852
|
-
%% Input and intermediate parameters
|
|
13853
|
-
${block(inputAndIntermediateParametersMermaid)}
|
|
13854
|
-
|
|
13855
|
-
|
|
13856
|
-
%% Output parameters
|
|
13857
|
-
${block(outputParametersMermaid)}
|
|
13858
|
-
|
|
13859
|
-
%% Links
|
|
13860
|
-
${block(linksMermaid)}
|
|
13861
|
-
|
|
13862
|
-
%% Styles
|
|
13863
|
-
classDef ${MERMAID_INPUT_NAME} color: grey;
|
|
13864
|
-
classDef ${MERMAID_OUTPUT_NAME} color: grey;
|
|
13865
|
-
classDef ${MERMAID_RESERVED_NAME} color: grey;
|
|
13866
|
-
classDef ${MERMAID_KNOWLEDGE_NAME} color: grey;
|
|
13867
|
-
|
|
13868
|
-
end;
|
|
13869
|
-
|
|
13870
|
-
`);
|
|
13871
|
-
return promptbookMermaid;
|
|
13872
|
-
}
|
|
13873
|
-
/**
|
|
13874
|
-
* TODO: [🧠] FOREACH in mermaid graph
|
|
13875
|
-
* TODO: [🧠] Knowledge in mermaid graph
|
|
13876
|
-
* TODO: [🧠] Personas in mermaid graph
|
|
13877
|
-
* TODO: Maybe use some Mermaid package instead of string templating
|
|
13878
|
-
* TODO: [🕌] When more than 2 functionalities, split into separate functions
|
|
13879
|
-
*/
|
|
13880
|
-
|
|
13881
14040
|
/**
|
|
13882
14041
|
* Prettyfies Promptbook string and adds Mermaid graph
|
|
13883
14042
|
*
|
|
@@ -14438,64 +14597,6 @@
|
|
|
14438
14597
|
* TODO: [®] DRY Register logic
|
|
14439
14598
|
*/
|
|
14440
14599
|
|
|
14441
|
-
/**
|
|
14442
|
-
* Detects if the code is running in a browser environment in main thread (Not in a web worker)
|
|
14443
|
-
*
|
|
14444
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
14445
|
-
*
|
|
14446
|
-
* @public exported from `@promptbook/utils`
|
|
14447
|
-
*/
|
|
14448
|
-
const $isRunningInBrowser = new Function(`
|
|
14449
|
-
try {
|
|
14450
|
-
return this === window;
|
|
14451
|
-
} catch (e) {
|
|
14452
|
-
return false;
|
|
14453
|
-
}
|
|
14454
|
-
`);
|
|
14455
|
-
/**
|
|
14456
|
-
* TODO: [🎺]
|
|
14457
|
-
*/
|
|
14458
|
-
|
|
14459
|
-
/**
|
|
14460
|
-
* Detects if the code is running in a Node.js environment
|
|
14461
|
-
*
|
|
14462
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
14463
|
-
*
|
|
14464
|
-
* @public exported from `@promptbook/utils`
|
|
14465
|
-
*/
|
|
14466
|
-
const $isRunningInNode = new Function(`
|
|
14467
|
-
try {
|
|
14468
|
-
return this === global;
|
|
14469
|
-
} catch (e) {
|
|
14470
|
-
return false;
|
|
14471
|
-
}
|
|
14472
|
-
`);
|
|
14473
|
-
/**
|
|
14474
|
-
* TODO: [🎺]
|
|
14475
|
-
*/
|
|
14476
|
-
|
|
14477
|
-
/**
|
|
14478
|
-
* Detects if the code is running in a web worker
|
|
14479
|
-
*
|
|
14480
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
14481
|
-
*
|
|
14482
|
-
* @public exported from `@promptbook/utils`
|
|
14483
|
-
*/
|
|
14484
|
-
const $isRunningInWebWorker = new Function(`
|
|
14485
|
-
try {
|
|
14486
|
-
if (typeof WorkerGlobalScope !== 'undefined' && self instanceof WorkerGlobalScope) {
|
|
14487
|
-
return true;
|
|
14488
|
-
} else {
|
|
14489
|
-
return false;
|
|
14490
|
-
}
|
|
14491
|
-
} catch (e) {
|
|
14492
|
-
return false;
|
|
14493
|
-
}
|
|
14494
|
-
`);
|
|
14495
|
-
/**
|
|
14496
|
-
* TODO: [🎺]
|
|
14497
|
-
*/
|
|
14498
|
-
|
|
14499
14600
|
/**
|
|
14500
14601
|
* Creates a message with all registered LLM tools
|
|
14501
14602
|
*
|
|
@@ -14729,18 +14830,6 @@
|
|
|
14729
14830
|
}
|
|
14730
14831
|
}
|
|
14731
14832
|
|
|
14732
|
-
/**
|
|
14733
|
-
* Simple wrapper `new Date().toISOString()`
|
|
14734
|
-
*
|
|
14735
|
-
* Note: `$` is used to indicate that this function is not a pure function - it is not deterministic because it depends on the current time
|
|
14736
|
-
*
|
|
14737
|
-
* @returns string_date branded type
|
|
14738
|
-
* @public exported from `@promptbook/utils`
|
|
14739
|
-
*/
|
|
14740
|
-
function $getCurrentDate() {
|
|
14741
|
-
return new Date().toISOString();
|
|
14742
|
-
}
|
|
14743
|
-
|
|
14744
14833
|
/**
|
|
14745
14834
|
* Intercepts LLM tools and counts total usage of the tools
|
|
14746
14835
|
*
|
|
@@ -15367,17 +15456,17 @@
|
|
|
15367
15456
|
},
|
|
15368
15457
|
/**/
|
|
15369
15458
|
/*/
|
|
15370
|
-
|
|
15371
|
-
|
|
15372
|
-
|
|
15373
|
-
|
|
15374
|
-
|
|
15459
|
+
{
|
|
15460
|
+
modelTitle: 'tts-1-hd-1106',
|
|
15461
|
+
modelName: 'tts-1-hd-1106',
|
|
15462
|
+
},
|
|
15463
|
+
/**/
|
|
15375
15464
|
/*/
|
|
15376
|
-
|
|
15377
|
-
|
|
15378
|
-
|
|
15379
|
-
|
|
15380
|
-
|
|
15465
|
+
{
|
|
15466
|
+
modelTitle: 'tts-1-hd',
|
|
15467
|
+
modelName: 'tts-1-hd',
|
|
15468
|
+
},
|
|
15469
|
+
/**/
|
|
15381
15470
|
/**/
|
|
15382
15471
|
{
|
|
15383
15472
|
modelVariant: 'CHAT',
|
|
@@ -16563,7 +16652,7 @@
|
|
|
16563
16652
|
*
|
|
16564
16653
|
* This is useful for calling OpenAI API with a single assistant, for more wide usage use `OpenAiExecutionTools`.
|
|
16565
16654
|
*
|
|
16566
|
-
* Note: [🦖] There are several different things in Promptbook:
|
|
16655
|
+
* !!! Note: [🦖] There are several different things in Promptbook:
|
|
16567
16656
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
16568
16657
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
16569
16658
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
@@ -16669,17 +16758,21 @@
|
|
|
16669
16758
|
console.info('connect', stream.currentEvent);
|
|
16670
16759
|
}
|
|
16671
16760
|
});
|
|
16761
|
+
/*
|
|
16672
16762
|
stream.on('messageDelta', (messageDelta) => {
|
|
16673
|
-
|
|
16674
|
-
|
|
16763
|
+
if (
|
|
16764
|
+
this.options.isVerbose &&
|
|
16675
16765
|
messageDelta &&
|
|
16676
16766
|
messageDelta.content &&
|
|
16677
16767
|
messageDelta.content[0] &&
|
|
16678
|
-
messageDelta.content[0].type === 'text'
|
|
16679
|
-
|
|
16768
|
+
messageDelta.content[0].type === 'text'
|
|
16769
|
+
) {
|
|
16770
|
+
console.info('messageDelta', messageDelta.content[0].text?.value);
|
|
16680
16771
|
}
|
|
16772
|
+
|
|
16681
16773
|
// <- TODO: [🐚] Make streaming and running tasks working
|
|
16682
16774
|
});
|
|
16775
|
+
*/
|
|
16683
16776
|
stream.on('messageCreated', (message) => {
|
|
16684
16777
|
if (this.options.isVerbose) {
|
|
16685
16778
|
console.info('messageCreated', message);
|
|
@@ -16734,15 +16827,19 @@
|
|
|
16734
16827
|
},
|
|
16735
16828
|
});
|
|
16736
16829
|
}
|
|
16737
|
-
|
|
16830
|
+
/*
|
|
16831
|
+
public async playground() {
|
|
16738
16832
|
const client = await this.getClient();
|
|
16833
|
+
|
|
16739
16834
|
// List all assistants
|
|
16740
16835
|
const assistants = await client.beta.assistants.list();
|
|
16741
16836
|
console.log('!!! Assistants:', assistants);
|
|
16837
|
+
|
|
16742
16838
|
// Get details of a specific assistant
|
|
16743
16839
|
const assistantId = 'asst_MO8fhZf4dGloCfXSHeLcIik0';
|
|
16744
16840
|
const assistant = await client.beta.assistants.retrieve(assistantId);
|
|
16745
16841
|
console.log('!!! Assistant Details:', assistant);
|
|
16842
|
+
|
|
16746
16843
|
// Update an assistant
|
|
16747
16844
|
const updatedAssistant = await client.beta.assistants.update(assistantId, {
|
|
16748
16845
|
name: assistant.name + '(M)',
|
|
@@ -16752,75 +16849,196 @@
|
|
|
16752
16849
|
},
|
|
16753
16850
|
});
|
|
16754
16851
|
console.log('!!! Updated Assistant:', updatedAssistant);
|
|
16755
|
-
|
|
16852
|
+
|
|
16853
|
+
await forEver();
|
|
16854
|
+
}
|
|
16855
|
+
*/
|
|
16856
|
+
/**
|
|
16857
|
+
* Get an existing assistant tool wrapper
|
|
16858
|
+
*/
|
|
16859
|
+
getAssistant(assistantId) {
|
|
16860
|
+
return new OpenAiAssistantExecutionTools({
|
|
16861
|
+
...this.options,
|
|
16862
|
+
assistantId,
|
|
16863
|
+
});
|
|
16756
16864
|
}
|
|
16757
16865
|
async createNewAssistant(options) {
|
|
16758
16866
|
if (!this.isCreatingNewAssistantsAllowed) {
|
|
16759
16867
|
throw new NotAllowed(`Creating new assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
|
|
16760
16868
|
}
|
|
16761
16869
|
// await this.playground();
|
|
16762
|
-
const { name, instructions } = options;
|
|
16870
|
+
const { name, instructions, knowledgeSources } = options;
|
|
16763
16871
|
const client = await this.getClient();
|
|
16764
|
-
|
|
16765
|
-
//
|
|
16766
|
-
|
|
16767
|
-
|
|
16768
|
-
|
|
16769
|
-
|
|
16770
|
-
|
|
16771
|
-
|
|
16772
|
-
|
|
16773
|
-
if (!res.ok) throw new Error(`Download error: ${url}`);
|
|
16774
|
-
const buffer = await res.arrayBuffer();
|
|
16775
|
-
fs.writeFileSync(filepath, Buffer.from(buffer));
|
|
16776
|
-
console.log(`📥 File downloaded: ${filename}`);
|
|
16777
|
-
|
|
16778
|
-
return filepath;
|
|
16779
|
-
}
|
|
16780
|
-
|
|
16781
|
-
async function uploadFileToOpenAI(filepath: string) {
|
|
16782
|
-
const file = await client.files.create({
|
|
16783
|
-
file: fs.createReadStream(filepath),
|
|
16784
|
-
purpose: 'assistants',
|
|
16872
|
+
let vectorStoreId;
|
|
16873
|
+
// If knowledge sources are provided, create a vector store with them
|
|
16874
|
+
if (knowledgeSources && knowledgeSources.length > 0) {
|
|
16875
|
+
if (this.options.isVerbose) {
|
|
16876
|
+
console.info(`📚 Creating vector store with ${knowledgeSources.length} knowledge sources...`);
|
|
16877
|
+
}
|
|
16878
|
+
// Create a vector store
|
|
16879
|
+
const vectorStore = await client.beta.vectorStores.create({
|
|
16880
|
+
name: `${name} Knowledge Base`,
|
|
16785
16881
|
});
|
|
16786
|
-
|
|
16787
|
-
|
|
16882
|
+
vectorStoreId = vectorStore.id;
|
|
16883
|
+
if (this.options.isVerbose) {
|
|
16884
|
+
console.info(`✅ Vector store created: ${vectorStoreId}`);
|
|
16885
|
+
}
|
|
16886
|
+
// Upload files from knowledge sources to the vector store
|
|
16887
|
+
const fileStreams = [];
|
|
16888
|
+
for (const source of knowledgeSources) {
|
|
16889
|
+
try {
|
|
16890
|
+
// Check if it's a URL
|
|
16891
|
+
if (source.startsWith('http://') || source.startsWith('https://')) {
|
|
16892
|
+
// Download the file
|
|
16893
|
+
const response = await fetch(source);
|
|
16894
|
+
if (!response.ok) {
|
|
16895
|
+
console.error(`Failed to download ${source}: ${response.statusText}`);
|
|
16896
|
+
continue;
|
|
16897
|
+
}
|
|
16898
|
+
const buffer = await response.arrayBuffer();
|
|
16899
|
+
const filename = source.split('/').pop() || 'downloaded-file';
|
|
16900
|
+
const blob = new Blob([buffer]);
|
|
16901
|
+
const file = new File([blob], filename);
|
|
16902
|
+
fileStreams.push(file);
|
|
16903
|
+
}
|
|
16904
|
+
else {
|
|
16905
|
+
// Assume it's a local file path
|
|
16906
|
+
// Note: This will work in Node.js environment
|
|
16907
|
+
// For browser environments, this would need different handling
|
|
16908
|
+
const fs = await import('fs');
|
|
16909
|
+
const fileStream = fs.createReadStream(source);
|
|
16910
|
+
fileStreams.push(fileStream);
|
|
16911
|
+
}
|
|
16912
|
+
}
|
|
16913
|
+
catch (error) {
|
|
16914
|
+
console.error(`Error processing knowledge source ${source}:`, error);
|
|
16915
|
+
}
|
|
16916
|
+
}
|
|
16917
|
+
// Batch upload files to the vector store
|
|
16918
|
+
if (fileStreams.length > 0) {
|
|
16919
|
+
try {
|
|
16920
|
+
await client.beta.vectorStores.fileBatches.uploadAndPoll(vectorStoreId, {
|
|
16921
|
+
files: fileStreams,
|
|
16922
|
+
});
|
|
16923
|
+
if (this.options.isVerbose) {
|
|
16924
|
+
console.info(`✅ Uploaded ${fileStreams.length} files to vector store`);
|
|
16925
|
+
}
|
|
16926
|
+
}
|
|
16927
|
+
catch (error) {
|
|
16928
|
+
console.error('Error uploading files to vector store:', error);
|
|
16929
|
+
}
|
|
16930
|
+
}
|
|
16788
16931
|
}
|
|
16789
|
-
|
|
16790
|
-
|
|
16791
|
-
|
|
16792
|
-
'
|
|
16793
|
-
'
|
|
16794
|
-
|
|
16795
|
-
|
|
16796
|
-
|
|
16797
|
-
|
|
16798
|
-
|
|
16799
|
-
|
|
16800
|
-
|
|
16932
|
+
// Create assistant with vector store attached
|
|
16933
|
+
const assistantConfig = {
|
|
16934
|
+
name,
|
|
16935
|
+
description: 'Assistant created via Promptbook',
|
|
16936
|
+
model: 'gpt-4o',
|
|
16937
|
+
instructions,
|
|
16938
|
+
tools: [/* TODO: [🧠] Maybe add { type: 'code_interpreter' }, */ { type: 'file_search' }],
|
|
16939
|
+
};
|
|
16940
|
+
// Attach vector store if created
|
|
16941
|
+
if (vectorStoreId) {
|
|
16942
|
+
assistantConfig.tool_resources = {
|
|
16943
|
+
file_search: {
|
|
16944
|
+
vector_store_ids: [vectorStoreId],
|
|
16945
|
+
},
|
|
16946
|
+
};
|
|
16947
|
+
}
|
|
16948
|
+
const assistant = await client.beta.assistants.create(assistantConfig);
|
|
16949
|
+
console.log(`✅ Assistant created: ${assistant.id}`);
|
|
16950
|
+
// TODO: !!!! Try listing existing assistants
|
|
16951
|
+
// TODO: !!!! Try marking existing assistants by DISCRIMINANT
|
|
16952
|
+
// TODO: !!!! Allow to update and reconnect to existing assistants
|
|
16953
|
+
return new OpenAiAssistantExecutionTools({
|
|
16954
|
+
...this.options,
|
|
16955
|
+
isCreatingNewAssistantsAllowed: false,
|
|
16956
|
+
assistantId: assistant.id,
|
|
16957
|
+
});
|
|
16958
|
+
}
|
|
16959
|
+
async updateAssistant(options) {
|
|
16960
|
+
if (!this.isCreatingNewAssistantsAllowed) {
|
|
16961
|
+
throw new NotAllowed(`Updating assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
|
|
16801
16962
|
}
|
|
16802
|
-
|
|
16803
|
-
|
|
16804
|
-
|
|
16805
|
-
|
|
16806
|
-
|
|
16807
|
-
|
|
16963
|
+
const { assistantId, name, instructions, knowledgeSources } = options;
|
|
16964
|
+
const client = await this.getClient();
|
|
16965
|
+
let vectorStoreId;
|
|
16966
|
+
// If knowledge sources are provided, create a vector store with them
|
|
16967
|
+
// TODO: [🧠] Reuse vector store creation logic from createNewAssistant
|
|
16968
|
+
if (knowledgeSources && knowledgeSources.length > 0) {
|
|
16969
|
+
if (this.options.isVerbose) {
|
|
16970
|
+
console.info(`📚 Creating vector store for update with ${knowledgeSources.length} knowledge sources...`);
|
|
16971
|
+
}
|
|
16972
|
+
// Create a vector store
|
|
16973
|
+
const vectorStore = await client.beta.vectorStores.create({
|
|
16974
|
+
name: `${name} Knowledge Base`,
|
|
16975
|
+
});
|
|
16976
|
+
vectorStoreId = vectorStore.id;
|
|
16977
|
+
if (this.options.isVerbose) {
|
|
16978
|
+
console.info(`✅ Vector store created: ${vectorStoreId}`);
|
|
16979
|
+
}
|
|
16980
|
+
// Upload files from knowledge sources to the vector store
|
|
16981
|
+
const fileStreams = [];
|
|
16982
|
+
for (const source of knowledgeSources) {
|
|
16983
|
+
try {
|
|
16984
|
+
// Check if it's a URL
|
|
16985
|
+
if (source.startsWith('http://') || source.startsWith('https://')) {
|
|
16986
|
+
// Download the file
|
|
16987
|
+
const response = await fetch(source);
|
|
16988
|
+
if (!response.ok) {
|
|
16989
|
+
console.error(`Failed to download ${source}: ${response.statusText}`);
|
|
16990
|
+
continue;
|
|
16991
|
+
}
|
|
16992
|
+
const buffer = await response.arrayBuffer();
|
|
16993
|
+
const filename = source.split('/').pop() || 'downloaded-file';
|
|
16994
|
+
const blob = new Blob([buffer]);
|
|
16995
|
+
const file = new File([blob], filename);
|
|
16996
|
+
fileStreams.push(file);
|
|
16997
|
+
}
|
|
16998
|
+
else {
|
|
16999
|
+
// Assume it's a local file path
|
|
17000
|
+
// Note: This will work in Node.js environment
|
|
17001
|
+
// For browser environments, this would need different handling
|
|
17002
|
+
const fs = await import('fs');
|
|
17003
|
+
const fileStream = fs.createReadStream(source);
|
|
17004
|
+
fileStreams.push(fileStream);
|
|
17005
|
+
}
|
|
17006
|
+
}
|
|
17007
|
+
catch (error) {
|
|
17008
|
+
console.error(`Error processing knowledge source ${source}:`, error);
|
|
17009
|
+
}
|
|
17010
|
+
}
|
|
17011
|
+
// Batch upload files to the vector store
|
|
17012
|
+
if (fileStreams.length > 0) {
|
|
17013
|
+
try {
|
|
17014
|
+
await client.beta.vectorStores.fileBatches.uploadAndPoll(vectorStoreId, {
|
|
17015
|
+
files: fileStreams,
|
|
17016
|
+
});
|
|
17017
|
+
if (this.options.isVerbose) {
|
|
17018
|
+
console.info(`✅ Uploaded ${fileStreams.length} files to vector store`);
|
|
17019
|
+
}
|
|
17020
|
+
}
|
|
17021
|
+
catch (error) {
|
|
17022
|
+
console.error('Error uploading files to vector store:', error);
|
|
17023
|
+
}
|
|
17024
|
+
}
|
|
16808
17025
|
}
|
|
16809
|
-
|
|
16810
|
-
// alert('!!!! Creating new OpenAI assistant');
|
|
16811
|
-
// 3️⃣ Create assistant with uploaded files
|
|
16812
|
-
const assistant = await client.beta.assistants.create({
|
|
17026
|
+
const assistantUpdate = {
|
|
16813
17027
|
name,
|
|
16814
|
-
description: 'Assistant created via Promptbook',
|
|
16815
|
-
model: 'gpt-4o',
|
|
16816
17028
|
instructions,
|
|
16817
17029
|
tools: [/* TODO: [🧠] Maybe add { type: 'code_interpreter' }, */ { type: 'file_search' }],
|
|
16818
|
-
|
|
16819
|
-
|
|
16820
|
-
|
|
16821
|
-
|
|
16822
|
-
|
|
16823
|
-
|
|
17030
|
+
};
|
|
17031
|
+
if (vectorStoreId) {
|
|
17032
|
+
assistantUpdate.tool_resources = {
|
|
17033
|
+
file_search: {
|
|
17034
|
+
vector_store_ids: [vectorStoreId],
|
|
17035
|
+
},
|
|
17036
|
+
};
|
|
17037
|
+
}
|
|
17038
|
+
const assistant = await client.beta.assistants.update(assistantId, assistantUpdate);
|
|
17039
|
+
if (this.options.isVerbose) {
|
|
17040
|
+
console.log(`✅ Assistant updated: ${assistant.id}`);
|
|
17041
|
+
}
|
|
16824
17042
|
return new OpenAiAssistantExecutionTools({
|
|
16825
17043
|
...this.options,
|
|
16826
17044
|
isCreatingNewAssistantsAllowed: false,
|
|
@@ -16859,7 +17077,7 @@
|
|
|
16859
17077
|
* Execution Tools for calling LLM models with a predefined agent "soul"
|
|
16860
17078
|
* This wraps underlying LLM execution tools and applies agent-specific system prompts and requirements
|
|
16861
17079
|
*
|
|
16862
|
-
* Note: [🦖] There are several different things in Promptbook:
|
|
17080
|
+
* !!! Note: [🦖] There are several different things in Promptbook:
|
|
16863
17081
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
16864
17082
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
16865
17083
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
@@ -16968,26 +17186,58 @@
|
|
|
16968
17186
|
const chatPrompt = prompt;
|
|
16969
17187
|
let underlyingLlmResult;
|
|
16970
17188
|
if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.options.llmTools)) {
|
|
16971
|
-
|
|
16972
|
-
|
|
17189
|
+
const requirementsHash = cryptoJs.SHA256(JSON.stringify(modelRequirements)).toString();
|
|
17190
|
+
const cached = AgentLlmExecutionTools.assistantCache.get(this.title);
|
|
17191
|
+
let assistant;
|
|
17192
|
+
if (cached) {
|
|
17193
|
+
if (cached.requirementsHash === requirementsHash) {
|
|
17194
|
+
if (this.options.isVerbose) {
|
|
17195
|
+
console.log(`1️⃣ Using cached OpenAI Assistant for agent ${this.title}...`);
|
|
17196
|
+
}
|
|
17197
|
+
assistant = this.options.llmTools.getAssistant(cached.assistantId);
|
|
17198
|
+
}
|
|
17199
|
+
else {
|
|
17200
|
+
if (this.options.isVerbose) {
|
|
17201
|
+
console.log(`1️⃣ Updating OpenAI Assistant for agent ${this.title}...`);
|
|
17202
|
+
}
|
|
17203
|
+
assistant = await this.options.llmTools.updateAssistant({
|
|
17204
|
+
assistantId: cached.assistantId,
|
|
17205
|
+
name: this.title,
|
|
17206
|
+
instructions: modelRequirements.systemMessage,
|
|
17207
|
+
knowledgeSources: modelRequirements.knowledgeSources,
|
|
17208
|
+
});
|
|
17209
|
+
AgentLlmExecutionTools.assistantCache.set(this.title, {
|
|
17210
|
+
assistantId: assistant.assistantId,
|
|
17211
|
+
requirementsHash,
|
|
17212
|
+
});
|
|
17213
|
+
}
|
|
16973
17214
|
}
|
|
16974
|
-
|
|
16975
|
-
|
|
16976
|
-
|
|
16977
|
-
instructions: modelRequirements.systemMessage,
|
|
16978
|
-
/*
|
|
16979
|
-
!!!
|
|
16980
|
-
metadata: {
|
|
16981
|
-
agentModelName: this.modelName,
|
|
17215
|
+
else {
|
|
17216
|
+
if (this.options.isVerbose) {
|
|
17217
|
+
console.log(`1️⃣ Creating new OpenAI Assistant for agent ${this.title}...`);
|
|
16982
17218
|
}
|
|
16983
|
-
|
|
16984
|
-
|
|
16985
|
-
|
|
17219
|
+
// <- TODO: !!! Check also `isCreatingNewAssistantsAllowed` and warn about it
|
|
17220
|
+
assistant = await this.options.llmTools.createNewAssistant({
|
|
17221
|
+
name: this.title,
|
|
17222
|
+
instructions: modelRequirements.systemMessage,
|
|
17223
|
+
knowledgeSources: modelRequirements.knowledgeSources,
|
|
17224
|
+
/*
|
|
17225
|
+
!!!
|
|
17226
|
+
metadata: {
|
|
17227
|
+
agentModelName: this.modelName,
|
|
17228
|
+
}
|
|
17229
|
+
*/
|
|
17230
|
+
});
|
|
17231
|
+
AgentLlmExecutionTools.assistantCache.set(this.title, {
|
|
17232
|
+
assistantId: assistant.assistantId,
|
|
17233
|
+
requirementsHash,
|
|
17234
|
+
});
|
|
17235
|
+
}
|
|
16986
17236
|
underlyingLlmResult = await assistant.callChatModel(chatPrompt);
|
|
16987
17237
|
}
|
|
16988
17238
|
else {
|
|
16989
17239
|
if (this.options.isVerbose) {
|
|
16990
|
-
console.log(`Creating Assistant ${this.title} on generic LLM execution tools...`);
|
|
17240
|
+
console.log(`2️⃣ Creating Assistant ${this.title} on generic LLM execution tools...`);
|
|
16991
17241
|
}
|
|
16992
17242
|
// Create modified chat prompt with agent system message
|
|
16993
17243
|
const modifiedChatPrompt = {
|
|
@@ -17017,6 +17267,10 @@
|
|
|
17017
17267
|
return agentResult;
|
|
17018
17268
|
}
|
|
17019
17269
|
}
|
|
17270
|
+
/**
|
|
17271
|
+
* Cache of OpenAI assistants to avoid creating duplicates
|
|
17272
|
+
*/
|
|
17273
|
+
AgentLlmExecutionTools.assistantCache = new Map();
|
|
17020
17274
|
/**
|
|
17021
17275
|
* TODO: [🍚] Implement Destroyable pattern to free resources
|
|
17022
17276
|
* TODO: [🧠] Adding parameter substitution support (here or should be responsibility of the underlying LLM Tools)
|
|
@@ -17025,7 +17279,7 @@
|
|
|
17025
17279
|
/**
|
|
17026
17280
|
* Represents one AI Agent
|
|
17027
17281
|
*
|
|
17028
|
-
* Note: [🦖] There are several different things in Promptbook:
|
|
17282
|
+
* !!! Note: [🦖] There are several different things in Promptbook:
|
|
17029
17283
|
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
17030
17284
|
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
17031
17285
|
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
@@ -17033,7 +17287,19 @@
|
|
|
17033
17287
|
*
|
|
17034
17288
|
* @public exported from `@promptbook/core`
|
|
17035
17289
|
*/
|
|
17036
|
-
class Agent {
|
|
17290
|
+
class Agent extends AgentLlmExecutionTools {
|
|
17291
|
+
/**
|
|
17292
|
+
* Name of the agent
|
|
17293
|
+
*/
|
|
17294
|
+
get agentName() {
|
|
17295
|
+
return this._agentName || createDefaultAgentName(this.agentSource.value);
|
|
17296
|
+
}
|
|
17297
|
+
/**
|
|
17298
|
+
* Computed hash of the agent source for integrity verification
|
|
17299
|
+
*/
|
|
17300
|
+
get agentHash() {
|
|
17301
|
+
return computeAgentHash(this.agentSource.value);
|
|
17302
|
+
}
|
|
17037
17303
|
/**
|
|
17038
17304
|
* Not used in Agent, always returns empty array
|
|
17039
17305
|
*/
|
|
@@ -17043,11 +17309,13 @@
|
|
|
17043
17309
|
];
|
|
17044
17310
|
}
|
|
17045
17311
|
constructor(options) {
|
|
17046
|
-
|
|
17047
|
-
|
|
17048
|
-
|
|
17049
|
-
|
|
17050
|
-
|
|
17312
|
+
const agentSource = asUpdatableSubject(options.agentSource);
|
|
17313
|
+
super({
|
|
17314
|
+
isVerbose: options.isVerbose,
|
|
17315
|
+
llmTools: getSingleLlmExecutionTools(options.executionTools.llm),
|
|
17316
|
+
agentSource: agentSource.value, // <- TODO: !!!! Allow to pass BehaviorSubject<string_book> OR refresh llmExecutionTools.callChat on agentSource change
|
|
17317
|
+
});
|
|
17318
|
+
this._agentName = undefined;
|
|
17051
17319
|
/**
|
|
17052
17320
|
* Description of the agent
|
|
17053
17321
|
*/
|
|
@@ -17056,27 +17324,16 @@
|
|
|
17056
17324
|
* Metadata like image or color
|
|
17057
17325
|
*/
|
|
17058
17326
|
this.meta = {};
|
|
17059
|
-
|
|
17327
|
+
// TODO: !!!!! Add `Agent` simple "mocked" learning by appending to agent source
|
|
17328
|
+
// TODO: !!!!! Add `Agent` learning by promptbookAgent
|
|
17329
|
+
this.agentSource = agentSource;
|
|
17060
17330
|
this.agentSource.subscribe((source) => {
|
|
17061
17331
|
const { agentName, personaDescription, meta } = parseAgentSource(source);
|
|
17062
|
-
this.
|
|
17332
|
+
this._agentName = agentName;
|
|
17063
17333
|
this.personaDescription = personaDescription;
|
|
17064
17334
|
this.meta = { ...this.meta, ...meta };
|
|
17065
17335
|
});
|
|
17066
17336
|
}
|
|
17067
|
-
/**
|
|
17068
|
-
* Creates LlmExecutionTools which exposes the agent as a model
|
|
17069
|
-
*/
|
|
17070
|
-
getLlmExecutionTools() {
|
|
17071
|
-
const llmTools = new AgentLlmExecutionTools({
|
|
17072
|
-
isVerbose: this.options.isVerbose,
|
|
17073
|
-
llmTools: getSingleLlmExecutionTools(this.options.executionTools.llm),
|
|
17074
|
-
agentSource: this.agentSource.value, // <- TODO: !!!! Allow to pass BehaviorSubject<string_book> OR refresh llmExecutionTools.callChat on agentSource change
|
|
17075
|
-
});
|
|
17076
|
-
// TODO: !!!! Add `Agent` simple "mocked" learning by appending to agent source
|
|
17077
|
-
// TODO: !!!! Add `Agent` learning by promptbookAgent
|
|
17078
|
-
return llmTools;
|
|
17079
|
-
}
|
|
17080
17337
|
}
|
|
17081
17338
|
/**
|
|
17082
17339
|
* TODO: [🧠][😰]Agent is not working with the parameters, should it be?
|
|
@@ -17143,6 +17400,106 @@
|
|
|
17143
17400
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
17144
17401
|
*/
|
|
17145
17402
|
|
|
17403
|
+
/**
|
|
17404
|
+
* Represents one AI Agent
|
|
17405
|
+
*
|
|
17406
|
+
* !!!!!! Note: [🦖] There are several different things in Promptbook:
|
|
17407
|
+
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
17408
|
+
* !!!!!! `RemoteAgent`
|
|
17409
|
+
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
17410
|
+
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
17411
|
+
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
17412
|
+
*
|
|
17413
|
+
* @public exported from `@promptbook/core`
|
|
17414
|
+
*/
|
|
17415
|
+
class RemoteAgent extends Agent {
|
|
17416
|
+
static async connect(options) {
|
|
17417
|
+
console.log('!!!!!', `${options.agentUrl}/api/book`);
|
|
17418
|
+
const bookResponse = await fetch(`${options.agentUrl}/api/book`);
|
|
17419
|
+
// <- TODO: !!!! What about closed-source agents?
|
|
17420
|
+
// <- TODO: !!!! Maybe use promptbookFetch
|
|
17421
|
+
const agentSourceValue = (await bookResponse.text());
|
|
17422
|
+
const agentSource = new rxjs.BehaviorSubject(agentSourceValue);
|
|
17423
|
+
// <- TODO: !!!! Support updating and self-updating
|
|
17424
|
+
return new RemoteAgent({
|
|
17425
|
+
...options,
|
|
17426
|
+
executionTools: {
|
|
17427
|
+
/* Note: These tools are not used */
|
|
17428
|
+
// ---------------------------------------
|
|
17429
|
+
/*
|
|
17430
|
+
TODO: !!! Get rid of
|
|
17431
|
+
|
|
17432
|
+
> You have not provided any `LlmExecutionTools`
|
|
17433
|
+
> This means that you won't be able to execute any prompts that require large language models like GPT-4 or Anthropic's Claude.
|
|
17434
|
+
>
|
|
17435
|
+
> Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
|
|
17436
|
+
|
|
17437
|
+
*/
|
|
17438
|
+
},
|
|
17439
|
+
agentSource,
|
|
17440
|
+
});
|
|
17441
|
+
}
|
|
17442
|
+
constructor(options) {
|
|
17443
|
+
super(options);
|
|
17444
|
+
this.agentUrl = options.agentUrl;
|
|
17445
|
+
}
|
|
17446
|
+
/**
|
|
17447
|
+
* Calls the agent on agents remote server
|
|
17448
|
+
*/
|
|
17449
|
+
async callChatModel(prompt) {
|
|
17450
|
+
// Ensure we're working with a chat prompt
|
|
17451
|
+
if (prompt.modelRequirements.modelVariant !== 'CHAT') {
|
|
17452
|
+
throw new Error('Agents only supports chat prompts');
|
|
17453
|
+
}
|
|
17454
|
+
const bookResponse = await fetch(`${this.agentUrl}/api/chat?message=${encodeURIComponent(prompt.content)}`);
|
|
17455
|
+
// <- TODO: !!!! What about closed-source agents?
|
|
17456
|
+
// <- TODO: !!!! Maybe use promptbookFetch
|
|
17457
|
+
let content = '';
|
|
17458
|
+
if (!bookResponse.body) {
|
|
17459
|
+
content = await bookResponse.text();
|
|
17460
|
+
}
|
|
17461
|
+
else {
|
|
17462
|
+
// Note: [🐚] Problem with streaming is not here but it is not implemented on server
|
|
17463
|
+
const decoder = new TextDecoder();
|
|
17464
|
+
// Web ReadableStream is not async-iterable in many runtimes; use a reader.
|
|
17465
|
+
const reader = bookResponse.body.getReader();
|
|
17466
|
+
try {
|
|
17467
|
+
let doneReading = false;
|
|
17468
|
+
while (!doneReading) {
|
|
17469
|
+
const { done, value } = await reader.read();
|
|
17470
|
+
doneReading = !!done;
|
|
17471
|
+
if (value) {
|
|
17472
|
+
const textChunk = decoder.decode(value, { stream: true });
|
|
17473
|
+
// console.debug('RemoteAgent chunk:', textChunk);
|
|
17474
|
+
content += textChunk;
|
|
17475
|
+
}
|
|
17476
|
+
}
|
|
17477
|
+
// Flush any remaining decoder internal state
|
|
17478
|
+
content += decoder.decode();
|
|
17479
|
+
}
|
|
17480
|
+
finally {
|
|
17481
|
+
reader.releaseLock();
|
|
17482
|
+
}
|
|
17483
|
+
}
|
|
17484
|
+
// <- TODO: !!!! Transfer metadata
|
|
17485
|
+
const agentResult = {
|
|
17486
|
+
content,
|
|
17487
|
+
modelName: this.modelName,
|
|
17488
|
+
timing: {},
|
|
17489
|
+
usage: {},
|
|
17490
|
+
rawPromptContent: {},
|
|
17491
|
+
rawRequest: {},
|
|
17492
|
+
rawResponse: {},
|
|
17493
|
+
// <- TODO: !!!! Transfer and proxy the metadata
|
|
17494
|
+
};
|
|
17495
|
+
return agentResult;
|
|
17496
|
+
}
|
|
17497
|
+
}
|
|
17498
|
+
/**
|
|
17499
|
+
* TODO: [🧠][😰]Agent is not working with the parameters, should it be?
|
|
17500
|
+
* TODO: !!! Agent on remote server
|
|
17501
|
+
*/
|
|
17502
|
+
|
|
17146
17503
|
/**
|
|
17147
17504
|
* Registration of LLM provider metadata
|
|
17148
17505
|
*
|
|
@@ -17264,24 +17621,6 @@
|
|
|
17264
17621
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
17265
17622
|
*/
|
|
17266
17623
|
|
|
17267
|
-
/**
|
|
17268
|
-
* Detects if the code is running in jest environment
|
|
17269
|
-
*
|
|
17270
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environment
|
|
17271
|
-
*
|
|
17272
|
-
* @public exported from `@promptbook/utils`
|
|
17273
|
-
*/
|
|
17274
|
-
const $isRunningInJest = new Function(`
|
|
17275
|
-
try {
|
|
17276
|
-
return process.env.JEST_WORKER_ID !== undefined;
|
|
17277
|
-
} catch (e) {
|
|
17278
|
-
return false;
|
|
17279
|
-
}
|
|
17280
|
-
`);
|
|
17281
|
-
/**
|
|
17282
|
-
* TODO: [🎺]
|
|
17283
|
-
*/
|
|
17284
|
-
|
|
17285
17624
|
/**
|
|
17286
17625
|
* Registration of LLM provider metadata
|
|
17287
17626
|
*
|
|
@@ -17634,61 +17973,6 @@
|
|
|
17634
17973
|
* TODO: [🧠][🈴] Where is the best location for this file
|
|
17635
17974
|
*/
|
|
17636
17975
|
|
|
17637
|
-
/**
|
|
17638
|
-
* Tag function for notating a prompt as template literal
|
|
17639
|
-
*
|
|
17640
|
-
* Note: There are 3 similar functions:
|
|
17641
|
-
* 1) `prompt` for notating single prompt exported from `@promptbook/utils`
|
|
17642
|
-
* 2) `promptTemplate` alias for `prompt`
|
|
17643
|
-
* 3) `book` for notating and validating entire books exported from `@promptbook/utils`
|
|
17644
|
-
*
|
|
17645
|
-
* @param strings
|
|
17646
|
-
* @param values
|
|
17647
|
-
* @returns the prompt string
|
|
17648
|
-
* @public exported from `@promptbook/utils`
|
|
17649
|
-
*/
|
|
17650
|
-
function prompt(strings, ...values) {
|
|
17651
|
-
if (values.length === 0) {
|
|
17652
|
-
return spaceTrim__default["default"](strings.join(''));
|
|
17653
|
-
}
|
|
17654
|
-
const stringsWithHiddenParameters = strings.map((stringsItem) =>
|
|
17655
|
-
// TODO: [0] DRY
|
|
17656
|
-
stringsItem.split('{').join(`${REPLACING_NONCE}beginbracket`).split('}').join(`${REPLACING_NONCE}endbracket`));
|
|
17657
|
-
const placeholderParameterNames = values.map((value, i) => `${REPLACING_NONCE}${i}`);
|
|
17658
|
-
const parameters = Object.fromEntries(values.map((value, i) => [placeholderParameterNames[i], value]));
|
|
17659
|
-
// Combine strings and values
|
|
17660
|
-
let pipelineString = stringsWithHiddenParameters.reduce((result, stringsItem, i) => placeholderParameterNames[i] === undefined
|
|
17661
|
-
? `${result}${stringsItem}`
|
|
17662
|
-
: `${result}${stringsItem}{${placeholderParameterNames[i]}}`, '');
|
|
17663
|
-
pipelineString = spaceTrim__default["default"](pipelineString);
|
|
17664
|
-
try {
|
|
17665
|
-
pipelineString = templateParameters(pipelineString, parameters);
|
|
17666
|
-
}
|
|
17667
|
-
catch (error) {
|
|
17668
|
-
if (!(error instanceof PipelineExecutionError)) {
|
|
17669
|
-
throw error;
|
|
17670
|
-
}
|
|
17671
|
-
console.error({ pipelineString, parameters, placeholderParameterNames, error });
|
|
17672
|
-
throw new UnexpectedError(spaceTrim__default["default"]((block) => `
|
|
17673
|
-
Internal error in prompt template literal
|
|
17674
|
-
|
|
17675
|
-
${block(JSON.stringify({ strings, values }, null, 4))}}
|
|
17676
|
-
|
|
17677
|
-
`));
|
|
17678
|
-
}
|
|
17679
|
-
// TODO: [0] DRY
|
|
17680
|
-
pipelineString = pipelineString
|
|
17681
|
-
.split(`${REPLACING_NONCE}beginbracket`)
|
|
17682
|
-
.join('{')
|
|
17683
|
-
.split(`${REPLACING_NONCE}endbracket`)
|
|
17684
|
-
.join('}');
|
|
17685
|
-
return pipelineString;
|
|
17686
|
-
}
|
|
17687
|
-
/**
|
|
17688
|
-
* TODO: [🧠][🈴] Where is the best location for this file
|
|
17689
|
-
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
17690
|
-
*/
|
|
17691
|
-
|
|
17692
17976
|
/**
|
|
17693
17977
|
* Tag function for notating a pipeline with a book\`...\ notation as template literal
|
|
17694
17978
|
*
|
|
@@ -18224,7 +18508,7 @@
|
|
|
18224
18508
|
});
|
|
18225
18509
|
|
|
18226
18510
|
const answer = response.choices[0].message.content;
|
|
18227
|
-
console.log('\\n🧠 ${agentName}:', answer, '\\n');
|
|
18511
|
+
console.log('\\n🧠 ${agentName /* <- TODO: [🕛] There should be `agentFullname` not `agentName` */}:', answer, '\\n');
|
|
18228
18512
|
|
|
18229
18513
|
chatHistory.push({ role: 'assistant', content: answer });
|
|
18230
18514
|
promptUser();
|
|
@@ -18243,7 +18527,7 @@
|
|
|
18243
18527
|
|
|
18244
18528
|
(async () => {
|
|
18245
18529
|
await setupKnowledge();
|
|
18246
|
-
console.log("🤖 Chat with ${agentName} (type 'exit' to quit)\\n");
|
|
18530
|
+
console.log("🤖 Chat with ${agentName /* <- TODO: [🕛] There should be `agentFullname` not `agentName` */} (type 'exit' to quit)\\n");
|
|
18247
18531
|
promptUser();
|
|
18248
18532
|
})();
|
|
18249
18533
|
`);
|
|
@@ -18290,7 +18574,7 @@
|
|
|
18290
18574
|
});
|
|
18291
18575
|
|
|
18292
18576
|
const answer = response.choices[0].message.content;
|
|
18293
|
-
console.log('\\n🧠 ${agentName}:', answer, '\\n');
|
|
18577
|
+
console.log('\\n🧠 ${agentName /* <- TODO: [🕛] There should be `agentFullname` not `agentName` */}:', answer, '\\n');
|
|
18294
18578
|
|
|
18295
18579
|
chatHistory.push({ role: 'assistant', content: answer });
|
|
18296
18580
|
promptUser();
|
|
@@ -18307,7 +18591,7 @@
|
|
|
18307
18591
|
});
|
|
18308
18592
|
}
|
|
18309
18593
|
|
|
18310
|
-
console.log("🤖 Chat with ${agentName} (type 'exit' to quit)\\n");
|
|
18594
|
+
console.log("🤖 Chat with ${agentName /* <- TODO: [🕛] There should be `agentFullname` not `agentName` */} (type 'exit' to quit)\\n");
|
|
18311
18595
|
promptUser();
|
|
18312
18596
|
|
|
18313
18597
|
`);
|
|
@@ -18315,25 +18599,6 @@
|
|
|
18315
18599
|
},
|
|
18316
18600
|
};
|
|
18317
18601
|
|
|
18318
|
-
/**
|
|
18319
|
-
* Returns information about the current runtime environment
|
|
18320
|
-
*
|
|
18321
|
-
* Note: `$` is used to indicate that this function is not a pure function - it looks at the global object to determine the environments
|
|
18322
|
-
*
|
|
18323
|
-
* @public exported from `@promptbook/utils`
|
|
18324
|
-
*/
|
|
18325
|
-
function $detectRuntimeEnvironment() {
|
|
18326
|
-
return {
|
|
18327
|
-
isRunningInBrowser: $isRunningInBrowser(),
|
|
18328
|
-
isRunningInJest: $isRunningInJest(),
|
|
18329
|
-
isRunningInNode: $isRunningInNode(),
|
|
18330
|
-
isRunningInWebWorker: $isRunningInWebWorker(),
|
|
18331
|
-
};
|
|
18332
|
-
}
|
|
18333
|
-
/**
|
|
18334
|
-
* TODO: [🎺] Also detect and report node version here
|
|
18335
|
-
*/
|
|
18336
|
-
|
|
18337
18602
|
/**
|
|
18338
18603
|
* Provide information about Promptbook, engine version, book language version, servers, ...
|
|
18339
18604
|
*
|
|
@@ -18361,8 +18626,7 @@
|
|
|
18361
18626
|
|
|
18362
18627
|
## Servers
|
|
18363
18628
|
|
|
18364
|
-
${block(REMOTE_SERVER_URLS.map(({ title, urls,
|
|
18365
|
-
${isAnonymousModeAllowed ? '🐱💻 ' : ''} ${urls.join(', ')}
|
|
18629
|
+
${block(REMOTE_SERVER_URLS.map(({ title, urls, description }, index) => `${index + 1}. ${title} ${description} ${urls.join(', ')}
|
|
18366
18630
|
`).join('\n'))}
|
|
18367
18631
|
`);
|
|
18368
18632
|
fullInfoPieces.push(serversInfo);
|
|
@@ -18405,6 +18669,30 @@
|
|
|
18405
18669
|
* TODO: [🤶] Maybe export through `@promptbook/utils` or `@promptbook/random` package
|
|
18406
18670
|
*/
|
|
18407
18671
|
|
|
18672
|
+
const PERSONALITIES = [
|
|
18673
|
+
'Friendly and helpful AI agent.',
|
|
18674
|
+
'Professional and efficient virtual assistant.',
|
|
18675
|
+
'Creative and imaginative digital companion.',
|
|
18676
|
+
'Knowledgeable and informative AI guide.',
|
|
18677
|
+
'Empathetic and understanding support bot.',
|
|
18678
|
+
'Energetic and enthusiastic conversational partner.',
|
|
18679
|
+
'Calm and patient virtual helper.',
|
|
18680
|
+
'Curious and inquisitive AI explorer.',
|
|
18681
|
+
'Witty and humorous digital friend.',
|
|
18682
|
+
'Serious and focused AI consultant.',
|
|
18683
|
+
];
|
|
18684
|
+
/**
|
|
18685
|
+
* @@@@
|
|
18686
|
+
*
|
|
18687
|
+
* @private internal helper function
|
|
18688
|
+
*/
|
|
18689
|
+
function $randomAgentPersona() {
|
|
18690
|
+
return $randomItem(...PERSONALITIES);
|
|
18691
|
+
}
|
|
18692
|
+
/**
|
|
18693
|
+
* TODO: [🤶] Maybe export through `@promptbook/utils` or `@promptbook/random` package
|
|
18694
|
+
*/
|
|
18695
|
+
|
|
18408
18696
|
const FIRSTNAMES = [
|
|
18409
18697
|
'Paul',
|
|
18410
18698
|
'George',
|
|
@@ -18465,30 +18753,6 @@
|
|
|
18465
18753
|
* TODO: [🤶] Maybe export through `@promptbook/utils` or `@promptbook/random` package
|
|
18466
18754
|
*/
|
|
18467
18755
|
|
|
18468
|
-
const PERSONALITIES = [
|
|
18469
|
-
'Friendly and helpful AI agent.',
|
|
18470
|
-
'Professional and efficient virtual assistant.',
|
|
18471
|
-
'Creative and imaginative digital companion.',
|
|
18472
|
-
'Knowledgeable and informative AI guide.',
|
|
18473
|
-
'Empathetic and understanding support bot.',
|
|
18474
|
-
'Energetic and enthusiastic conversational partner.',
|
|
18475
|
-
'Calm and patient virtual helper.',
|
|
18476
|
-
'Curious and inquisitive AI explorer.',
|
|
18477
|
-
'Witty and humorous digital friend.',
|
|
18478
|
-
'Serious and focused AI consultant.',
|
|
18479
|
-
];
|
|
18480
|
-
/**
|
|
18481
|
-
* @@@@
|
|
18482
|
-
*
|
|
18483
|
-
* @private internal helper function
|
|
18484
|
-
*/
|
|
18485
|
-
function $randomAgentPersona() {
|
|
18486
|
-
return $randomItem(...PERSONALITIES);
|
|
18487
|
-
}
|
|
18488
|
-
/**
|
|
18489
|
-
* TODO: [🤶] Maybe export through `@promptbook/utils` or `@promptbook/random` package
|
|
18490
|
-
*/
|
|
18491
|
-
|
|
18492
18756
|
/**
|
|
18493
18757
|
* Generates boilerplate for a new agent book
|
|
18494
18758
|
*
|
|
@@ -18513,7 +18777,7 @@
|
|
|
18513
18777
|
const agentSource = validateBook(spaceTrim__default["default"]((block) => `
|
|
18514
18778
|
${agentName}
|
|
18515
18779
|
|
|
18516
|
-
META COLOR ${color || '#3498db' /* <- TODO: !!!! Best default color */}
|
|
18780
|
+
META COLOR ${color || '#3498db' /* <- TODO: [🧠] !!!! Best default color */}
|
|
18517
18781
|
PERSONA ${block(personaDescription)}
|
|
18518
18782
|
`));
|
|
18519
18783
|
return agentSource;
|
|
@@ -18620,6 +18884,7 @@
|
|
|
18620
18884
|
exports.PromptbookFetchError = PromptbookFetchError;
|
|
18621
18885
|
exports.REMOTE_SERVER_URLS = REMOTE_SERVER_URLS;
|
|
18622
18886
|
exports.RESERVED_PARAMETER_NAMES = RESERVED_PARAMETER_NAMES;
|
|
18887
|
+
exports.RemoteAgent = RemoteAgent;
|
|
18623
18888
|
exports.SET_IS_VERBOSE = SET_IS_VERBOSE;
|
|
18624
18889
|
exports.SectionTypes = SectionTypes;
|
|
18625
18890
|
exports.SheetsFormfactorDefinition = SheetsFormfactorDefinition;
|
|
@@ -18655,12 +18920,14 @@
|
|
|
18655
18920
|
exports.book = book;
|
|
18656
18921
|
exports.cacheLlmTools = cacheLlmTools;
|
|
18657
18922
|
exports.compilePipeline = compilePipeline;
|
|
18923
|
+
exports.computeAgentHash = computeAgentHash;
|
|
18658
18924
|
exports.computeCosineSimilarity = computeCosineSimilarity;
|
|
18659
18925
|
exports.countUsage = countUsage;
|
|
18660
18926
|
exports.createAgentLlmExecutionTools = createAgentLlmExecutionTools;
|
|
18661
18927
|
exports.createAgentModelRequirements = createAgentModelRequirements;
|
|
18662
18928
|
exports.createAgentModelRequirementsWithCommitments = createAgentModelRequirementsWithCommitments;
|
|
18663
18929
|
exports.createBasicAgentModelRequirements = createBasicAgentModelRequirements;
|
|
18930
|
+
exports.createDefaultAgentName = createDefaultAgentName;
|
|
18664
18931
|
exports.createEmptyAgentModelRequirements = createEmptyAgentModelRequirements;
|
|
18665
18932
|
exports.createLlmToolsFromConfiguration = createLlmToolsFromConfiguration;
|
|
18666
18933
|
exports.createPipelineCollectionFromJson = createPipelineCollectionFromJson;
|
|
@@ -18690,6 +18957,7 @@
|
|
|
18690
18957
|
exports.limitTotalUsage = limitTotalUsage;
|
|
18691
18958
|
exports.makeKnowledgeSourceHandler = makeKnowledgeSourceHandler;
|
|
18692
18959
|
exports.migratePipeline = migratePipeline;
|
|
18960
|
+
exports.normalizeAgentName = normalizeAgentName;
|
|
18693
18961
|
exports.padBook = padBook;
|
|
18694
18962
|
exports.parseAgentSource = parseAgentSource;
|
|
18695
18963
|
exports.parseParameters = parseParameters;
|