@promptbook/core 0.103.0-37 → 0.103.0-40
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +205 -182
- package/esm/index.es.js +115 -74
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +0 -81
- package/esm/typings/src/_packages/core.index.d.ts +12 -10
- package/esm/typings/src/_packages/node.index.d.ts +4 -2
- package/esm/typings/src/_packages/types.index.d.ts +3 -1
- package/esm/typings/src/book-components/_common/Modal/Modal.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/start-agents-server.d.ts +14 -0
- package/esm/typings/src/cli/cli-commands/{start-server.d.ts → start-pipelines-server.d.ts} +2 -2
- package/esm/typings/src/collection/agent-collection/AgentCollection.d.ts +36 -0
- package/esm/typings/src/collection/agent-collection/constructors/AgentCollectionInDirectory.d.ts +88 -0
- package/esm/typings/src/collection/{PipelineCollection.d.ts → pipeline-collection/PipelineCollection.d.ts} +7 -3
- package/esm/typings/src/collection/{SimplePipelineCollection.d.ts → pipeline-collection/SimplePipelineCollection.d.ts} +5 -5
- package/esm/typings/src/collection/{constructors/createCollectionFromDirectory.d.ts → pipeline-collection/constructors/createPipelineCollectionFromDirectory.d.ts} +8 -10
- package/esm/typings/src/collection/pipeline-collection/constructors/createPipelineCollectionFromJson.d.ts +13 -0
- package/esm/typings/src/collection/{constructors/createCollectionFromPromise.d.ts → pipeline-collection/constructors/createPipelineCollectionFromPromise.d.ts} +6 -5
- package/esm/typings/src/collection/pipeline-collection/constructors/createPipelineCollectionFromPromise.test.d.ts +1 -0
- package/esm/typings/src/collection/{constructors/createCollectionFromUrl.d.ts → pipeline-collection/constructors/createPipelineCollectionFromUrl.d.ts} +3 -3
- package/esm/typings/src/collection/{constructors/createSubcollection.d.ts → pipeline-collection/constructors/createPipelineSubcollection.d.ts} +3 -3
- package/esm/typings/src/collection/pipeline-collection/pipelineCollectionToJson.d.ts +13 -0
- package/esm/typings/src/config.d.ts +8 -1
- package/esm/typings/src/execution/FilesystemTools.d.ts +1 -1
- package/esm/typings/src/execution/LlmExecutionTools.d.ts +6 -0
- package/esm/typings/src/llm-providers/agent/Agent.d.ts +6 -1
- package/esm/typings/src/llm-providers/agent/AgentLlmExecutionTools.d.ts +9 -4
- package/esm/typings/src/llm-providers/agent/createAgentLlmExecutionTools.d.ts +0 -4
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +17 -1
- package/esm/typings/src/other/templates/getTemplatesPipelineCollection.d.ts +1 -1
- package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -1
- package/esm/typings/src/remote-server/types/RemoteServerOptions.d.ts +22 -8
- package/esm/typings/src/transpilers/formatted-book-in-markdown/register.d.ts +1 -1
- package/esm/typings/src/utils/files/listAllFiles.d.ts +2 -3
- package/esm/typings/src/version.d.ts +1 -1
- package/esm/typings/src/wizard/$getCompiledBook.d.ts +1 -2
- package/package.json +1 -1
- package/umd/index.umd.js +119 -77
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/collection/collectionToJson.d.ts +0 -13
- package/esm/typings/src/collection/constructors/createCollectionFromJson.d.ts +0 -13
- /package/esm/typings/src/collection/{constructors/createCollectionFromDirectory.test.d.ts → agent-collection/constructors/AgentCollectionInDirectory.test.d.ts} +0 -0
- /package/esm/typings/src/collection/{constructors/createCollectionFromJson.test.d.ts → pipeline-collection/constructors/createPipelineCollectionFromDirectory.test.d.ts} +0 -0
- /package/esm/typings/src/collection/{constructors/createCollectionFromPromise.test.d.ts → pipeline-collection/constructors/createPipelineCollectionFromJson.test.d.ts} +0 -0
- /package/esm/typings/src/collection/{collectionToJson.test.d.ts → pipeline-collection/pipelineCollectionToJson.test.d.ts} +0 -0
package/esm/index.es.js
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import spaceTrim, { spaceTrim as spaceTrim$1 } from 'spacetrim';
|
|
2
2
|
import { randomBytes } from 'crypto';
|
|
3
3
|
import { Subject, BehaviorSubject } from 'rxjs';
|
|
4
|
-
import { forTime } from 'waitasecond';
|
|
4
|
+
import { forTime, forEver } from 'waitasecond';
|
|
5
5
|
import hexEncoder from 'crypto-js/enc-hex';
|
|
6
6
|
import sha256 from 'crypto-js/sha256';
|
|
7
7
|
import { basename, join, dirname, isAbsolute } from 'path';
|
|
@@ -27,13 +27,13 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
27
27
|
* @generated
|
|
28
28
|
* @see https://github.com/webgptorg/promptbook
|
|
29
29
|
*/
|
|
30
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-
|
|
30
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-40';
|
|
31
31
|
/**
|
|
32
32
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
33
33
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
34
34
|
*/
|
|
35
35
|
|
|
36
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"},{title:"📊 Curriculum Audit",pipelineUrl:"https://promptbook.studio/promptbook//examples/lsvp-asistent.book",formfactorName:"GENERIC",parameters:[{name:"result",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"prompt",title:"Prompt",content:"Asistent pro LŠVP\n\nPERSONA Jsi asistent pro RVP Lyceum v rámci Národního pedagogického institutu České Republiky\nMETA IMAGE https://edulk.cz/getFile/id:475818/type:large/02%20zna%C4%8Dka%20npi.jpg\nRULE Pokud jsi nejsi jistý, napiš nevím\nKNOWLEDGE ./241129_Lyceum_final.pdf\nCONTEXT Obecně dokážeš řešit libovolné ŠVP, aktuálně řešíš {Školní vzdělávací program LYCEUM}\nRULE Z {Porovnání RVP a ŠVP - postup} je nejdůležitější fáze 3\nKNOWLEDGE {Školní vzdělávací program LYCEUM} ./ŠVP Lyceum - Finance v digitální době.pdf\nKNOWLEDGE @Slovník\n\n**Interní slovník - RVP/ŠVP**\n\n**RVP**\n\nRámcový vzdělávací program pro obor vzdělání Lyceum je dokument na národní úrovni, který formuluje požadavky na školní vzdělávací programy ve formě především očekávaných výsledků učení, kterých mají žáci absolvováním tohoto programu na dané škole dosáhnout.\n\n**ŠVP**\n\nŠkolní vzdělávací program pro obor vzdělání Lyceum je dokument každé jednotlivé školy, který popisuje v jakých vyučovacích předmětech/ vzdělávacích modulech a v jakých ročnících budou požadované očekávané výsledky učení naplněny. Zároveň formuluje další očekávané výsledky učení, které naplňují disponibilní část vyučovacího času určeného RVP pro tento obor vzdělání.\n\n**Očekávaný výsledek učení (OVU)**\n\nVyjadřuje jednotlivý požadavek na to, co mají žáci umět na konci vzdělávacího programu, tzn. jejich požadované kompetence. Je vyjádřen formulací, která je uvozena činnostním slovesem a dále obsahuje předmět této činnosti. Formulace je konkretizována resp. doplněna zpravidla formou odrážek vymezením dílčích znalostí, dovedností, postojů, jejichž splnění je předpokladem dosažení OVU jako celku.\n\n_Příklad:_\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th><p><strong>Žák/žákyně řídí realizaci jednoduchého projektu</strong></p></th></tr><tr><td><ul><li>naplánuje aktivity projektu</li></ul></td></tr><tr><td><ul><li>navrhne rozpočet projektu vzhledem k navrženým aktivitám</li></ul></td></tr><tr><td><ul><li>stanoví základní ukazatele a sleduje jejich naplňování</li></ul></td></tr><tr><td><ul><li>vede projektový tým</li></ul></td></tr><tr><td><ul><li>uvede, jak by řešil krizové situace v projektu</li></ul></td></tr><tr><td><ul><li>vyhodnotí úspěšnost projektu</li></ul></td></tr></tbody></table></div>\n\n**Vzdělávací oblasti**\n\nOčekávané výsledky učení jsou v **_RVP členěny do 4 vzdělávacích oblastí_**, které tvoří společný všeobecně vzdělávací základ:\n\n- Osobnostní rozvoj, vzdělávání ke zdraví, bezpečí a produktivnímu pracovnímu životu (kariéře)\n- Komunikační a jazykové vzdělávání\n- Aplikované vzdělávání STEM (Science, Technology, Engeneering, Math), tj. přírodní vědy, informatika, technika, matematika\n- Prakticky orientované vzdělávání společenskovědní a humanitní\n\nKaždá vzdělávací oblast se dále člení na okruhy, v jejichž rámci jsou OVU samostatně číslované.\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th rowspan=\"21\"><ul><li>Prakticky orientované vzdělávání společenskovědní a humanitní</li></ul></th><th rowspan=\"21\"><p><strong>Člověk, ekonomie a podnikání</strong></p></th><th rowspan=\"7\"><p><strong>1</strong></p></th><th><p><strong>zpracuje podklady související s podnikáním</strong></p></th></tr><tr><td><p>připraví podnikatelský záměr</p></td></tr><tr><td><p>sestaví zakladatelský rozpočet</p></td></tr><tr><td><p>zkalkuluje cenu zboží nebo služby</p></td></tr><tr><td><p>vysvětlí na příkladu základní povinnosti podnikatele vůči státu a zaměstnancům</p></td></tr><tr><td><p>vede daňovou evidenci</p></td></tr><tr><td><p>vysvětlí na příkladech etiku v podnikání</p></td></tr><tr><td rowspan=\"7\"><p><strong>2</strong></p></td><td><p><strong>řídí realizaci jednoduchého projektu</strong></p></td></tr><tr><td><p>naplánuje aktivity projektu</p></td></tr><tr><td><p>navrhne rozpočet projektu vzhledem k navrženým aktivitám</p></td></tr><tr><td><p>stanoví základní ukazatele a sleduje jejich naplňování</p></td></tr><tr><td><p>vede projektový tým</p></td></tr><tr><td><p>uvede, jak by řešil krizové situace v projektu</p></td></tr><tr><td><p>vyhodnotí úspěšnost projektu</p></td></tr><tr><td rowspan=\"7\"><p><strong>3</strong></p></td><td><p><strong>aplikuje ekonomické teorie v osobním a profesním životě</strong></p></td></tr><tr><td><p>vysvětlí základní ekonomické otázky</p></td></tr><tr><td><p>vysvětí stanovení rovnovážné ceny na dokonalém i nedokonalém trhu</p></td></tr><tr><td><p>charakterizuje výrobní faktory a vysvětlí hranici produkčních možností a náklady obětované příležitosti</p></td></tr><tr><td><p>uvede nejdůležitější makroekonomické pojmy a vliv jejich výše na kvalitu života a podnikání v daném státě</p></td></tr><tr><td><p>vysvětlí podstatu inflace a její důsledky na finanční situaci obyvatel a na příkladu ukáže jak se bránit jejím nepříznivým důsledkům</p></td></tr><tr><td><p>uvede hlavní výhody a nevýhody mezinárodního obchodu a vliv ochranářských opatření na ekonomickou situaci dané země</p></td></tr><tr><td></td><td></td><td><p><strong>4</strong></p></td><td><p>Atd.</p></td></tr></tbody></table></div>\n\n**Vyučovací předmět / vzdělávací modul**\n\nOčekávané výsledky učení jsou v **ŠVP** členěny do vyučovacích předmětů nebo vzdělávacích modulů, které jsou dále zařazeny do jednoho nebo více ročníků 4letého studia. Vyučovací předmět / vzdělávací modul tvoří vyučovací jednotku, kde jsou očekávané výsledky učení dále rozpracovány pro potřeby výuky podle následující šablony\n\n| **A. VSTUPNÍ ČÁST** |\n| --- |\n| **1\\. Název** |\n| **2\\. Kód** (kódy by měly být navázány na obory vzdělání a výsledky učení) |\n| **2a) Kategorie vzdělání** - v případě, že nebude součástí kódu |\n| **3\\. Typ vyučovací jednotky** (modul, předmět, stáž apod.) |\n| **4\\. Délka** (počet hodin - dělitelný čtyřmi (optimální modul 16, 32 hodin = týden výuky) |\n| **5\\. Platnost** (datum, od kterého platí) |\n| **6\\. Vstupní předpoklady** (vymezení požadované úrovně vstupních vědomostí a dovedností, které jsou předpokladem úspěšného studia) |\n| |\n| **B. JÁDRO VYUČOVACÍ JEDNOTKY** |\n| **1\\. Charakteristika** (stručná anotace popisující obecné cíle a pojetí) |\n| **2\\. Očekávané výsledky učení a jejich indikátory (převzaté z RVP nebo dále konkretizované)** |\n| **3\\. Podpora rozvoje klíčových kompetencí a základních gramotností** (které klíčové kompetence jsou v rozvíjeny) |\n| **4\\. Obsah vzdělávání** (rozpis učiva) |\n| **5\\. Vzdělávací strategie** (strategie výuky, resp. učební činnosti žáků, které jsou doporučené pro dosažení výsledků) |\n| |\n| **C. VÝSTUPNÍ ČÁST** |\n| **1\\. Způsob ověřování dosažených výsledků** (ve vazbě na jednotlivé výsledky učení) |\n| **2\\. Kritéria hodnocení** (co znamená splnění výsledků učení, kdy je splněna celá vyučovací jednotka, kritéria pro známky, příp. procentuální, slovní hodnocení) |\n| **3\\. Doporučená studijní literatura, odkazy na ilustrační zdroje** |\n| **4\\. Poznámky** |\n\n**Soulad OVU RVP a ŠVP**\n\nTento soulad je předmětem zjišťování. Soulad nastává, jestliže jsou očekávané výsledky učení z jednotlivých vzdělávacích oblastí RVP **obsaženy** ve vyučovacích předmětech/ vzdělávacích modulech ŠVP jednotlivých škol, tzn. že v ŠVP se objevuje jejich formulace buď v doslovném nebo podobném znění v jednom nebo více vyučovacích předmětech/ vzdělávacích modulech.\n\n_Příklad souladu:_\n\nRVP ŠVP - komunikace a marketing (SŠ obchodní Č.\n\n| **2** | **řídí realizaci jednoduchého projektu** |\n| --- | --- |\n| naplánuje aktivity projektu |\n| navrhne rozpočet projektu vzhledem k navrženým aktivitám |\n| stanoví základní ukazatele a sleduje jejich naplňování |\n| vede projektový tým |\n| uvede, jak by řešil krizové situace v projektu |\n| vyhodnotí úspěšnost projektu |\n\nKNOWLEDGE {Porovnání RVP a ŠVP - postup}\n\n\n# AUDITNÍ PROTOKOL ŠVP-RVP\n\n# (POPIS KONTROLNÍHO ALGORITMU)\n\nMetodika je určena pro **Kvantifikaci Shody** školního vzdělávacího programu (ŠVP) s Rámcovým vzdělávacím programem (RVP).\n\n## FÁZE 1: VALIDACE DOKUMENTACE\n\n**Cíl:** Ověřit platnost, aktuálnost a strukturu zdrojových dokumentů.\n\n- **RVP Verifikace:** Otevřít aktuální verzi RVP (např. RVP ZV/G/SOŠ).\n- **Typová shoda:** Ověřit, že RVP se vztahuje k danému typu školy.\n- **ŠVP Dimenze:** Identifikovat a izolovat relevantní části ŠVP: Profil absolventa, Klíčové kompetence (KK), Vzdělávací oblasti (VO), případně Učební plán (UP).\n- **Verzování:** Potvrdit, že obě verze (RVP a ŠVP) jsou nejnovější a platné (včetně dodatků RVP).\n\n## FÁZE 2: DATABÁZOVÉ MAPOVÁNÍ VÝSTUPŮ (MASTER MATICE)\n\n**Cíl:** Vytvořit systémovou databázi pro křížové porovnání všech povinných komponent RVP se ŠVP.\n\n- **Dekompozice RVP:** Rozložit RVP na základní povinné komponenty: Klíčové kompetence, Vzdělávací oblasti a obory, Očekávané výstupy (OVU), Průřezová témata (PT).\n- **Přiřazovací mapa:** Vytvořit hlavní kontrolní matici (Master Matice) pro záznam vazeb.\n\n| Oblast RVP | Výstup RVP (OVU) | Odpovídající Část ŠVP (Předmět/Ročník) | Konkrétní Tématický Celek v ŠVP | Stav Shody (Protokol) |\n| --- | --- | --- | --- | --- |\n| ... | ... | ... | ... | ... |\n| --- | --- | --- | --- | --- |\n\n## FÁZE 3: ALGORITMICKÁ KONTROLA POKRYTÍ A HLOUBKY\n\n**Cíl:** Posoudit, zda každý povinný výstup RVP je adekvátně reflektován v obsahu ŠVP, a přidělit bodovou hodnotu pro kvantifikaci.\n\n- **Audit OVU:** Projít každý jednotlivý Očekávaný výstup (OVU) z RVP.\n- **Kódování stavu a bodování:** U každého OVU v matici označit stav pokrytí dle následujícího schématu:\n\n| Kód (Protokol) | Popis (Kvalitativní zjištění) | Bodová hodnota (Kvantifikace) |\n| --- | --- | --- |\n| ✅ | Plná shoda (Výstup pokryt v plném rozsahu, odpovídající úrovni RVP) | 1,0 |\n| --- | --- | --- |\n| ⚠️ | Částečná shoda (Formální pokrytí, omezený rozsah, chybná návaznost) | 0,5 |\n| --- | --- | --- |\n| ❌ | Absence (Výstup zcela chybí v obsahu ŠVP) | 0,0 |\n| --- | --- | --- |\n\n- **Defektologie ŠVP:** Identifikovat a zaznamenat deficity ŠVP: Chybějící výstupy (❌), Sémantické překryvy, Přetížení obsahu.\n- **Kvalitativní posun:** Ověřit, zda je formulace výstupů v ŠVP **aktivní, měřitelná a v souladu** s úrovní RVP.\n\n## FÁZE 4: STRUKTURÁLNÍ VERIFIKACE NÁVAZNOSTI (VERTIKÁLA/HORIZONTÁLA)\n\n**Cíl:** Zkontrolovat logickou posloupnost a provázanost učiva v rámci ŠVP.\n\n- **Vertikální Kontrola:** Ověřit posloupnost OVU a učiva uvnitř jednoho předmětu/oblasti (postup od jednodušších ke složitějším konceptům napříč ročníky).\n- **Horizontální Kontrola:** Zkontrolovat logické provázání napříč vzdělávacími oblastmi a předměty (např. fyzika ↔ matematika).\n- **PT Integrace:** Audit reálné integrace Průřezových témat (PT) do konkrétních částí obsahu, metod a projektů.\n\n## FÁZE 5: ANALÝZA ŠKOLNÍ PROFILACE A ROZŠÍŘENÍ RVP\n\n**Cíl:** Validovat, že profilace školy je **v souladu** s RVP a nejedná se o **rozpor**.\n\n- **Nekonfliktnost:** Porovnat definovaný Profil absolventa školy s Klíčovými kompetencemi RVP. Profil ŠVP musí RVP rozvíjet, nikoli mu odporovat.\n- **Modularita:** Zkontrolovat, zda volitelné předměty a rozšiřující moduly logicky navazují na vzdělávací oblasti RVP.\n- **Implementace specializace:** Popisně uvést, jak je školní profilace (např. STEM zaměření, projektová výuka) integrována do OVU a kompetencí definovaných RVP.\n\n## FÁZE 6: GENERÁTOR ZÁVĚREČNÉ ZPRÁVY A KVANTIFIKACE\n\n**Cíl:** Syntetizovat výsledky, kvantifikovat soulad a generovat závazné návrhy na korekce.\n\n### 6.1 Kvantifikace Souladu\n\nVypočítat Index shody (IS) na základě bodového hodnocení (Fáze 3):\n\n### 6.2 Interpretace Indexu Shody (IS)\n\nKlasifikace souladu pro standardizované vyhodnocení:\n\n| Interval IS | Klasifikace souladu | Popis |\n| --- | --- | --- |\n| 95-100 % | Výborný soulad | ŠVP plně odpovídá RVP, pouze stylistické nebo formální rozdíly. |\n| --- | --- | --- |\n| 85-94 % | Dobrá shoda | ŠVP pokrývá všechny klíčové výstupy, menší korekce nutné. |\n| --- | --- | --- |\n| 70-84 % | Částečná shoda | Významné nedostatky v některých oblastech, nutná revize obsahu. |\n| --- | --- | --- |\n| < 70 % | Kritická neshoda | ŠVP neplní rámcové požadavky, ohrožuje legislativní soulad. |\n| --- | --- | --- |\n\n### 6.3 Doplňkové Indexy\n\nVypočítat následující doplňkové indexy pro detailní kvalitativní analýzu:\n\n- **Index kompetenčního souladu (IKS):** Poměr pokrytí klíčových kompetencí RVP v ŠVP.\n- **Index průřezové integrace (IPI):** Míra reálné integrace průřezových témat do výuky.\n- **Index hloubky pokrytí (IHP):** Procento výstupů, které jsou v ŠVP rozvedeny na konkrétní výukové cíle (měřitelné, aktivní formulace).\n- **Index profilové rozšiřitelnosti (IPR):** Kolik rozšiřujících nebo profilových výstupů přesahuje rámec RVP, aniž by narušily jeho strukturu.\n\n### 6.4 Vizuální výstupy\n\nZajistit generování následujících vizualizací pro Závěrečnou zprávu:\n\n- Graf pokrytí po vzdělávacích oblastech (Sloupcový graf IS pro VO).\n- Pavoukový diagram Klíčových kompetencí (RVP vs. ŠVP).\n- Mapa defektů (Vizualizace ❌ a ⚠️ výstupů).\n\n### 6.5 Struktura Závěrečné Zprávy\n\nZpráva musí být strukturována dle standardizovaného formátu:\n\n| Oddíl | Obsah |\n| --- | --- |\n| A. Identifikace | Název školy, IZO, typ školy, datum revize, zpracovatel, verze ŠVP a RVP. |\n| --- | --- |\n| B. Shrnutí výsledků | Celkový Index Shody (IS), hlavní závěry a doporučení. |\n| --- | --- |\n| C. Kvantitativní analýza | Přehled IS v % dle kategorií OVU / VO / kompetencí. |\n| --- | --- |\n| D. Kvalitativní analýza | Slovní zhodnocení kvality souladu (formulace, obtížnost, integrace PT). |\n| --- | --- |\n| E. Rizikové oblasti | Přehled nalezených defektů (chybějící OVU, přetížení, formální shoda). |\n| --- | --- |\n| F. Návrhy opatření (Korekční plán) | Přesné návrhy změn - **Co, Kde, Kdo** má upravit, včetně termínu. |\n| --- | --- |\n| G. Přílohy | Master Matice (Fáze 2-3), revizní tabulka, výstupní grafy a metriky. |\n| --- | --- |\n\n\n\n\n.",resultingParameterName:"result",dependentParameterNames:[]}],personas:[],preparations:[{id:1,promptbookVersion:"0.103.0-36",usage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"Asistent pro LŠVP\n\nPERSONA Jsi asistent pro RVP Lyceum v rámci Národního pedagogického institutu České Republiky\nMETA IMAGE https://edulk.cz/getFile/id:475818/type:large/02%20zna%C4%8Dka%20npi.jpg\nRULE Pokud jsi nejsi jistý, napiš nevím\nKNOWLEDGE ./241129_Lyceum_final.pdf\nCONTEXT Obecně dokážeš řešit libovolné ŠVP, aktuálně řešíš {Školní vzdělávací program LYCEUM}\nRULE Z {Porovnání RVP a ŠVP - postup} je nejdůležitější fáze 3\nKNOWLEDGE {Školní vzdělávací program LYCEUM} ./ŠVP Lyceum - Finance v digitální době.pdf\nKNOWLEDGE @Slovník\n\n**Interní slovník - RVP/ŠVP**\n\n**RVP**\n\nRámcový vzdělávací program pro obor vzdělání Lyceum je dokument na národní úrovni, který formuluje požadavky na školní vzdělávací programy ve formě především očekávaných výsledků učení, kterých mají žáci absolvováním tohoto programu na dané škole dosáhnout.\n\n**ŠVP**\n\nŠkolní vzdělávací program pro obor vzdělání Lyceum je dokument každé jednotlivé školy, který popisuje v jakých vyučovacích předmětech/ vzdělávacích modulech a v jakých ročnících budou požadované očekávané výsledky učení naplněny. Zároveň formuluje další očekávané výsledky učení, které naplňují disponibilní část vyučovacího času určeného RVP pro tento obor vzdělání.\n\n**Očekávaný výsledek učení (OVU)**\n\nVyjadřuje jednotlivý požadavek na to, co mají žáci umět na konci vzdělávacího programu, tzn. jejich požadované kompetence. Je vyjádřen formulací, která je uvozena činnostním slovesem a dále obsahuje předmět této činnosti. Formulace je konkretizována resp. doplněna zpravidla formou odrážek vymezením dílčích znalostí, dovedností, postojů, jejichž splnění je předpokladem dosažení OVU jako celku.\n\n_Příklad:_\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th><p><strong>Žák/žákyně řídí realizaci jednoduchého projektu</strong></p></th></tr><tr><td><ul><li>naplánuje aktivity projektu</li></ul></td></tr><tr><td><ul><li>navrhne rozpočet projektu vzhledem k navrženým aktivitám</li></ul></td></tr><tr><td><ul><li>stanoví základní ukazatele a sleduje jejich naplňování</li></ul></td></tr><tr><td><ul><li>vede projektový tým</li></ul></td></tr><tr><td><ul><li>uvede, jak by řešil krizové situace v projektu</li></ul></td></tr><tr><td><ul><li>vyhodnotí úspěšnost projektu</li></ul></td></tr></tbody></table></div>\n\n**Vzdělávací oblasti**\n\nOčekávané výsledky učení jsou v **_RVP členěny do 4 vzdělávacích oblastí_**, které tvoří společný všeobecně vzdělávací základ:\n\n- Osobnostní rozvoj, vzdělávání ke zdraví, bezpečí a produktivnímu pracovnímu životu (kariéře)\n- Komunikační a jazykové vzdělávání\n- Aplikované vzdělávání STEM (Science, Technology, Engeneering, Math), tj. přírodní vědy, informatika, technika, matematika\n- Prakticky orientované vzdělávání společenskovědní a humanitní\n\nKaždá vzdělávací oblast se dále člení na okruhy, v jejichž rámci jsou OVU samostatně číslované.\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th rowspan=\"21\"><ul><li>Prakticky orientované vzdělávání společenskovědní a humanitní</li></ul></th><th rowspan=\"21\"><p><strong>Člověk, ekonomie a podnikání</strong></p></th><th rowspan=\"7\"><p><strong>1</strong></p></th><th><p><strong>zpracuje podklady související s podnikáním</strong></p></th></tr><tr><td><p>připraví podnikatelský záměr</p></td></tr><tr><td><p>sestaví zakladatelský rozpočet</p></td></tr><tr><td><p>zkalkuluje cenu zboží nebo služby</p></td></tr><tr><td><p>vysvětlí na příkladu základní povinnosti podnikatele vůči státu a zaměstnancům</p></td></tr><tr><td><p>vede daňovou evidenci</p></td></tr><tr><td><p>vysvětlí na příkladech etiku v podnikání</p></td></tr><tr><td rowspan=\"7\"><p><strong>2</strong></p></td><td><p><strong>řídí realizaci jednoduchého projektu</strong></p></td></tr><tr><td><p>naplánuje aktivity projektu</p></td></tr><tr><td><p>navrhne rozpočet projektu vzhledem k navrženým aktivitám</p></td></tr><tr><td><p>stanoví základní ukazatele a sleduje jejich naplňování</p></td></tr><tr><td><p>vede projektový tým</p></td></tr><tr><td><p>uvede, jak by řešil krizové situace v projektu</p></td></tr><tr><td><p>vyhodnotí úspěšnost projektu</p></td></tr><tr><td rowspan=\"7\"><p><strong>3</strong></p></td><td><p><strong>aplikuje ekonomické teorie v osobním a profesním životě</strong></p></td></tr><tr><td><p>vysvětlí základní ekonomické otázky</p></td></tr><tr><td><p>vysvětí stanovení rovnovážné ceny na dokonalém i nedokonalém trhu</p></td></tr><tr><td><p>charakterizuje výrobní faktory a vysvětlí hranici produkčních možností a náklady obětované příležitosti</p></td></tr><tr><td><p>uvede nejdůležitější makroekonomické pojmy a vliv jejich výše na kvalitu života a podnikání v daném státě</p></td></tr><tr><td><p>vysvětlí podstatu inflace a její důsledky na finanční situaci obyvatel a na příkladu ukáže jak se bránit jejím nepříznivým důsledkům</p></td></tr><tr><td><p>uvede hlavní výhody a nevýhody mezinárodního obchodu a vliv ochranářských opatření na ekonomickou situaci dané země</p></td></tr><tr><td></td><td></td><td><p><strong>4</strong></p></td><td><p>Atd.</p></td></tr></tbody></table></div>\n\n**Vyučovací předmět / vzdělávací modul**\n\nOčekávané výsledky učení jsou v **ŠVP** členěny do vyučovacích předmětů nebo vzdělávacích modulů, které jsou dále zařazeny do jednoho nebo více ročníků 4letého studia. Vyučovací předmět / vzdělávací modul tvoří vyučovací jednotku, kde jsou očekávané výsledky učení dále rozpracovány pro potřeby výuky podle následující šablony\n\n| **A. VSTUPNÍ ČÁST** |\n| --- |\n| **1\\. Název** |\n| **2\\. Kód** (kódy by měly být navázány na obory vzdělání a výsledky učení) |\n| **2a) Kategorie vzdělání** - v případě, že nebude součástí kódu |\n| **3\\. Typ vyučovací jednotky** (modul, předmět, stáž apod.) |\n| **4\\. Délka** (počet hodin - dělitelný čtyřmi (optimální modul 16, 32 hodin = týden výuky) |\n| **5\\. Platnost** (datum, od kterého platí) |\n| **6\\. Vstupní předpoklady** (vymezení požadované úrovně vstupních vědomostí a dovedností, které jsou předpokladem úspěšného studia) |\n| |\n| **B. JÁDRO VYUČOVACÍ JEDNOTKY** |\n| **1\\. Charakteristika** (stručná anotace popisující obecné cíle a pojetí) |\n| **2\\. Očekávané výsledky učení a jejich indikátory (převzaté z RVP nebo dále konkretizované)** |\n| **3\\. Podpora rozvoje klíčových kompetencí a základních gramotností** (které klíčové kompetence jsou v rozvíjeny) |\n| **4\\. Obsah vzdělávání** (rozpis učiva) |\n| **5\\. Vzdělávací strategie** (strategie výuky, resp. učební činnosti žáků, které jsou doporučené pro dosažení výsledků) |\n| |\n| **C. VÝSTUPNÍ ČÁST** |\n| **1\\. Způsob ověřování dosažených výsledků** (ve vazbě na jednotlivé výsledky učení) |\n| **2\\. Kritéria hodnocení** (co znamená splnění výsledků učení, kdy je splněna celá vyučovací jednotka, kritéria pro známky, příp. procentuální, slovní hodnocení) |\n| **3\\. Doporučená studijní literatura, odkazy na ilustrační zdroje** |\n| **4\\. Poznámky** |\n\n**Soulad OVU RVP a ŠVP**\n\nTento soulad je předmětem zjišťování. Soulad nastává, jestliže jsou očekávané výsledky učení z jednotlivých vzdělávacích oblastí RVP **obsaženy** ve vyučovacích předmětech/ vzdělávacích modulech ŠVP jednotlivých škol, tzn. že v ŠVP se objevuje jejich formulace buď v doslovném nebo podobném znění v jednom nebo více vyučovacích předmětech/ vzdělávacích modulech.\n\n_Příklad souladu:_\n\nRVP ŠVP - komunikace a marketing (SŠ obchodní Č.\n\n| **2** | **řídí realizaci jednoduchého projektu** |\n| --- | --- |\n| naplánuje aktivity projektu |\n| navrhne rozpočet projektu vzhledem k navrženým aktivitám |\n| stanoví základní ukazatele a sleduje jejich naplňování |\n| vede projektový tým |\n| uvede, jak by řešil krizové situace v projektu |\n| vyhodnotí úspěšnost projektu |\n\nKNOWLEDGE {Porovnání RVP a ŠVP - postup}\n\n\n# AUDITNÍ PROTOKOL ŠVP-RVP\n\n# (POPIS KONTROLNÍHO ALGORITMU)\n\nMetodika je určena pro **Kvantifikaci Shody** školního vzdělávacího programu (ŠVP) s Rámcovým vzdělávacím programem (RVP).\n\n## FÁZE 1: VALIDACE DOKUMENTACE\n\n**Cíl:** Ověřit platnost, aktuálnost a strukturu zdrojových dokumentů.\n\n- **RVP Verifikace:** Otevřít aktuální verzi RVP (např. RVP ZV/G/SOŠ).\n- **Typová shoda:** Ověřit, že RVP se vztahuje k danému typu školy.\n- **ŠVP Dimenze:** Identifikovat a izolovat relevantní části ŠVP: Profil absolventa, Klíčové kompetence (KK), Vzdělávací oblasti (VO), případně Učební plán (UP).\n- **Verzování:** Potvrdit, že obě verze (RVP a ŠVP) jsou nejnovější a platné (včetně dodatků RVP).\n\n## FÁZE 2: DATABÁZOVÉ MAPOVÁNÍ VÝSTUPŮ (MASTER MATICE)\n\n**Cíl:** Vytvořit systémovou databázi pro křížové porovnání všech povinných komponent RVP se ŠVP.\n\n- **Dekompozice RVP:** Rozložit RVP na základní povinné komponenty: Klíčové kompetence, Vzdělávací oblasti a obory, Očekávané výstupy (OVU), Průřezová témata (PT).\n- **Přiřazovací mapa:** Vytvořit hlavní kontrolní matici (Master Matice) pro záznam vazeb.\n\n| Oblast RVP | Výstup RVP (OVU) | Odpovídající Část ŠVP (Předmět/Ročník) | Konkrétní Tématický Celek v ŠVP | Stav Shody (Protokol) |\n| --- | --- | --- | --- | --- |\n| ... | ... | ... | ... | ... |\n| --- | --- | --- | --- | --- |\n\n## FÁZE 3: ALGORITMICKÁ KONTROLA POKRYTÍ A HLOUBKY\n\n**Cíl:** Posoudit, zda každý povinný výstup RVP je adekvátně reflektován v obsahu ŠVP, a přidělit bodovou hodnotu pro kvantifikaci.\n\n- **Audit OVU:** Projít každý jednotlivý Očekávaný výstup (OVU) z RVP.\n- **Kódování stavu a bodování:** U každého OVU v matici označit stav pokrytí dle následujícího schématu:\n\n| Kód (Protokol) | Popis (Kvalitativní zjištění) | Bodová hodnota (Kvantifikace) |\n| --- | --- | --- |\n| ✅ | Plná shoda (Výstup pokryt v plném rozsahu, odpovídající úrovni RVP) | 1,0 |\n| --- | --- | --- |\n| ⚠️ | Částečná shoda (Formální pokrytí, omezený rozsah, chybná návaznost) | 0,5 |\n| --- | --- | --- |\n| ❌ | Absence (Výstup zcela chybí v obsahu ŠVP) | 0,0 |\n| --- | --- | --- |\n\n- **Defektologie ŠVP:** Identifikovat a zaznamenat deficity ŠVP: Chybějící výstupy (❌), Sémantické překryvy, Přetížení obsahu.\n- **Kvalitativní posun:** Ověřit, zda je formulace výstupů v ŠVP **aktivní, měřitelná a v souladu** s úrovní RVP.\n\n## FÁZE 4: STRUKTURÁLNÍ VERIFIKACE NÁVAZNOSTI (VERTIKÁLA/HORIZONTÁLA)\n\n**Cíl:** Zkontrolovat logickou posloupnost a provázanost učiva v rámci ŠVP.\n\n- **Vertikální Kontrola:** Ověřit posloupnost OVU a učiva uvnitř jednoho předmětu/oblasti (postup od jednodušších ke složitějším konceptům napříč ročníky).\n- **Horizontální Kontrola:** Zkontrolovat logické provázání napříč vzdělávacími oblastmi a předměty (např. fyzika ↔ matematika).\n- **PT Integrace:** Audit reálné integrace Průřezových témat (PT) do konkrétních částí obsahu, metod a projektů.\n\n## FÁZE 5: ANALÝZA ŠKOLNÍ PROFILACE A ROZŠÍŘENÍ RVP\n\n**Cíl:** Validovat, že profilace školy je **v souladu** s RVP a nejedná se o **rozpor**.\n\n- **Nekonfliktnost:** Porovnat definovaný Profil absolventa školy s Klíčovými kompetencemi RVP. Profil ŠVP musí RVP rozvíjet, nikoli mu odporovat.\n- **Modularita:** Zkontrolovat, zda volitelné předměty a rozšiřující moduly logicky navazují na vzdělávací oblasti RVP.\n- **Implementace specializace:** Popisně uvést, jak je školní profilace (např. STEM zaměření, projektová výuka) integrována do OVU a kompetencí definovaných RVP.\n\n## FÁZE 6: GENERÁTOR ZÁVĚREČNÉ ZPRÁVY A KVANTIFIKACE\n\n**Cíl:** Syntetizovat výsledky, kvantifikovat soulad a generovat závazné návrhy na korekce.\n\n### 6.1 Kvantifikace Souladu\n\nVypočítat Index shody (IS) na základě bodového hodnocení (Fáze 3):\n\n### 6.2 Interpretace Indexu Shody (IS)\n\nKlasifikace souladu pro standardizované vyhodnocení:\n\n| Interval IS | Klasifikace souladu | Popis |\n| --- | --- | --- |\n| 95-100 % | Výborný soulad | ŠVP plně odpovídá RVP, pouze stylistické nebo formální rozdíly. |\n| --- | --- | --- |\n| 85-94 % | Dobrá shoda | ŠVP pokrývá všechny klíčové výstupy, menší korekce nutné. |\n| --- | --- | --- |\n| 70-84 % | Částečná shoda | Významné nedostatky v některých oblastech, nutná revize obsahu. |\n| --- | --- | --- |\n| < 70 % | Kritická neshoda | ŠVP neplní rámcové požadavky, ohrožuje legislativní soulad. |\n| --- | --- | --- |\n\n### 6.3 Doplňkové Indexy\n\nVypočítat následující doplňkové indexy pro detailní kvalitativní analýzu:\n\n- **Index kompetenčního souladu (IKS):** Poměr pokrytí klíčových kompetencí RVP v ŠVP.\n- **Index průřezové integrace (IPI):** Míra reálné integrace průřezových témat do výuky.\n- **Index hloubky pokrytí (IHP):** Procento výstupů, které jsou v ŠVP rozvedeny na konkrétní výukové cíle (měřitelné, aktivní formulace).\n- **Index profilové rozšiřitelnosti (IPR):** Kolik rozšiřujících nebo profilových výstupů přesahuje rámec RVP, aniž by narušily jeho strukturu.\n\n### 6.4 Vizuální výstupy\n\nZajistit generování následujících vizualizací pro Závěrečnou zprávu:\n\n- Graf pokrytí po vzdělávacích oblastech (Sloupcový graf IS pro VO).\n- Pavoukový diagram Klíčových kompetencí (RVP vs. ŠVP).\n- Mapa defektů (Vizualizace ❌ a ⚠️ výstupů).\n\n### 6.5 Struktura Závěrečné Zprávy\n\nZpráva musí být strukturována dle standardizovaného formátu:\n\n| Oddíl | Obsah |\n| --- | --- |\n| A. Identifikace | Název školy, IZO, typ školy, datum revize, zpracovatel, verze ŠVP a RVP. |\n| --- | --- |\n| B. Shrnutí výsledků | Celkový Index Shody (IS), hlavní závěry a doporučení. |\n| --- | --- |\n| C. Kvantitativní analýza | Přehled IS v % dle kategorií OVU / VO / kompetencí. |\n| --- | --- |\n| D. Kvalitativní analýza | Slovní zhodnocení kvality souladu (formulace, obtížnost, integrace PT). |\n| --- | --- |\n| E. Rizikové oblasti | Přehled nalezených defektů (chybějící OVU, přetížení, formální shoda). |\n| --- | --- |\n| F. Návrhy opatření (Korekční plán) | Přesné návrhy změn - **Co, Kde, Kdo** má upravit, včetně termínu. |\n| --- | --- |\n| G. Přílohy | Master Matice (Fáze 2-3), revizní tabulka, výstupní grafy a metriky. |\n| --- | --- |\n\n\n\n\n.\n"}],sourceFile:"./books/examples/lsvp-asistent.book"}];
|
|
36
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
37
37
|
|
|
38
38
|
/**
|
|
39
39
|
* Checks if value is valid email
|
|
@@ -1310,6 +1310,14 @@ const DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_TOTAL = 200;
|
|
|
1310
1310
|
*/
|
|
1311
1311
|
const DEFAULT_BOOKS_DIRNAME = './books';
|
|
1312
1312
|
// <- TODO: [🕝] Make also `BOOKS_DIRNAME_ALTERNATIVES`
|
|
1313
|
+
/**
|
|
1314
|
+
* Where to store your agents (also book files)
|
|
1315
|
+
* This is kind of a "src" for your books
|
|
1316
|
+
*
|
|
1317
|
+
* @public exported from `@promptbook/core`
|
|
1318
|
+
*/
|
|
1319
|
+
const DEFAULT_AGENTS_DIRNAME = './agents';
|
|
1320
|
+
// <- TODO: [🕝] Make also `AGENTS_DIRNAME_ALTERNATIVES`
|
|
1313
1321
|
// TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
|
|
1314
1322
|
/**
|
|
1315
1323
|
* Where to store the temporary downloads
|
|
@@ -1357,7 +1365,7 @@ TODO: [🌃]
|
|
|
1357
1365
|
ex-port const WIZARD_APP_ID: string_app_id = 'wizard';
|
|
1358
1366
|
*/
|
|
1359
1367
|
/**
|
|
1360
|
-
* The name of the builded pipeline collection made by CLI `ptbk make` and for lookup in `
|
|
1368
|
+
* The name of the builded pipeline collection made by CLI `ptbk make` and for lookup in `createPipelineCollectionFromDirectory`
|
|
1361
1369
|
*
|
|
1362
1370
|
* @public exported from `@promptbook/core`
|
|
1363
1371
|
*/
|
|
@@ -2597,7 +2605,7 @@ function unpreparePipeline(pipeline) {
|
|
|
2597
2605
|
* Library of pipelines that groups together pipelines for an application.
|
|
2598
2606
|
* This implementation is a very thin wrapper around the Array / Map of pipelines.
|
|
2599
2607
|
*
|
|
2600
|
-
* @private internal function of `
|
|
2608
|
+
* @private internal function of `createPipelineCollectionFromJson`, use `createPipelineCollectionFromJson` instead
|
|
2601
2609
|
* @see https://github.com/webgptorg/pipeline#pipeline-collection
|
|
2602
2610
|
*/
|
|
2603
2611
|
class SimplePipelineCollection {
|
|
@@ -2607,7 +2615,7 @@ class SimplePipelineCollection {
|
|
|
2607
2615
|
* @param pipelines Array of pipeline JSON objects to include in the collection
|
|
2608
2616
|
*
|
|
2609
2617
|
* Note: During the construction logic of all pipelines are validated
|
|
2610
|
-
* Note: It is not recommended to use this constructor directly, use `
|
|
2618
|
+
* Note: It is not recommended to use this constructor directly, use `createPipelineCollectionFromJson` *(or other variant)* instead
|
|
2611
2619
|
*/
|
|
2612
2620
|
constructor(...pipelines) {
|
|
2613
2621
|
this.collection = new Map();
|
|
@@ -2695,16 +2703,16 @@ class SimplePipelineCollection {
|
|
|
2695
2703
|
}
|
|
2696
2704
|
|
|
2697
2705
|
/**
|
|
2698
|
-
* Creates PipelineCollection from array of PipelineJson or PipelineString
|
|
2706
|
+
* Creates `PipelineCollection` from array of PipelineJson or PipelineString
|
|
2699
2707
|
*
|
|
2700
|
-
* Note: Functions `
|
|
2708
|
+
* Note: Functions `pipelineCollectionToJson` and `createPipelineCollectionFromJson` are complementary
|
|
2701
2709
|
* Note: Syntax, parsing, and logic consistency checks are performed on all sources during build
|
|
2702
2710
|
*
|
|
2703
2711
|
* @param promptbookSources
|
|
2704
2712
|
* @returns PipelineCollection
|
|
2705
2713
|
* @public exported from `@promptbook/core`
|
|
2706
2714
|
*/
|
|
2707
|
-
function
|
|
2715
|
+
function createPipelineCollectionFromJson(...promptbooks) {
|
|
2708
2716
|
return new SimplePipelineCollection(...promptbooks);
|
|
2709
2717
|
}
|
|
2710
2718
|
|
|
@@ -4985,7 +4993,7 @@ async function preparePipeline(pipeline, tools, options) {
|
|
|
4985
4993
|
let title = pipeline.title;
|
|
4986
4994
|
if (title === undefined || title === '' || title === DEFAULT_BOOK_TITLE) {
|
|
4987
4995
|
// TODO: [🌼] In future use `ptbk make` and made getPipelineCollection
|
|
4988
|
-
const collection =
|
|
4996
|
+
const collection = createPipelineCollectionFromJson(...PipelineCollection);
|
|
4989
4997
|
const prepareTitleExecutor = createPipelineExecutor({
|
|
4990
4998
|
pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book'),
|
|
4991
4999
|
tools,
|
|
@@ -7374,7 +7382,7 @@ async function preparePersona(personaDescription, tools, options) {
|
|
|
7374
7382
|
throw new MissingToolsError('LLM tools are required for preparing persona');
|
|
7375
7383
|
}
|
|
7376
7384
|
// TODO: [🌼] In future use `ptbk make` and made getPipelineCollection
|
|
7377
|
-
const collection =
|
|
7385
|
+
const collection = createPipelineCollectionFromJson(...PipelineCollection);
|
|
7378
7386
|
const preparePersonaExecutor = createPipelineExecutor({
|
|
7379
7387
|
pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
|
|
7380
7388
|
tools,
|
|
@@ -9937,42 +9945,27 @@ const DEFAULT_BOOK = padBook(validateBook(spaceTrim(`
|
|
|
9937
9945
|
// <- TODO: !!! createBookBoilerplate and deprecate `DEFAULT_BOOK`
|
|
9938
9946
|
|
|
9939
9947
|
/**
|
|
9940
|
-
*
|
|
9948
|
+
* Constructs `PipelineCollection` from async sources
|
|
9941
9949
|
*
|
|
9942
|
-
* Note: Functions `collectionToJson` and `createCollectionFromJson` are complementary
|
|
9943
|
-
*
|
|
9944
|
-
* @public exported from `@promptbook/core`
|
|
9945
|
-
*/
|
|
9946
|
-
async function collectionToJson(collection) {
|
|
9947
|
-
const pipelineUrls = await collection.listPipelines();
|
|
9948
|
-
const promptbooks = await Promise.all(pipelineUrls.map((url) => collection.getPipelineByUrl(url)));
|
|
9949
|
-
return promptbooks;
|
|
9950
|
-
}
|
|
9951
|
-
/**
|
|
9952
|
-
* TODO: [🧠] Maybe clear `sourceFile` or clear when exposing through API or remote server
|
|
9953
|
-
*/
|
|
9954
|
-
|
|
9955
|
-
/**
|
|
9956
|
-
* Constructs Promptbook from async sources
|
|
9957
9950
|
* It can be one of the following:
|
|
9958
9951
|
* - Promise of array of PipelineJson or PipelineString
|
|
9959
9952
|
* - Factory function that returns Promise of array of PipelineJson or PipelineString
|
|
9960
9953
|
*
|
|
9961
9954
|
* Note: This is useful as internal tool for other constructor functions like
|
|
9962
|
-
* `
|
|
9955
|
+
* `createPipelineCollectionFromUrl` or `createPipelineCollectionFromDirectory`
|
|
9963
9956
|
* Consider using those functions instead of this one
|
|
9964
9957
|
*
|
|
9965
9958
|
* Note: The function does NOT return promise it returns the collection directly which waits for the sources to be resolved
|
|
9966
9959
|
* when error occurs in given promise or factory function, it is thrown during `listPipelines` or `getPipelineByUrl` call
|
|
9967
9960
|
*
|
|
9968
|
-
* Note: Consider using `
|
|
9961
|
+
* Note: Consider using `createPipelineCollectionFromDirectory` or `createPipelineCollectionFromUrl`
|
|
9969
9962
|
*
|
|
9970
9963
|
* @param promptbookSourcesPromiseOrFactory
|
|
9971
9964
|
* @returns PipelineCollection
|
|
9972
9965
|
* @deprecated Do not use, it will became internal tool for other constructor functions
|
|
9973
9966
|
* @public exported from `@promptbook/core`
|
|
9974
9967
|
*/
|
|
9975
|
-
function
|
|
9968
|
+
function createPipelineCollectionFromPromise(promptbookSourcesPromiseOrFactory) {
|
|
9976
9969
|
let collection = null;
|
|
9977
9970
|
async function load() {
|
|
9978
9971
|
if (collection !== null) {
|
|
@@ -9983,7 +9976,7 @@ function createCollectionFromPromise(promptbookSourcesPromiseOrFactory) {
|
|
|
9983
9976
|
promptbookSourcesPromiseOrFactory = promptbookSourcesPromiseOrFactory();
|
|
9984
9977
|
}
|
|
9985
9978
|
const promptbookSources = await promptbookSourcesPromiseOrFactory;
|
|
9986
|
-
collection =
|
|
9979
|
+
collection = createPipelineCollectionFromJson(...promptbookSources);
|
|
9987
9980
|
}
|
|
9988
9981
|
async function listPipelines() {
|
|
9989
9982
|
await load();
|
|
@@ -10009,9 +10002,9 @@ function createCollectionFromPromise(promptbookSourcesPromiseOrFactory) {
|
|
|
10009
10002
|
* @returns PipelineCollection
|
|
10010
10003
|
* @public exported from `@promptbook/core`
|
|
10011
10004
|
*/
|
|
10012
|
-
async function
|
|
10005
|
+
async function createPipelineCollectionFromUrl(url, options) {
|
|
10013
10006
|
const { isVerbose = DEFAULT_IS_VERBOSE, isLazyLoaded = false } = options || {};
|
|
10014
|
-
const collection =
|
|
10007
|
+
const collection = createPipelineCollectionFromPromise(async () => {
|
|
10015
10008
|
if (isVerbose) {
|
|
10016
10009
|
console.info(`Creating pipeline collection from url ${url.toString()}`);
|
|
10017
10010
|
}
|
|
@@ -10024,14 +10017,14 @@ async function createCollectionFromUrl(url, options) {
|
|
|
10024
10017
|
// TODO: [main] !!3 [🏳🌈] Allow variant with .json .js and .ts files
|
|
10025
10018
|
// TODO: [🧠][🏳🌈] .js and .ts files should create getter function of the collection
|
|
10026
10019
|
// TODO: Look at WebGPT "📖 Make Promptbook collection" and https://webgpt.cz/_books.json
|
|
10027
|
-
// TODO: Implement via
|
|
10020
|
+
// TODO: Implement via createPipelineCollectionFromPromise
|
|
10028
10021
|
}
|
|
10029
10022
|
/**
|
|
10030
10023
|
* TODO: [main] !!4 [🧠] Library precompilation and do not mix markdown and json promptbooks
|
|
10031
10024
|
*/
|
|
10032
10025
|
|
|
10033
10026
|
/**
|
|
10034
|
-
* Creates PipelineCollection as a subset of another PipelineCollection
|
|
10027
|
+
* Creates `PipelineCollection` as a subset of another `PipelineCollection`
|
|
10035
10028
|
*
|
|
10036
10029
|
* Note: You can use any type of collection as a parent collection - local, remote, etc.
|
|
10037
10030
|
* Note: This is just a thin wrapper / proxy around the parent collection
|
|
@@ -10040,7 +10033,7 @@ async function createCollectionFromUrl(url, options) {
|
|
|
10040
10033
|
* @returns PipelineCollection
|
|
10041
10034
|
* @public exported from `@promptbook/core`
|
|
10042
10035
|
*/
|
|
10043
|
-
function
|
|
10036
|
+
function createPipelineSubcollection(collection, predicate) {
|
|
10044
10037
|
async function listPipelines() {
|
|
10045
10038
|
let promptbooks = await collection.listPipelines();
|
|
10046
10039
|
promptbooks = promptbooks.filter(predicate);
|
|
@@ -10074,6 +10067,22 @@ function createSubcollection(collection, predicate) {
|
|
|
10074
10067
|
};
|
|
10075
10068
|
}
|
|
10076
10069
|
|
|
10070
|
+
/**
|
|
10071
|
+
* Converts PipelineCollection to serialized JSON
|
|
10072
|
+
*
|
|
10073
|
+
* Note: Functions `pipelineCollectionToJson` and `createPipelineCollectionFromJson` are complementary
|
|
10074
|
+
*
|
|
10075
|
+
* @public exported from `@promptbook/core`
|
|
10076
|
+
*/
|
|
10077
|
+
async function pipelineCollectionToJson(collection) {
|
|
10078
|
+
const pipelineUrls = await collection.listPipelines();
|
|
10079
|
+
const promptbooks = await Promise.all(pipelineUrls.map((url) => collection.getPipelineByUrl(url)));
|
|
10080
|
+
return promptbooks;
|
|
10081
|
+
}
|
|
10082
|
+
/**
|
|
10083
|
+
* TODO: [🧠] Maybe clear `sourceFile` or clear when exposing through API or remote server
|
|
10084
|
+
*/
|
|
10085
|
+
|
|
10077
10086
|
/**
|
|
10078
10087
|
* All available task types
|
|
10079
10088
|
*
|
|
@@ -14790,8 +14799,13 @@ function asUpdatableSubject(value) {
|
|
|
14790
14799
|
*/
|
|
14791
14800
|
|
|
14792
14801
|
/**
|
|
14793
|
-
*
|
|
14802
|
+
* Represents one AI Agent
|
|
14794
14803
|
*
|
|
14804
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
14805
|
+
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
14806
|
+
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
14807
|
+
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
14808
|
+
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
14795
14809
|
*
|
|
14796
14810
|
* @public exported from `@promptbook/core`
|
|
14797
14811
|
*/
|
|
@@ -14830,7 +14844,10 @@ class Agent {
|
|
|
14830
14844
|
* Creates LlmExecutionTools which exposes the agent as a model
|
|
14831
14845
|
*/
|
|
14832
14846
|
getLlmExecutionTools() {
|
|
14833
|
-
const llmTools = new AgentLlmExecutionTools(
|
|
14847
|
+
const llmTools = new AgentLlmExecutionTools({
|
|
14848
|
+
llmTools: getSingleLlmExecutionTools(this.options.executionTools.llm),
|
|
14849
|
+
agentSource: this.agentSource.value, // <- TODO: !!!! Allow to pass BehaviorSubject<string_book> OR refresh llmExecutionTools.callChat on agentSource change
|
|
14850
|
+
});
|
|
14834
14851
|
// TODO: !!!! Add `Agent` simple "mocked" learning by appending to agent source
|
|
14835
14852
|
// TODO: !!!! Add `Agent` learning by promptbookAgent
|
|
14836
14853
|
return llmTools;
|
|
@@ -16410,6 +16427,12 @@ class OpenAiExecutionTools extends OpenAiCompatibleExecutionTools {
|
|
|
16410
16427
|
*
|
|
16411
16428
|
* This is useful for calling OpenAI API with a single assistant, for more wide usage use `OpenAiExecutionTools`.
|
|
16412
16429
|
*
|
|
16430
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
16431
|
+
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
16432
|
+
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
16433
|
+
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
16434
|
+
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
16435
|
+
*
|
|
16413
16436
|
* @public exported from `@promptbook/openai`
|
|
16414
16437
|
*/
|
|
16415
16438
|
class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
@@ -16575,10 +16598,32 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
16575
16598
|
},
|
|
16576
16599
|
});
|
|
16577
16600
|
}
|
|
16578
|
-
async
|
|
16601
|
+
async playground() {
|
|
16602
|
+
const client = await this.getClient();
|
|
16603
|
+
// List all assistants
|
|
16604
|
+
const assistants = await client.beta.assistants.list();
|
|
16605
|
+
console.log('!!! Assistants:', assistants);
|
|
16606
|
+
// Get details of a specific assistant
|
|
16607
|
+
const assistantId = 'asst_MO8fhZf4dGloCfXSHeLcIik0';
|
|
16608
|
+
const assistant = await client.beta.assistants.retrieve(assistantId);
|
|
16609
|
+
console.log('!!! Assistant Details:', assistant);
|
|
16610
|
+
// Update an assistant
|
|
16611
|
+
const updatedAssistant = await client.beta.assistants.update(assistantId, {
|
|
16612
|
+
name: assistant.name + '(M)',
|
|
16613
|
+
description: 'Updated description via Promptbook',
|
|
16614
|
+
metadata: {
|
|
16615
|
+
[Math.random().toString(36).substring(2, 15)]: new Date().toISOString(),
|
|
16616
|
+
},
|
|
16617
|
+
});
|
|
16618
|
+
console.log('!!! Updated Assistant:', updatedAssistant);
|
|
16619
|
+
await forEver();
|
|
16620
|
+
}
|
|
16621
|
+
async createNewAssistant(options) {
|
|
16579
16622
|
if (!this.isCreatingNewAssistantsAllowed) {
|
|
16580
16623
|
throw new NotAllowed(`Creating new assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
|
|
16581
16624
|
}
|
|
16625
|
+
await this.playground();
|
|
16626
|
+
const { name, instructions } = options;
|
|
16582
16627
|
const client = await this.getClient();
|
|
16583
16628
|
/*
|
|
16584
16629
|
TODO: !!!
|
|
@@ -16626,21 +16671,20 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
16626
16671
|
uploadedFiles.push(file.id);
|
|
16627
16672
|
}
|
|
16628
16673
|
*/
|
|
16674
|
+
alert('!!!! Creating new OpenAI assistant');
|
|
16629
16675
|
// 3️⃣ Create assistant with uploaded files
|
|
16630
16676
|
const assistant = await client.beta.assistants.create({
|
|
16631
|
-
name
|
|
16632
|
-
description: 'Assistant
|
|
16677
|
+
name,
|
|
16678
|
+
description: 'Assistant created via Promptbook',
|
|
16633
16679
|
model: 'gpt-4o',
|
|
16634
|
-
instructions
|
|
16635
|
-
|
|
16636
|
-
Quote parts from uploaded files if needed.
|
|
16637
|
-
`),
|
|
16638
|
-
// <- TODO: !!!! Generate the `instructions` from passed `agentSource` (generate outside of this class)
|
|
16639
|
-
tools: [{ type: 'code_interpreter' }, { type: 'file_search' }],
|
|
16680
|
+
instructions,
|
|
16681
|
+
tools: [/* TODO: [🧠] Maybe add { type: 'code_interpreter' }, */ { type: 'file_search' }],
|
|
16640
16682
|
// !!!! file_ids: uploadedFiles,
|
|
16641
16683
|
});
|
|
16642
|
-
// TODO: !!!! Change Czech to English
|
|
16643
16684
|
console.log(`✅ Assistant created: ${assistant.id}`);
|
|
16685
|
+
// TODO: !!!! Try listing existing assistants
|
|
16686
|
+
// TODO: !!!! Try marking existing assistants by DISCRIMINANT
|
|
16687
|
+
// TODO: !!!! Allow to update and reconnect to existing assistants
|
|
16644
16688
|
return new OpenAiAssistantExecutionTools({
|
|
16645
16689
|
...this.options,
|
|
16646
16690
|
isCreatingNewAssistantsAllowed: false,
|
|
@@ -16679,6 +16723,12 @@ const DISCRIMINANT = 'OPEN_AI_ASSISTANT_V1';
|
|
|
16679
16723
|
* Execution Tools for calling LLM models with a predefined agent "soul"
|
|
16680
16724
|
* This wraps underlying LLM execution tools and applies agent-specific system prompts and requirements
|
|
16681
16725
|
*
|
|
16726
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
16727
|
+
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
16728
|
+
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
16729
|
+
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
16730
|
+
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
16731
|
+
*
|
|
16682
16732
|
* @public exported from `@promptbook/core`
|
|
16683
16733
|
*/
|
|
16684
16734
|
class AgentLlmExecutionTools {
|
|
@@ -16688,9 +16738,8 @@ class AgentLlmExecutionTools {
|
|
|
16688
16738
|
* @param llmTools The underlying LLM execution tools to wrap
|
|
16689
16739
|
* @param agentSource The agent source string that defines the agent's behavior
|
|
16690
16740
|
*/
|
|
16691
|
-
constructor(
|
|
16692
|
-
this.
|
|
16693
|
-
this.agentSource = agentSource;
|
|
16741
|
+
constructor(options) {
|
|
16742
|
+
this.options = options;
|
|
16694
16743
|
/**
|
|
16695
16744
|
* Cached model requirements to avoid re-parsing the agent source
|
|
16696
16745
|
*/
|
|
@@ -16699,15 +16748,13 @@ class AgentLlmExecutionTools {
|
|
|
16699
16748
|
* Cached parsed agent information
|
|
16700
16749
|
*/
|
|
16701
16750
|
this._cachedAgentInfo = null;
|
|
16702
|
-
// <- TODO: !!!! CreateAgentLlmExecutionToolsOptions
|
|
16703
|
-
// <- TODO: !!!! Leverage `OpenAiAssistantExecutionTools`
|
|
16704
16751
|
}
|
|
16705
16752
|
/**
|
|
16706
16753
|
* Get cached or parse agent information
|
|
16707
16754
|
*/
|
|
16708
16755
|
getAgentInfo() {
|
|
16709
16756
|
if (this._cachedAgentInfo === null) {
|
|
16710
|
-
this._cachedAgentInfo = parseAgentSource(this.agentSource);
|
|
16757
|
+
this._cachedAgentInfo = parseAgentSource(this.options.agentSource);
|
|
16711
16758
|
}
|
|
16712
16759
|
return this._cachedAgentInfo;
|
|
16713
16760
|
}
|
|
@@ -16717,8 +16764,8 @@ class AgentLlmExecutionTools {
|
|
|
16717
16764
|
async getAgentModelRequirements() {
|
|
16718
16765
|
if (this._cachedModelRequirements === null) {
|
|
16719
16766
|
// Get available models from underlying LLM tools for best model selection
|
|
16720
|
-
const availableModels = await this.llmTools.listModels();
|
|
16721
|
-
this._cachedModelRequirements = await createAgentModelRequirements(this.agentSource, undefined, // Let the function pick the best model
|
|
16767
|
+
const availableModels = await this.options.llmTools.listModels();
|
|
16768
|
+
this._cachedModelRequirements = await createAgentModelRequirements(this.options.agentSource, undefined, // Let the function pick the best model
|
|
16722
16769
|
availableModels);
|
|
16723
16770
|
}
|
|
16724
16771
|
return this._cachedModelRequirements;
|
|
@@ -16745,13 +16792,13 @@ class AgentLlmExecutionTools {
|
|
|
16745
16792
|
}
|
|
16746
16793
|
checkConfiguration() {
|
|
16747
16794
|
// Check underlying tools configuration
|
|
16748
|
-
return this.llmTools.checkConfiguration();
|
|
16795
|
+
return this.options.llmTools.checkConfiguration();
|
|
16749
16796
|
}
|
|
16750
16797
|
/**
|
|
16751
16798
|
* Returns a virtual model name representing the agent behavior
|
|
16752
16799
|
*/
|
|
16753
16800
|
get modelName() {
|
|
16754
|
-
const hash = SHA256(hexEncoder.parse(this.agentSource))
|
|
16801
|
+
const hash = SHA256(hexEncoder.parse(this.options.agentSource))
|
|
16755
16802
|
// <- TODO: [🥬] Encapsulate sha256 to some private utility function
|
|
16756
16803
|
.toString( /* hex */);
|
|
16757
16804
|
// <- TODO: [🥬] Make some system for hashes and ids of promptbook
|
|
@@ -16774,24 +16821,26 @@ class AgentLlmExecutionTools {
|
|
|
16774
16821
|
* Calls the chat model with agent-specific system prompt and requirements
|
|
16775
16822
|
*/
|
|
16776
16823
|
async callChatModel(prompt) {
|
|
16777
|
-
if (!this.llmTools.callChatModel) {
|
|
16824
|
+
if (!this.options.llmTools.callChatModel) {
|
|
16778
16825
|
throw new Error('Underlying LLM execution tools do not support chat model calls');
|
|
16779
16826
|
}
|
|
16780
16827
|
// Ensure we're working with a chat prompt
|
|
16781
16828
|
if (prompt.modelRequirements.modelVariant !== 'CHAT') {
|
|
16782
16829
|
throw new Error('AgentLlmExecutionTools only supports chat prompts');
|
|
16783
16830
|
}
|
|
16831
|
+
const modelRequirements = await this.getAgentModelRequirements();
|
|
16784
16832
|
const chatPrompt = prompt;
|
|
16785
16833
|
let underlyingLlmResult;
|
|
16786
|
-
if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.llmTools)) {
|
|
16834
|
+
if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.options.llmTools)) {
|
|
16787
16835
|
// <- TODO: !!! Check also `isCreatingNewAssistantsAllowed` and warn about it
|
|
16788
|
-
const assistant = await this.llmTools.createNewAssistant(
|
|
16836
|
+
const assistant = await this.options.llmTools.createNewAssistant({
|
|
16837
|
+
name: this.title,
|
|
16838
|
+
instructions: modelRequirements.systemMessage,
|
|
16839
|
+
});
|
|
16789
16840
|
// <- TODO: !!! Cache the assistant in prepareCache
|
|
16790
16841
|
underlyingLlmResult = await assistant.callChatModel(chatPrompt);
|
|
16791
16842
|
}
|
|
16792
16843
|
else {
|
|
16793
|
-
// Get agent model requirements (cached with best model selection)
|
|
16794
|
-
const modelRequirements = await this.getAgentModelRequirements();
|
|
16795
16844
|
// Create modified chat prompt with agent system message
|
|
16796
16845
|
const modifiedChatPrompt = {
|
|
16797
16846
|
...chatPrompt,
|
|
@@ -16805,7 +16854,7 @@ class AgentLlmExecutionTools {
|
|
|
16805
16854
|
: ''),
|
|
16806
16855
|
},
|
|
16807
16856
|
};
|
|
16808
|
-
underlyingLlmResult = await this.llmTools.callChatModel(modifiedChatPrompt);
|
|
16857
|
+
underlyingLlmResult = await this.options.llmTools.callChatModel(modifiedChatPrompt);
|
|
16809
16858
|
}
|
|
16810
16859
|
let content = underlyingLlmResult.content;
|
|
16811
16860
|
// Note: Cleanup the AI artifacts from the content
|
|
@@ -16831,19 +16880,11 @@ class AgentLlmExecutionTools {
|
|
|
16831
16880
|
* @public exported from `@promptbook/core`
|
|
16832
16881
|
*/
|
|
16833
16882
|
const createAgentLlmExecutionTools = Object.assign((options) => {
|
|
16834
|
-
|
|
16835
|
-
if (llmTools instanceof OpenAiAssistantExecutionTools) {
|
|
16836
|
-
// !!!!! Leverage `OpenAiAssistantExecutionTools` specific features here
|
|
16837
|
-
}*/
|
|
16838
|
-
return new AgentLlmExecutionTools(options.llmTools, options.agentSource);
|
|
16883
|
+
return new AgentLlmExecutionTools(options);
|
|
16839
16884
|
}, {
|
|
16840
16885
|
packageName: '@promptbook/core',
|
|
16841
16886
|
className: 'AgentLlmExecutionTools',
|
|
16842
16887
|
});
|
|
16843
|
-
/**
|
|
16844
|
-
* TODO: [🧠] Consider adding validation for agent source format
|
|
16845
|
-
* TODO: [🧠] Consider adding options for caching behavior
|
|
16846
|
-
*/
|
|
16847
16888
|
|
|
16848
16889
|
/**
|
|
16849
16890
|
* Metadata for Agent LLM execution tools
|
|
@@ -18105,5 +18146,5 @@ function aboutPromptbookInformation(options) {
|
|
|
18105
18146
|
* TODO: [🗽] Unite branding and make single place for it
|
|
18106
18147
|
*/
|
|
18107
18148
|
|
|
18108
|
-
export { $bookTranspilersRegister, $llmToolsMetadataRegister, $llmToolsRegister, $scrapersMetadataRegister, $scrapersRegister, ADMIN_EMAIL, ADMIN_GITHUB_NAME, API_REQUEST_TIMEOUT, AbstractFormatError, Agent, AgentLlmExecutionTools, AuthenticationError, BIG_DATASET_TRESHOLD, BOOK_LANGUAGE_VERSION, BlackholeStorage, BoilerplateError, BoilerplateFormfactorDefinition, CLAIM, CLI_APP_ID, CallbackInterfaceTools, ChatbotFormfactorDefinition, CollectionError, CompletionFormfactorDefinition, CsvFormatError, CsvFormatParser, DEFAULT_BOOK, DEFAULT_BOOKS_DIRNAME, DEFAULT_BOOK_OUTPUT_PARAMETER_NAME, DEFAULT_BOOK_TITLE, DEFAULT_CSV_SETTINGS, DEFAULT_DOWNLOAD_CACHE_DIRNAME, DEFAULT_EXECUTION_CACHE_DIRNAME, DEFAULT_GET_PIPELINE_COLLECTION_FUNCTION_NAME, DEFAULT_INTERMEDIATE_FILES_STRATEGY, DEFAULT_IS_AUTO_INSTALLED, DEFAULT_IS_VERBOSE, DEFAULT_MAX_EXECUTION_ATTEMPTS, DEFAULT_MAX_FILE_SIZE, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_DEPTH, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_TOTAL, DEFAULT_MAX_PARALLEL_COUNT, DEFAULT_MAX_REQUESTS_PER_MINUTE, DEFAULT_PIPELINE_COLLECTION_BASE_FILENAME, DEFAULT_PROMPT_TASK_TITLE, DEFAULT_REMOTE_SERVER_URL, DEFAULT_SCRAPE_CACHE_DIRNAME, DEFAULT_TASK_SIMULATED_DURATION_MS, DEFAULT_TASK_TITLE, EXPECTATION_UNITS, EnvironmentMismatchError, ExecutionReportStringOptionsDefaults, ExpectError, FAILED_VALUE_PLACEHOLDER, FORMFACTOR_DEFINITIONS, FormattedBookInMarkdownTranspiler, GENERIC_PIPELINE_INTERFACE, GeneratorFormfactorDefinition, GenericFormfactorDefinition, ImageGeneratorFormfactorDefinition, KnowledgeScrapeError, LimitReachedError, MANDATORY_CSV_SETTINGS, MAX_FILENAME_LENGTH, MODEL_ORDERS, MODEL_TRUST_LEVELS, MODEL_VARIANTS, MatcherFormfactorDefinition, MemoryStorage, MissingToolsError, MultipleLlmExecutionTools, NAME, NonTaskSectionTypes, NotAllowed, NotFoundError, NotYetImplementedCommitmentDefinition, NotYetImplementedError, ORDER_OF_PIPELINE_JSON, OpenAiSdkTranspiler, PADDING_LINES, PENDING_VALUE_PLACEHOLDER, PLAYGROUND_APP_ID, PROMPTBOOK_CHAT_COLOR, PROMPTBOOK_COLOR, PROMPTBOOK_ENGINE_VERSION, PROMPTBOOK_ERRORS, PROMPTBOOK_LOGO_URL, PROMPTBOOK_SYNTAX_COLORS, ParseError, PipelineExecutionError, PipelineLogicError, PipelineUrlError, PrefixStorage, PromptbookFetchError, REMOTE_SERVER_URLS, RESERVED_PARAMETER_NAMES, SET_IS_VERBOSE, SectionTypes, SheetsFormfactorDefinition, TaskTypes, TextFormatParser, TranslatorFormfactorDefinition, UNCERTAIN_USAGE, UNCERTAIN_ZERO_VALUE, USER_CHAT_COLOR, UnexpectedError, WrappedError, ZERO_USAGE, ZERO_VALUE, _AgentMetadata, _AgentRegistration, _AnthropicClaudeMetadataRegistration, _AzureOpenAiMetadataRegistration, _BoilerplateScraperMetadataRegistration, _DeepseekMetadataRegistration, _DocumentScraperMetadataRegistration, _GoogleMetadataRegistration, _LegacyDocumentScraperMetadataRegistration, _MarkdownScraperMetadataRegistration, _MarkitdownScraperMetadataRegistration, _OllamaMetadataRegistration, _OpenAiAssistantMetadataRegistration, _OpenAiCompatibleMetadataRegistration, _OpenAiMetadataRegistration, _PdfScraperMetadataRegistration, _WebsiteScraperMetadataRegistration, aboutPromptbookInformation, addUsage, book, cacheLlmTools,
|
|
18149
|
+
export { $bookTranspilersRegister, $llmToolsMetadataRegister, $llmToolsRegister, $scrapersMetadataRegister, $scrapersRegister, ADMIN_EMAIL, ADMIN_GITHUB_NAME, API_REQUEST_TIMEOUT, AbstractFormatError, Agent, AgentLlmExecutionTools, AuthenticationError, BIG_DATASET_TRESHOLD, BOOK_LANGUAGE_VERSION, BlackholeStorage, BoilerplateError, BoilerplateFormfactorDefinition, CLAIM, CLI_APP_ID, CallbackInterfaceTools, ChatbotFormfactorDefinition, CollectionError, CompletionFormfactorDefinition, CsvFormatError, CsvFormatParser, DEFAULT_AGENTS_DIRNAME, DEFAULT_BOOK, DEFAULT_BOOKS_DIRNAME, DEFAULT_BOOK_OUTPUT_PARAMETER_NAME, DEFAULT_BOOK_TITLE, DEFAULT_CSV_SETTINGS, DEFAULT_DOWNLOAD_CACHE_DIRNAME, DEFAULT_EXECUTION_CACHE_DIRNAME, DEFAULT_GET_PIPELINE_COLLECTION_FUNCTION_NAME, DEFAULT_INTERMEDIATE_FILES_STRATEGY, DEFAULT_IS_AUTO_INSTALLED, DEFAULT_IS_VERBOSE, DEFAULT_MAX_EXECUTION_ATTEMPTS, DEFAULT_MAX_FILE_SIZE, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_DEPTH, DEFAULT_MAX_KNOWLEDGE_SOURCES_SCRAPING_TOTAL, DEFAULT_MAX_PARALLEL_COUNT, DEFAULT_MAX_REQUESTS_PER_MINUTE, DEFAULT_PIPELINE_COLLECTION_BASE_FILENAME, DEFAULT_PROMPT_TASK_TITLE, DEFAULT_REMOTE_SERVER_URL, DEFAULT_SCRAPE_CACHE_DIRNAME, DEFAULT_TASK_SIMULATED_DURATION_MS, DEFAULT_TASK_TITLE, EXPECTATION_UNITS, EnvironmentMismatchError, ExecutionReportStringOptionsDefaults, ExpectError, FAILED_VALUE_PLACEHOLDER, FORMFACTOR_DEFINITIONS, FormattedBookInMarkdownTranspiler, GENERIC_PIPELINE_INTERFACE, GeneratorFormfactorDefinition, GenericFormfactorDefinition, ImageGeneratorFormfactorDefinition, KnowledgeScrapeError, LimitReachedError, MANDATORY_CSV_SETTINGS, MAX_FILENAME_LENGTH, MODEL_ORDERS, MODEL_TRUST_LEVELS, MODEL_VARIANTS, MatcherFormfactorDefinition, MemoryStorage, MissingToolsError, MultipleLlmExecutionTools, NAME, NonTaskSectionTypes, NotAllowed, NotFoundError, NotYetImplementedCommitmentDefinition, NotYetImplementedError, ORDER_OF_PIPELINE_JSON, OpenAiSdkTranspiler, PADDING_LINES, PENDING_VALUE_PLACEHOLDER, PLAYGROUND_APP_ID, PROMPTBOOK_CHAT_COLOR, PROMPTBOOK_COLOR, PROMPTBOOK_ENGINE_VERSION, PROMPTBOOK_ERRORS, PROMPTBOOK_LOGO_URL, PROMPTBOOK_SYNTAX_COLORS, ParseError, PipelineExecutionError, PipelineLogicError, PipelineUrlError, PrefixStorage, PromptbookFetchError, REMOTE_SERVER_URLS, RESERVED_PARAMETER_NAMES, SET_IS_VERBOSE, SectionTypes, SheetsFormfactorDefinition, TaskTypes, TextFormatParser, TranslatorFormfactorDefinition, UNCERTAIN_USAGE, UNCERTAIN_ZERO_VALUE, USER_CHAT_COLOR, UnexpectedError, WrappedError, ZERO_USAGE, ZERO_VALUE, _AgentMetadata, _AgentRegistration, _AnthropicClaudeMetadataRegistration, _AzureOpenAiMetadataRegistration, _BoilerplateScraperMetadataRegistration, _DeepseekMetadataRegistration, _DocumentScraperMetadataRegistration, _GoogleMetadataRegistration, _LegacyDocumentScraperMetadataRegistration, _MarkdownScraperMetadataRegistration, _MarkitdownScraperMetadataRegistration, _OllamaMetadataRegistration, _OpenAiAssistantMetadataRegistration, _OpenAiCompatibleMetadataRegistration, _OpenAiMetadataRegistration, _PdfScraperMetadataRegistration, _WebsiteScraperMetadataRegistration, aboutPromptbookInformation, addUsage, book, cacheLlmTools, compilePipeline, computeCosineSimilarity, countUsage, createAgentLlmExecutionTools, createAgentModelRequirements, createAgentModelRequirementsWithCommitments, createBasicAgentModelRequirements, createEmptyAgentModelRequirements, createLlmToolsFromConfiguration, createPipelineCollectionFromJson, createPipelineCollectionFromPromise, createPipelineCollectionFromUrl, createPipelineExecutor, createPipelineSubcollection, embeddingVectorToString, executionReportJsonToString, extractParameterNamesFromTask, filterModels, generatePlaceholderAgentProfileImageUrl, getAllCommitmentDefinitions, getAllCommitmentTypes, getCommitmentDefinition, getPipelineInterface, getSingleLlmExecutionTools, identificationToPromptbookToken, isCommitmentSupported, isPassingExpectations, isPipelineImplementingInterface, isPipelineInterfacesEqual, isPipelinePrepared, isValidBook, isValidPipelineString, joinLlmExecutionTools, limitTotalUsage, makeKnowledgeSourceHandler, migratePipeline, padBook, parseAgentSource, parseParameters, parsePipeline, pipelineCollectionToJson, pipelineJsonToString, prepareKnowledgePieces, preparePersona, preparePipeline, prettifyPipelineString, promptbookFetch, promptbookTokenToIdentification, unpreparePipeline, usageToHuman, usageToWorktime, validateBook, validatePipeline, validatePipelineString };
|
|
18109
18150
|
//# sourceMappingURL=index.es.js.map
|