@promptbook/components 0.103.0-37 → 0.103.0-40

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/esm/index.es.js +153 -57
  2. package/esm/index.es.js.map +1 -1
  3. package/esm/typings/books/index.d.ts +0 -81
  4. package/esm/typings/src/_packages/core.index.d.ts +12 -10
  5. package/esm/typings/src/_packages/node.index.d.ts +4 -2
  6. package/esm/typings/src/_packages/types.index.d.ts +3 -1
  7. package/esm/typings/src/book-components/_common/Modal/Modal.d.ts +1 -1
  8. package/esm/typings/src/cli/cli-commands/start-agents-server.d.ts +14 -0
  9. package/esm/typings/src/cli/cli-commands/{start-server.d.ts → start-pipelines-server.d.ts} +2 -2
  10. package/esm/typings/src/collection/agent-collection/AgentCollection.d.ts +36 -0
  11. package/esm/typings/src/collection/agent-collection/constructors/AgentCollectionInDirectory.d.ts +88 -0
  12. package/esm/typings/src/collection/{PipelineCollection.d.ts → pipeline-collection/PipelineCollection.d.ts} +7 -3
  13. package/esm/typings/src/collection/{SimplePipelineCollection.d.ts → pipeline-collection/SimplePipelineCollection.d.ts} +5 -5
  14. package/esm/typings/src/collection/{constructors/createCollectionFromDirectory.d.ts → pipeline-collection/constructors/createPipelineCollectionFromDirectory.d.ts} +8 -10
  15. package/esm/typings/src/collection/pipeline-collection/constructors/createPipelineCollectionFromJson.d.ts +13 -0
  16. package/esm/typings/src/collection/{constructors/createCollectionFromPromise.d.ts → pipeline-collection/constructors/createPipelineCollectionFromPromise.d.ts} +6 -5
  17. package/esm/typings/src/collection/pipeline-collection/constructors/createPipelineCollectionFromPromise.test.d.ts +1 -0
  18. package/esm/typings/src/collection/{constructors/createCollectionFromUrl.d.ts → pipeline-collection/constructors/createPipelineCollectionFromUrl.d.ts} +3 -3
  19. package/esm/typings/src/collection/{constructors/createSubcollection.d.ts → pipeline-collection/constructors/createPipelineSubcollection.d.ts} +3 -3
  20. package/esm/typings/src/collection/pipeline-collection/pipelineCollectionToJson.d.ts +13 -0
  21. package/esm/typings/src/config.d.ts +8 -1
  22. package/esm/typings/src/execution/FilesystemTools.d.ts +1 -1
  23. package/esm/typings/src/execution/LlmExecutionTools.d.ts +6 -0
  24. package/esm/typings/src/llm-providers/agent/Agent.d.ts +6 -1
  25. package/esm/typings/src/llm-providers/agent/AgentLlmExecutionTools.d.ts +9 -4
  26. package/esm/typings/src/llm-providers/agent/createAgentLlmExecutionTools.d.ts +0 -4
  27. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +17 -1
  28. package/esm/typings/src/other/templates/getTemplatesPipelineCollection.d.ts +1 -1
  29. package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -1
  30. package/esm/typings/src/remote-server/types/RemoteServerOptions.d.ts +22 -8
  31. package/esm/typings/src/transpilers/formatted-book-in-markdown/register.d.ts +1 -1
  32. package/esm/typings/src/utils/files/listAllFiles.d.ts +2 -3
  33. package/esm/typings/src/version.d.ts +1 -1
  34. package/esm/typings/src/wizard/$getCompiledBook.d.ts +1 -2
  35. package/package.json +2 -1
  36. package/umd/index.umd.js +155 -60
  37. package/umd/index.umd.js.map +1 -1
  38. package/esm/typings/src/collection/collectionToJson.d.ts +0 -13
  39. package/esm/typings/src/collection/constructors/createCollectionFromJson.d.ts +0 -13
  40. /package/esm/typings/src/collection/{constructors/createCollectionFromDirectory.test.d.ts → agent-collection/constructors/AgentCollectionInDirectory.test.d.ts} +0 -0
  41. /package/esm/typings/src/collection/{constructors/createCollectionFromJson.test.d.ts → pipeline-collection/constructors/createPipelineCollectionFromDirectory.test.d.ts} +0 -0
  42. /package/esm/typings/src/collection/{constructors/createCollectionFromPromise.test.d.ts → pipeline-collection/constructors/createPipelineCollectionFromJson.test.d.ts} +0 -0
  43. /package/esm/typings/src/collection/{collectionToJson.test.d.ts → pipeline-collection/pipelineCollectionToJson.test.d.ts} +0 -0
package/esm/index.es.js CHANGED
@@ -6,7 +6,7 @@ import { basename, join, dirname, isAbsolute } from 'path';
6
6
  import { randomBytes } from 'crypto';
7
7
  import Editor, { useMonaco } from '@monaco-editor/react';
8
8
  import { Subject } from 'rxjs';
9
- import { forTime } from 'waitasecond';
9
+ import { forTime, forEver } from 'waitasecond';
10
10
  import hexEncoder from 'crypto-js/enc-hex';
11
11
  import sha256 from 'crypto-js/sha256';
12
12
  import { SHA256 } from 'crypto-js';
@@ -16,6 +16,7 @@ import 'moment';
16
16
  import colors from 'colors';
17
17
  import Bottleneck from 'bottleneck';
18
18
  import OpenAI from 'openai';
19
+ import { Registration } from 'destroyable';
19
20
  import hljs from 'highlight.js';
20
21
  import katex from 'katex';
21
22
  import { Converter } from 'showdown';
@@ -35,7 +36,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
35
36
  * @generated
36
37
  * @see https://github.com/webgptorg/promptbook
37
38
  */
38
- const PROMPTBOOK_ENGINE_VERSION = '0.103.0-37';
39
+ const PROMPTBOOK_ENGINE_VERSION = '0.103.0-40';
39
40
  /**
40
41
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
41
42
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -3437,7 +3438,7 @@ const DEFAULT_MAX_PARALLEL_COUNT = 5; // <- TODO: [🤹‍♂️]
3437
3438
  * @public exported from `@promptbook/core`
3438
3439
  */
3439
3440
  const DEFAULT_MAX_EXECUTION_ATTEMPTS = 7; // <- TODO: [🤹‍♂️]
3440
- // <- TODO: [🕝] Make also `BOOKS_DIRNAME_ALTERNATIVES`
3441
+ // <- TODO: [🕝] Make also `AGENTS_DIRNAME_ALTERNATIVES`
3441
3442
  // TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
3442
3443
  /**
3443
3444
  * Where to store the temporary downloads
@@ -5759,7 +5760,7 @@ var css_248z$5 = ".BookEditor-module_BookEditor__s-0PU{width:100%}.BookEditor-mo
5759
5760
  var styles$4 = {"BookEditor":"BookEditor-module_BookEditor__s-0PU","bookEditorContainer":"BookEditor-module_bookEditorContainer__wLMwM","isVerbose":"BookEditor-module_isVerbose__VQ6iL","bookEditorWrapper":"BookEditor-module_bookEditorWrapper__twppD","isBorderRadiusDisabled":"BookEditor-module_isBorderRadiusDisabled__h1I3v","dropOverlay":"BookEditor-module_dropOverlay__xWWoX","bookEditorActionbar":"BookEditor-module_bookEditorActionbar__KW6dc","fullscreen":"BookEditor-module_fullscreen__rktsl","button":"BookEditor-module_button__hS390"};
5760
5761
  styleInject(css_248z$5);
5761
5762
 
5762
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"},{title:"📊 Curriculum Audit",pipelineUrl:"https://promptbook.studio/promptbook//examples/lsvp-asistent.book",formfactorName:"GENERIC",parameters:[{name:"result",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"prompt",title:"Prompt",content:"Asistent pro LŠVP\n\nPERSONA Jsi asistent pro RVP Lyceum v rámci Národního pedagogického institutu České Republiky\nMETA IMAGE https://edulk.cz/getFile/id:475818/type:large/02%20zna%C4%8Dka%20npi.jpg\nRULE Pokud jsi nejsi jistý, napiš nevím\nKNOWLEDGE ./241129_Lyceum_final.pdf\nCONTEXT Obecně dokážeš řešit libovolné ŠVP, aktuálně řešíš {Školní vzdělávací program LYCEUM}\nRULE Z {Porovnání RVP a ŠVP - postup} je nejdůležitější fáze 3\nKNOWLEDGE {Školní vzdělávací program LYCEUM} ./ŠVP Lyceum - Finance v digitální době.pdf\nKNOWLEDGE @Slovník\n\n**Interní slovník - RVP/ŠVP**\n\n**RVP**\n\nRámcový vzdělávací program pro obor vzdělání Lyceum je dokument na národní úrovni, který formuluje požadavky na školní vzdělávací programy ve formě především očekávaných výsledků učení, kterých mají žáci absolvováním tohoto programu na dané škole dosáhnout.\n\n**ŠVP**\n\nŠkolní vzdělávací program pro obor vzdělání Lyceum je dokument každé jednotlivé školy, který popisuje v jakých vyučovacích předmětech/ vzdělávacích modulech a v jakých ročnících budou požadované očekávané výsledky učení naplněny. Zároveň formuluje další očekávané výsledky učení, které naplňují disponibilní část vyučovacího času určeného RVP pro tento obor vzdělání.\n\n**Očekávaný výsledek učení (OVU)**\n\nVyjadřuje jednotlivý požadavek na to, co mají žáci umět na konci vzdělávacího programu, tzn. jejich požadované kompetence. Je vyjádřen formulací, která je uvozena činnostním slovesem a dále obsahuje předmět této činnosti. Formulace je konkretizována resp. doplněna zpravidla formou odrážek vymezením dílčích znalostí, dovedností, postojů, jejichž splnění je předpokladem dosažení OVU jako celku.\n\n_Příklad:_\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th><p><strong>Žák/žákyně řídí realizaci jednoduchého projektu</strong></p></th></tr><tr><td><ul><li>naplánuje aktivity projektu</li></ul></td></tr><tr><td><ul><li>navrhne rozpočet projektu vzhledem k navrženým aktivitám</li></ul></td></tr><tr><td><ul><li>stanoví základní ukazatele a sleduje jejich naplňování</li></ul></td></tr><tr><td><ul><li>vede projektový tým</li></ul></td></tr><tr><td><ul><li>uvede, jak by řešil krizové situace v projektu</li></ul></td></tr><tr><td><ul><li>vyhodnotí úspěšnost projektu</li></ul></td></tr></tbody></table></div>\n\n**Vzdělávací oblasti**\n\nOčekávané výsledky učení jsou v **_RVP členěny do 4 vzdělávacích oblastí_**, které tvoří společný všeobecně vzdělávací základ:\n\n- Osobnostní rozvoj, vzdělávání ke zdraví, bezpečí a produktivnímu pracovnímu životu (kariéře)\n- Komunikační a jazykové vzdělávání\n- Aplikované vzdělávání STEM (Science, Technology, Engeneering, Math), tj. přírodní vědy, informatika, technika, matematika\n- Prakticky orientované vzdělávání společenskovědní a humanitní\n\nKaždá vzdělávací oblast se dále člení na okruhy, v jejichž rámci jsou OVU samostatně číslované.\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th rowspan=\"21\"><ul><li>Prakticky orientované vzdělávání společenskovědní a humanitní</li></ul></th><th rowspan=\"21\"><p><strong>Člověk, ekonomie a podnikání</strong></p></th><th rowspan=\"7\"><p><strong>1</strong></p></th><th><p><strong>zpracuje podklady související s podnikáním</strong></p></th></tr><tr><td><p>připraví podnikatelský záměr</p></td></tr><tr><td><p>sestaví zakladatelský rozpočet</p></td></tr><tr><td><p>zkalkuluje cenu zboží nebo služby</p></td></tr><tr><td><p>vysvětlí na příkladu základní povinnosti podnikatele vůči státu a zaměstnancům</p></td></tr><tr><td><p>vede daňovou evidenci</p></td></tr><tr><td><p>vysvětlí na příkladech etiku v podnikání</p></td></tr><tr><td rowspan=\"7\"><p><strong>2</strong></p></td><td><p><strong>řídí realizaci jednoduchého projektu</strong></p></td></tr><tr><td><p>naplánuje aktivity projektu</p></td></tr><tr><td><p>navrhne rozpočet projektu vzhledem k navrženým aktivitám</p></td></tr><tr><td><p>stanoví základní ukazatele a sleduje jejich naplňování</p></td></tr><tr><td><p>vede projektový tým</p></td></tr><tr><td><p>uvede, jak by řešil krizové situace v projektu</p></td></tr><tr><td><p>vyhodnotí úspěšnost projektu</p></td></tr><tr><td rowspan=\"7\"><p><strong>3</strong></p></td><td><p><strong>aplikuje ekonomické teorie v osobním a profesním životě</strong></p></td></tr><tr><td><p>vysvětlí základní ekonomické otázky</p></td></tr><tr><td><p>vysvětí stanovení rovnovážné ceny na dokonalém i nedokonalém trhu</p></td></tr><tr><td><p>charakterizuje výrobní faktory a vysvětlí hranici produkčních možností a náklady obětované příležitosti</p></td></tr><tr><td><p>uvede nejdůležitější makroekonomické pojmy a vliv jejich výše na kvalitu života a podnikání v daném státě</p></td></tr><tr><td><p>vysvětlí podstatu inflace a její důsledky na finanční situaci obyvatel a na příkladu ukáže jak se bránit jejím nepříznivým důsledkům</p></td></tr><tr><td><p>uvede hlavní výhody a nevýhody mezinárodního obchodu a vliv ochranářských opatření na ekonomickou situaci dané země</p></td></tr><tr><td></td><td></td><td><p><strong>4</strong></p></td><td><p>Atd.</p></td></tr></tbody></table></div>\n\n**Vyučovací předmět / vzdělávací modul**\n\nOčekávané výsledky učení jsou v **ŠVP** členěny do vyučovacích předmětů nebo vzdělávacích modulů, které jsou dále zařazeny do jednoho nebo více ročníků 4letého studia. Vyučovací předmět / vzdělávací modul tvoří vyučovací jednotku, kde jsou očekávané výsledky učení dále rozpracovány pro potřeby výuky podle následující šablony\n\n| **A. VSTUPNÍ ČÁST** |\n| --- |\n| **1\\. Název** |\n| **2\\. Kód** (kódy by měly být navázány na obory vzdělání a výsledky učení) |\n| **2a) Kategorie vzdělání** - v případě, že nebude součástí kódu |\n| **3\\. Typ vyučovací jednotky** (modul, předmět, stáž apod.) |\n| **4\\. Délka** (počet hodin - dělitelný čtyřmi (optimální modul 16, 32 hodin = týden výuky) |\n| **5\\. Platnost** (datum, od kterého platí) |\n| **6\\. Vstupní předpoklady** (vymezení požadované úrovně vstupních vědomostí a dovedností, které jsou předpokladem úspěšného studia) |\n| |\n| **B. JÁDRO VYUČOVACÍ JEDNOTKY** |\n| **1\\. Charakteristika** (stručná anotace popisující obecné cíle a pojetí) |\n| **2\\. Očekávané výsledky učení a jejich indikátory (převzaté z RVP nebo dále konkretizované)** |\n| **3\\. Podpora rozvoje klíčových kompetencí a základních gramotností** (které klíčové kompetence jsou v rozvíjeny) |\n| **4\\. Obsah vzdělávání** (rozpis učiva) |\n| **5\\. Vzdělávací strategie** (strategie výuky, resp. učební činnosti žáků, které jsou doporučené pro dosažení výsledků) |\n| |\n| **C. VÝSTUPNÍ ČÁST** |\n| **1\\. Způsob ověřování dosažených výsledků** (ve vazbě na jednotlivé výsledky učení) |\n| **2\\. Kritéria hodnocení** (co znamená splnění výsledků učení, kdy je splněna celá vyučovací jednotka, kritéria pro známky, příp. procentuální, slovní hodnocení) |\n| **3\\. Doporučená studijní literatura, odkazy na ilustrační zdroje** |\n| **4\\. Poznámky** |\n\n**Soulad OVU RVP a ŠVP**\n\nTento soulad je předmětem zjišťování. Soulad nastává, jestliže jsou očekávané výsledky učení z jednotlivých vzdělávacích oblastí RVP **obsaženy** ve vyučovacích předmětech/ vzdělávacích modulech ŠVP jednotlivých škol, tzn. že v ŠVP se objevuje jejich formulace buď v doslovném nebo podobném znění v jednom nebo více vyučovacích předmětech/ vzdělávacích modulech.\n\n_Příklad souladu:_\n\nRVP ŠVP - komunikace a marketing (SŠ obchodní Č.\n\n| **2** | **řídí realizaci jednoduchého projektu** |\n| --- | --- |\n| naplánuje aktivity projektu |\n| navrhne rozpočet projektu vzhledem k navrženým aktivitám |\n| stanoví základní ukazatele a sleduje jejich naplňování |\n| vede projektový tým |\n| uvede, jak by řešil krizové situace v projektu |\n| vyhodnotí úspěšnost projektu |\n\nKNOWLEDGE {Porovnání RVP a ŠVP - postup}\n\n\n# AUDITNÍ PROTOKOL ŠVP-RVP\n\n# (POPIS KONTROLNÍHO ALGORITMU)\n\nMetodika je určena pro **Kvantifikaci Shody** školního vzdělávacího programu (ŠVP) s Rámcovým vzdělávacím programem (RVP).\n\n## FÁZE 1: VALIDACE DOKUMENTACE\n\n**Cíl:** Ověřit platnost, aktuálnost a strukturu zdrojových dokumentů.\n\n- **RVP Verifikace:** Otevřít aktuální verzi RVP (např. RVP ZV/G/SOŠ).\n- **Typová shoda:** Ověřit, že RVP se vztahuje k danému typu školy.\n- **ŠVP Dimenze:** Identifikovat a izolovat relevantní části ŠVP: Profil absolventa, Klíčové kompetence (KK), Vzdělávací oblasti (VO), případně Učební plán (UP).\n- **Verzování:** Potvrdit, že obě verze (RVP a ŠVP) jsou nejnovější a platné (včetně dodatků RVP).\n\n## FÁZE 2: DATABÁZOVÉ MAPOVÁNÍ VÝSTUPŮ (MASTER MATICE)\n\n**Cíl:** Vytvořit systémovou databázi pro křížové porovnání všech povinných komponent RVP se ŠVP.\n\n- **Dekompozice RVP:** Rozložit RVP na základní povinné komponenty: Klíčové kompetence, Vzdělávací oblasti a obory, Očekávané výstupy (OVU), Průřezová témata (PT).\n- **Přiřazovací mapa:** Vytvořit hlavní kontrolní matici (Master Matice) pro záznam vazeb.\n\n| Oblast RVP | Výstup RVP (OVU) | Odpovídající Část ŠVP (Předmět/Ročník) | Konkrétní Tématický Celek v ŠVP | Stav Shody (Protokol) |\n| --- | --- | --- | --- | --- |\n| ... | ... | ... | ... | ... |\n| --- | --- | --- | --- | --- |\n\n## FÁZE 3: ALGORITMICKÁ KONTROLA POKRYTÍ A HLOUBKY\n\n**Cíl:** Posoudit, zda každý povinný výstup RVP je adekvátně reflektován v obsahu ŠVP, a přidělit bodovou hodnotu pro kvantifikaci.\n\n- **Audit OVU:** Projít každý jednotlivý Očekávaný výstup (OVU) z RVP.\n- **Kódování stavu a bodování:** U každého OVU v matici označit stav pokrytí dle následujícího schématu:\n\n| Kód (Protokol) | Popis (Kvalitativní zjištění) | Bodová hodnota (Kvantifikace) |\n| --- | --- | --- |\n| ✅ | Plná shoda (Výstup pokryt v plném rozsahu, odpovídající úrovni RVP) | 1,0 |\n| --- | --- | --- |\n| ⚠️ | Částečná shoda (Formální pokrytí, omezený rozsah, chybná návaznost) | 0,5 |\n| --- | --- | --- |\n| ❌ | Absence (Výstup zcela chybí v obsahu ŠVP) | 0,0 |\n| --- | --- | --- |\n\n- **Defektologie ŠVP:** Identifikovat a zaznamenat deficity ŠVP: Chybějící výstupy (❌), Sémantické překryvy, Přetížení obsahu.\n- **Kvalitativní posun:** Ověřit, zda je formulace výstupů v ŠVP **aktivní, měřitelná a v souladu** s úrovní RVP.\n\n## FÁZE 4: STRUKTURÁLNÍ VERIFIKACE NÁVAZNOSTI (VERTIKÁLA/HORIZONTÁLA)\n\n**Cíl:** Zkontrolovat logickou posloupnost a provázanost učiva v rámci ŠVP.\n\n- **Vertikální Kontrola:** Ověřit posloupnost OVU a učiva uvnitř jednoho předmětu/oblasti (postup od jednodušších ke složitějším konceptům napříč ročníky).\n- **Horizontální Kontrola:** Zkontrolovat logické provázání napříč vzdělávacími oblastmi a předměty (např. fyzika ↔ matematika).\n- **PT Integrace:** Audit reálné integrace Průřezových témat (PT) do konkrétních částí obsahu, metod a projektů.\n\n## FÁZE 5: ANALÝZA ŠKOLNÍ PROFILACE A ROZŠÍŘENÍ RVP\n\n**Cíl:** Validovat, že profilace školy je **v souladu** s RVP a nejedná se o **rozpor**.\n\n- **Nekonfliktnost:** Porovnat definovaný Profil absolventa školy s Klíčovými kompetencemi RVP. Profil ŠVP musí RVP rozvíjet, nikoli mu odporovat.\n- **Modularita:** Zkontrolovat, zda volitelné předměty a rozšiřující moduly logicky navazují na vzdělávací oblasti RVP.\n- **Implementace specializace:** Popisně uvést, jak je školní profilace (např. STEM zaměření, projektová výuka) integrována do OVU a kompetencí definovaných RVP.\n\n## FÁZE 6: GENERÁTOR ZÁVĚREČNÉ ZPRÁVY A KVANTIFIKACE\n\n**Cíl:** Syntetizovat výsledky, kvantifikovat soulad a generovat závazné návrhy na korekce.\n\n### 6.1 Kvantifikace Souladu\n\nVypočítat Index shody (IS) na základě bodového hodnocení (Fáze 3):\n\n### 6.2 Interpretace Indexu Shody (IS)\n\nKlasifikace souladu pro standardizované vyhodnocení:\n\n| Interval IS | Klasifikace souladu | Popis |\n| --- | --- | --- |\n| 95-100 % | Výborný soulad | ŠVP plně odpovídá RVP, pouze stylistické nebo formální rozdíly. |\n| --- | --- | --- |\n| 85-94 % | Dobrá shoda | ŠVP pokrývá všechny klíčové výstupy, menší korekce nutné. |\n| --- | --- | --- |\n| 70-84 % | Částečná shoda | Významné nedostatky v některých oblastech, nutná revize obsahu. |\n| --- | --- | --- |\n| < 70 % | Kritická neshoda | ŠVP neplní rámcové požadavky, ohrožuje legislativní soulad. |\n| --- | --- | --- |\n\n### 6.3 Doplňkové Indexy\n\nVypočítat následující doplňkové indexy pro detailní kvalitativní analýzu:\n\n- **Index kompetenčního souladu (IKS):** Poměr pokrytí klíčových kompetencí RVP v ŠVP.\n- **Index průřezové integrace (IPI):** Míra reálné integrace průřezových témat do výuky.\n- **Index hloubky pokrytí (IHP):** Procento výstupů, které jsou v ŠVP rozvedeny na konkrétní výukové cíle (měřitelné, aktivní formulace).\n- **Index profilové rozšiřitelnosti (IPR):** Kolik rozšiřujících nebo profilových výstupů přesahuje rámec RVP, aniž by narušily jeho strukturu.\n\n### 6.4 Vizuální výstupy\n\nZajistit generování následujících vizualizací pro Závěrečnou zprávu:\n\n- Graf pokrytí po vzdělávacích oblastech (Sloupcový graf IS pro VO).\n- Pavoukový diagram Klíčových kompetencí (RVP vs. ŠVP).\n- Mapa defektů (Vizualizace ❌ a ⚠️ výstupů).\n\n### 6.5 Struktura Závěrečné Zprávy\n\nZpráva musí být strukturována dle standardizovaného formátu:\n\n| Oddíl | Obsah |\n| --- | --- |\n| A. Identifikace | Název školy, IZO, typ školy, datum revize, zpracovatel, verze ŠVP a RVP. |\n| --- | --- |\n| B. Shrnutí výsledků | Celkový Index Shody (IS), hlavní závěry a doporučení. |\n| --- | --- |\n| C. Kvantitativní analýza | Přehled IS v % dle kategorií OVU / VO / kompetencí. |\n| --- | --- |\n| D. Kvalitativní analýza | Slovní zhodnocení kvality souladu (formulace, obtížnost, integrace PT). |\n| --- | --- |\n| E. Rizikové oblasti | Přehled nalezených defektů (chybějící OVU, přetížení, formální shoda). |\n| --- | --- |\n| F. Návrhy opatření (Korekční plán) | Přesné návrhy změn - **Co, Kde, Kdo** má upravit, včetně termínu. |\n| --- | --- |\n| G. Přílohy | Master Matice (Fáze 2-3), revizní tabulka, výstupní grafy a metriky. |\n| --- | --- |\n\n\n\n\n.",resultingParameterName:"result",dependentParameterNames:[]}],personas:[],preparations:[{id:1,promptbookVersion:"0.103.0-36",usage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"Asistent pro LŠVP\n\nPERSONA Jsi asistent pro RVP Lyceum v rámci Národního pedagogického institutu České Republiky\nMETA IMAGE https://edulk.cz/getFile/id:475818/type:large/02%20zna%C4%8Dka%20npi.jpg\nRULE Pokud jsi nejsi jistý, napiš nevím\nKNOWLEDGE ./241129_Lyceum_final.pdf\nCONTEXT Obecně dokážeš řešit libovolné ŠVP, aktuálně řešíš {Školní vzdělávací program LYCEUM}\nRULE Z {Porovnání RVP a ŠVP - postup} je nejdůležitější fáze 3\nKNOWLEDGE {Školní vzdělávací program LYCEUM} ./ŠVP Lyceum - Finance v digitální době.pdf\nKNOWLEDGE @Slovník\n\n**Interní slovník - RVP/ŠVP**\n\n**RVP**\n\nRámcový vzdělávací program pro obor vzdělání Lyceum je dokument na národní úrovni, který formuluje požadavky na školní vzdělávací programy ve formě především očekávaných výsledků učení, kterých mají žáci absolvováním tohoto programu na dané škole dosáhnout.\n\n**ŠVP**\n\nŠkolní vzdělávací program pro obor vzdělání Lyceum je dokument každé jednotlivé školy, který popisuje v jakých vyučovacích předmětech/ vzdělávacích modulech a v jakých ročnících budou požadované očekávané výsledky učení naplněny. Zároveň formuluje další očekávané výsledky učení, které naplňují disponibilní část vyučovacího času určeného RVP pro tento obor vzdělání.\n\n**Očekávaný výsledek učení (OVU)**\n\nVyjadřuje jednotlivý požadavek na to, co mají žáci umět na konci vzdělávacího programu, tzn. jejich požadované kompetence. Je vyjádřen formulací, která je uvozena činnostním slovesem a dále obsahuje předmět této činnosti. Formulace je konkretizována resp. doplněna zpravidla formou odrážek vymezením dílčích znalostí, dovedností, postojů, jejichž splnění je předpokladem dosažení OVU jako celku.\n\n_Příklad:_\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th><p><strong>Žák/žákyně řídí realizaci jednoduchého projektu</strong></p></th></tr><tr><td><ul><li>naplánuje aktivity projektu</li></ul></td></tr><tr><td><ul><li>navrhne rozpočet projektu vzhledem k navrženým aktivitám</li></ul></td></tr><tr><td><ul><li>stanoví základní ukazatele a sleduje jejich naplňování</li></ul></td></tr><tr><td><ul><li>vede projektový tým</li></ul></td></tr><tr><td><ul><li>uvede, jak by řešil krizové situace v projektu</li></ul></td></tr><tr><td><ul><li>vyhodnotí úspěšnost projektu</li></ul></td></tr></tbody></table></div>\n\n**Vzdělávací oblasti**\n\nOčekávané výsledky učení jsou v **_RVP členěny do 4 vzdělávacích oblastí_**, které tvoří společný všeobecně vzdělávací základ:\n\n- Osobnostní rozvoj, vzdělávání ke zdraví, bezpečí a produktivnímu pracovnímu životu (kariéře)\n- Komunikační a jazykové vzdělávání\n- Aplikované vzdělávání STEM (Science, Technology, Engeneering, Math), tj. přírodní vědy, informatika, technika, matematika\n- Prakticky orientované vzdělávání společenskovědní a humanitní\n\nKaždá vzdělávací oblast se dále člení na okruhy, v jejichž rámci jsou OVU samostatně číslované.\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th rowspan=\"21\"><ul><li>Prakticky orientované vzdělávání společenskovědní a humanitní</li></ul></th><th rowspan=\"21\"><p><strong>Člověk, ekonomie a podnikání</strong></p></th><th rowspan=\"7\"><p><strong>1</strong></p></th><th><p><strong>zpracuje podklady související s podnikáním</strong></p></th></tr><tr><td><p>připraví podnikatelský záměr</p></td></tr><tr><td><p>sestaví zakladatelský rozpočet</p></td></tr><tr><td><p>zkalkuluje cenu zboží nebo služby</p></td></tr><tr><td><p>vysvětlí na příkladu základní povinnosti podnikatele vůči státu a zaměstnancům</p></td></tr><tr><td><p>vede daňovou evidenci</p></td></tr><tr><td><p>vysvětlí na příkladech etiku v podnikání</p></td></tr><tr><td rowspan=\"7\"><p><strong>2</strong></p></td><td><p><strong>řídí realizaci jednoduchého projektu</strong></p></td></tr><tr><td><p>naplánuje aktivity projektu</p></td></tr><tr><td><p>navrhne rozpočet projektu vzhledem k navrženým aktivitám</p></td></tr><tr><td><p>stanoví základní ukazatele a sleduje jejich naplňování</p></td></tr><tr><td><p>vede projektový tým</p></td></tr><tr><td><p>uvede, jak by řešil krizové situace v projektu</p></td></tr><tr><td><p>vyhodnotí úspěšnost projektu</p></td></tr><tr><td rowspan=\"7\"><p><strong>3</strong></p></td><td><p><strong>aplikuje ekonomické teorie v osobním a profesním životě</strong></p></td></tr><tr><td><p>vysvětlí základní ekonomické otázky</p></td></tr><tr><td><p>vysvětí stanovení rovnovážné ceny na dokonalém i nedokonalém trhu</p></td></tr><tr><td><p>charakterizuje výrobní faktory a vysvětlí hranici produkčních možností a náklady obětované příležitosti</p></td></tr><tr><td><p>uvede nejdůležitější makroekonomické pojmy a vliv jejich výše na kvalitu života a podnikání v daném státě</p></td></tr><tr><td><p>vysvětlí podstatu inflace a její důsledky na finanční situaci obyvatel a na příkladu ukáže jak se bránit jejím nepříznivým důsledkům</p></td></tr><tr><td><p>uvede hlavní výhody a nevýhody mezinárodního obchodu a vliv ochranářských opatření na ekonomickou situaci dané země</p></td></tr><tr><td></td><td></td><td><p><strong>4</strong></p></td><td><p>Atd.</p></td></tr></tbody></table></div>\n\n**Vyučovací předmět / vzdělávací modul**\n\nOčekávané výsledky učení jsou v **ŠVP** členěny do vyučovacích předmětů nebo vzdělávacích modulů, které jsou dále zařazeny do jednoho nebo více ročníků 4letého studia. Vyučovací předmět / vzdělávací modul tvoří vyučovací jednotku, kde jsou očekávané výsledky učení dále rozpracovány pro potřeby výuky podle následující šablony\n\n| **A. VSTUPNÍ ČÁST** |\n| --- |\n| **1\\. Název** |\n| **2\\. Kód** (kódy by měly být navázány na obory vzdělání a výsledky učení) |\n| **2a) Kategorie vzdělání** - v případě, že nebude součástí kódu |\n| **3\\. Typ vyučovací jednotky** (modul, předmět, stáž apod.) |\n| **4\\. Délka** (počet hodin - dělitelný čtyřmi (optimální modul 16, 32 hodin = týden výuky) |\n| **5\\. Platnost** (datum, od kterého platí) |\n| **6\\. Vstupní předpoklady** (vymezení požadované úrovně vstupních vědomostí a dovedností, které jsou předpokladem úspěšného studia) |\n| |\n| **B. JÁDRO VYUČOVACÍ JEDNOTKY** |\n| **1\\. Charakteristika** (stručná anotace popisující obecné cíle a pojetí) |\n| **2\\. Očekávané výsledky učení a jejich indikátory (převzaté z RVP nebo dále konkretizované)** |\n| **3\\. Podpora rozvoje klíčových kompetencí a základních gramotností** (které klíčové kompetence jsou v rozvíjeny) |\n| **4\\. Obsah vzdělávání** (rozpis učiva) |\n| **5\\. Vzdělávací strategie** (strategie výuky, resp. učební činnosti žáků, které jsou doporučené pro dosažení výsledků) |\n| |\n| **C. VÝSTUPNÍ ČÁST** |\n| **1\\. Způsob ověřování dosažených výsledků** (ve vazbě na jednotlivé výsledky učení) |\n| **2\\. Kritéria hodnocení** (co znamená splnění výsledků učení, kdy je splněna celá vyučovací jednotka, kritéria pro známky, příp. procentuální, slovní hodnocení) |\n| **3\\. Doporučená studijní literatura, odkazy na ilustrační zdroje** |\n| **4\\. Poznámky** |\n\n**Soulad OVU RVP a ŠVP**\n\nTento soulad je předmětem zjišťování. Soulad nastává, jestliže jsou očekávané výsledky učení z jednotlivých vzdělávacích oblastí RVP **obsaženy** ve vyučovacích předmětech/ vzdělávacích modulech ŠVP jednotlivých škol, tzn. že v ŠVP se objevuje jejich formulace buď v doslovném nebo podobném znění v jednom nebo více vyučovacích předmětech/ vzdělávacích modulech.\n\n_Příklad souladu:_\n\nRVP ŠVP - komunikace a marketing (SŠ obchodní Č.\n\n| **2** | **řídí realizaci jednoduchého projektu** |\n| --- | --- |\n| naplánuje aktivity projektu |\n| navrhne rozpočet projektu vzhledem k navrženým aktivitám |\n| stanoví základní ukazatele a sleduje jejich naplňování |\n| vede projektový tým |\n| uvede, jak by řešil krizové situace v projektu |\n| vyhodnotí úspěšnost projektu |\n\nKNOWLEDGE {Porovnání RVP a ŠVP - postup}\n\n\n# AUDITNÍ PROTOKOL ŠVP-RVP\n\n# (POPIS KONTROLNÍHO ALGORITMU)\n\nMetodika je určena pro **Kvantifikaci Shody** školního vzdělávacího programu (ŠVP) s Rámcovým vzdělávacím programem (RVP).\n\n## FÁZE 1: VALIDACE DOKUMENTACE\n\n**Cíl:** Ověřit platnost, aktuálnost a strukturu zdrojových dokumentů.\n\n- **RVP Verifikace:** Otevřít aktuální verzi RVP (např. RVP ZV/G/SOŠ).\n- **Typová shoda:** Ověřit, že RVP se vztahuje k danému typu školy.\n- **ŠVP Dimenze:** Identifikovat a izolovat relevantní části ŠVP: Profil absolventa, Klíčové kompetence (KK), Vzdělávací oblasti (VO), případně Učební plán (UP).\n- **Verzování:** Potvrdit, že obě verze (RVP a ŠVP) jsou nejnovější a platné (včetně dodatků RVP).\n\n## FÁZE 2: DATABÁZOVÉ MAPOVÁNÍ VÝSTUPŮ (MASTER MATICE)\n\n**Cíl:** Vytvořit systémovou databázi pro křížové porovnání všech povinných komponent RVP se ŠVP.\n\n- **Dekompozice RVP:** Rozložit RVP na základní povinné komponenty: Klíčové kompetence, Vzdělávací oblasti a obory, Očekávané výstupy (OVU), Průřezová témata (PT).\n- **Přiřazovací mapa:** Vytvořit hlavní kontrolní matici (Master Matice) pro záznam vazeb.\n\n| Oblast RVP | Výstup RVP (OVU) | Odpovídající Část ŠVP (Předmět/Ročník) | Konkrétní Tématický Celek v ŠVP | Stav Shody (Protokol) |\n| --- | --- | --- | --- | --- |\n| ... | ... | ... | ... | ... |\n| --- | --- | --- | --- | --- |\n\n## FÁZE 3: ALGORITMICKÁ KONTROLA POKRYTÍ A HLOUBKY\n\n**Cíl:** Posoudit, zda každý povinný výstup RVP je adekvátně reflektován v obsahu ŠVP, a přidělit bodovou hodnotu pro kvantifikaci.\n\n- **Audit OVU:** Projít každý jednotlivý Očekávaný výstup (OVU) z RVP.\n- **Kódování stavu a bodování:** U každého OVU v matici označit stav pokrytí dle následujícího schématu:\n\n| Kód (Protokol) | Popis (Kvalitativní zjištění) | Bodová hodnota (Kvantifikace) |\n| --- | --- | --- |\n| ✅ | Plná shoda (Výstup pokryt v plném rozsahu, odpovídající úrovni RVP) | 1,0 |\n| --- | --- | --- |\n| ⚠️ | Částečná shoda (Formální pokrytí, omezený rozsah, chybná návaznost) | 0,5 |\n| --- | --- | --- |\n| ❌ | Absence (Výstup zcela chybí v obsahu ŠVP) | 0,0 |\n| --- | --- | --- |\n\n- **Defektologie ŠVP:** Identifikovat a zaznamenat deficity ŠVP: Chybějící výstupy (❌), Sémantické překryvy, Přetížení obsahu.\n- **Kvalitativní posun:** Ověřit, zda je formulace výstupů v ŠVP **aktivní, měřitelná a v souladu** s úrovní RVP.\n\n## FÁZE 4: STRUKTURÁLNÍ VERIFIKACE NÁVAZNOSTI (VERTIKÁLA/HORIZONTÁLA)\n\n**Cíl:** Zkontrolovat logickou posloupnost a provázanost učiva v rámci ŠVP.\n\n- **Vertikální Kontrola:** Ověřit posloupnost OVU a učiva uvnitř jednoho předmětu/oblasti (postup od jednodušších ke složitějším konceptům napříč ročníky).\n- **Horizontální Kontrola:** Zkontrolovat logické provázání napříč vzdělávacími oblastmi a předměty (např. fyzika ↔ matematika).\n- **PT Integrace:** Audit reálné integrace Průřezových témat (PT) do konkrétních částí obsahu, metod a projektů.\n\n## FÁZE 5: ANALÝZA ŠKOLNÍ PROFILACE A ROZŠÍŘENÍ RVP\n\n**Cíl:** Validovat, že profilace školy je **v souladu** s RVP a nejedná se o **rozpor**.\n\n- **Nekonfliktnost:** Porovnat definovaný Profil absolventa školy s Klíčovými kompetencemi RVP. Profil ŠVP musí RVP rozvíjet, nikoli mu odporovat.\n- **Modularita:** Zkontrolovat, zda volitelné předměty a rozšiřující moduly logicky navazují na vzdělávací oblasti RVP.\n- **Implementace specializace:** Popisně uvést, jak je školní profilace (např. STEM zaměření, projektová výuka) integrována do OVU a kompetencí definovaných RVP.\n\n## FÁZE 6: GENERÁTOR ZÁVĚREČNÉ ZPRÁVY A KVANTIFIKACE\n\n**Cíl:** Syntetizovat výsledky, kvantifikovat soulad a generovat závazné návrhy na korekce.\n\n### 6.1 Kvantifikace Souladu\n\nVypočítat Index shody (IS) na základě bodového hodnocení (Fáze 3):\n\n### 6.2 Interpretace Indexu Shody (IS)\n\nKlasifikace souladu pro standardizované vyhodnocení:\n\n| Interval IS | Klasifikace souladu | Popis |\n| --- | --- | --- |\n| 95-100 % | Výborný soulad | ŠVP plně odpovídá RVP, pouze stylistické nebo formální rozdíly. |\n| --- | --- | --- |\n| 85-94 % | Dobrá shoda | ŠVP pokrývá všechny klíčové výstupy, menší korekce nutné. |\n| --- | --- | --- |\n| 70-84 % | Částečná shoda | Významné nedostatky v některých oblastech, nutná revize obsahu. |\n| --- | --- | --- |\n| < 70 % | Kritická neshoda | ŠVP neplní rámcové požadavky, ohrožuje legislativní soulad. |\n| --- | --- | --- |\n\n### 6.3 Doplňkové Indexy\n\nVypočítat následující doplňkové indexy pro detailní kvalitativní analýzu:\n\n- **Index kompetenčního souladu (IKS):** Poměr pokrytí klíčových kompetencí RVP v ŠVP.\n- **Index průřezové integrace (IPI):** Míra reálné integrace průřezových témat do výuky.\n- **Index hloubky pokrytí (IHP):** Procento výstupů, které jsou v ŠVP rozvedeny na konkrétní výukové cíle (měřitelné, aktivní formulace).\n- **Index profilové rozšiřitelnosti (IPR):** Kolik rozšiřujících nebo profilových výstupů přesahuje rámec RVP, aniž by narušily jeho strukturu.\n\n### 6.4 Vizuální výstupy\n\nZajistit generování následujících vizualizací pro Závěrečnou zprávu:\n\n- Graf pokrytí po vzdělávacích oblastech (Sloupcový graf IS pro VO).\n- Pavoukový diagram Klíčových kompetencí (RVP vs. ŠVP).\n- Mapa defektů (Vizualizace ❌ a ⚠️ výstupů).\n\n### 6.5 Struktura Závěrečné Zprávy\n\nZpráva musí být strukturována dle standardizovaného formátu:\n\n| Oddíl | Obsah |\n| --- | --- |\n| A. Identifikace | Název školy, IZO, typ školy, datum revize, zpracovatel, verze ŠVP a RVP. |\n| --- | --- |\n| B. Shrnutí výsledků | Celkový Index Shody (IS), hlavní závěry a doporučení. |\n| --- | --- |\n| C. Kvantitativní analýza | Přehled IS v % dle kategorií OVU / VO / kompetencí. |\n| --- | --- |\n| D. Kvalitativní analýza | Slovní zhodnocení kvality souladu (formulace, obtížnost, integrace PT). |\n| --- | --- |\n| E. Rizikové oblasti | Přehled nalezených defektů (chybějící OVU, přetížení, formální shoda). |\n| --- | --- |\n| F. Návrhy opatření (Korekční plán) | Přesné návrhy změn - **Co, Kde, Kdo** má upravit, včetně termínu. |\n| --- | --- |\n| G. Přílohy | Master Matice (Fáze 2-3), revizní tabulka, výstupní grafy a metriky. |\n| --- | --- |\n\n\n\n\n.\n"}],sourceFile:"./books/examples/lsvp-asistent.book"}];
5763
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
5763
5764
 
5764
5765
  /**
5765
5766
  * Function `validatePipelineString` will validate the if the string is a valid pipeline string
@@ -6275,7 +6276,7 @@ function unpreparePipeline(pipeline) {
6275
6276
  * Library of pipelines that groups together pipelines for an application.
6276
6277
  * This implementation is a very thin wrapper around the Array / Map of pipelines.
6277
6278
  *
6278
- * @private internal function of `createCollectionFromJson`, use `createCollectionFromJson` instead
6279
+ * @private internal function of `createPipelineCollectionFromJson`, use `createPipelineCollectionFromJson` instead
6279
6280
  * @see https://github.com/webgptorg/pipeline#pipeline-collection
6280
6281
  */
6281
6282
  class SimplePipelineCollection {
@@ -6285,7 +6286,7 @@ class SimplePipelineCollection {
6285
6286
  * @param pipelines Array of pipeline JSON objects to include in the collection
6286
6287
  *
6287
6288
  * Note: During the construction logic of all pipelines are validated
6288
- * Note: It is not recommended to use this constructor directly, use `createCollectionFromJson` *(or other variant)* instead
6289
+ * Note: It is not recommended to use this constructor directly, use `createPipelineCollectionFromJson` *(or other variant)* instead
6289
6290
  */
6290
6291
  constructor(...pipelines) {
6291
6292
  this.collection = new Map();
@@ -6373,16 +6374,16 @@ class SimplePipelineCollection {
6373
6374
  }
6374
6375
 
6375
6376
  /**
6376
- * Creates PipelineCollection from array of PipelineJson or PipelineString
6377
+ * Creates `PipelineCollection` from array of PipelineJson or PipelineString
6377
6378
  *
6378
- * Note: Functions `collectionToJson` and `createCollectionFromJson` are complementary
6379
+ * Note: Functions `pipelineCollectionToJson` and `createPipelineCollectionFromJson` are complementary
6379
6380
  * Note: Syntax, parsing, and logic consistency checks are performed on all sources during build
6380
6381
  *
6381
6382
  * @param promptbookSources
6382
6383
  * @returns PipelineCollection
6383
6384
  * @public exported from `@promptbook/core`
6384
6385
  */
6385
- function createCollectionFromJson(...promptbooks) {
6386
+ function createPipelineCollectionFromJson(...promptbooks) {
6386
6387
  return new SimplePipelineCollection(...promptbooks);
6387
6388
  }
6388
6389
 
@@ -7804,7 +7805,7 @@ async function preparePipeline(pipeline, tools, options) {
7804
7805
  let title = pipeline.title;
7805
7806
  if (title === undefined || title === '' || title === DEFAULT_BOOK_TITLE) {
7806
7807
  // TODO: [🌼] In future use `ptbk make` and made getPipelineCollection
7807
- const collection = createCollectionFromJson(...PipelineCollection);
7808
+ const collection = createPipelineCollectionFromJson(...PipelineCollection);
7808
7809
  const prepareTitleExecutor = createPipelineExecutor({
7809
7810
  pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book'),
7810
7811
  tools,
@@ -9796,7 +9797,7 @@ async function preparePersona(personaDescription, tools, options) {
9796
9797
  throw new MissingToolsError('LLM tools are required for preparing persona');
9797
9798
  }
9798
9799
  // TODO: [🌼] In future use `ptbk make` and made getPipelineCollection
9799
- const collection = createCollectionFromJson(...PipelineCollection);
9800
+ const collection = createPipelineCollectionFromJson(...PipelineCollection);
9800
9801
  const preparePersonaExecutor = createPipelineExecutor({
9801
9802
  pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
9802
9803
  tools,
@@ -11914,6 +11915,12 @@ class OpenAiExecutionTools extends OpenAiCompatibleExecutionTools {
11914
11915
  *
11915
11916
  * This is useful for calling OpenAI API with a single assistant, for more wide usage use `OpenAiExecutionTools`.
11916
11917
  *
11918
+ * Note: [🦖] There are several different things in Promptbook:
11919
+ * - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
11920
+ * - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
11921
+ * - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
11922
+ * - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
11923
+ *
11917
11924
  * @public exported from `@promptbook/openai`
11918
11925
  */
11919
11926
  class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
@@ -12079,10 +12086,32 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
12079
12086
  },
12080
12087
  });
12081
12088
  }
12082
- async createNewAssistant() {
12089
+ async playground() {
12090
+ const client = await this.getClient();
12091
+ // List all assistants
12092
+ const assistants = await client.beta.assistants.list();
12093
+ console.log('!!! Assistants:', assistants);
12094
+ // Get details of a specific assistant
12095
+ const assistantId = 'asst_MO8fhZf4dGloCfXSHeLcIik0';
12096
+ const assistant = await client.beta.assistants.retrieve(assistantId);
12097
+ console.log('!!! Assistant Details:', assistant);
12098
+ // Update an assistant
12099
+ const updatedAssistant = await client.beta.assistants.update(assistantId, {
12100
+ name: assistant.name + '(M)',
12101
+ description: 'Updated description via Promptbook',
12102
+ metadata: {
12103
+ [Math.random().toString(36).substring(2, 15)]: new Date().toISOString(),
12104
+ },
12105
+ });
12106
+ console.log('!!! Updated Assistant:', updatedAssistant);
12107
+ await forEver();
12108
+ }
12109
+ async createNewAssistant(options) {
12083
12110
  if (!this.isCreatingNewAssistantsAllowed) {
12084
12111
  throw new NotAllowed(`Creating new assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
12085
12112
  }
12113
+ await this.playground();
12114
+ const { name, instructions } = options;
12086
12115
  const client = await this.getClient();
12087
12116
  /*
12088
12117
  TODO: !!!
@@ -12130,21 +12159,20 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
12130
12159
  uploadedFiles.push(file.id);
12131
12160
  }
12132
12161
  */
12162
+ alert('!!!! Creating new OpenAI assistant');
12133
12163
  // 3️⃣ Create assistant with uploaded files
12134
12164
  const assistant = await client.beta.assistants.create({
12135
- name: 'Next.js documentation assistant',
12136
- description: 'Assistant that can answer questions about Next.js and working with APIs.',
12165
+ name,
12166
+ description: 'Assistant created via Promptbook',
12137
12167
  model: 'gpt-4o',
12138
- instructions: spaceTrim$1(`
12139
- Answer clearly and comprehensively.
12140
- Quote parts from uploaded files if needed.
12141
- `),
12142
- // <- TODO: !!!! Generate the `instructions` from passed `agentSource` (generate outside of this class)
12143
- tools: [{ type: 'code_interpreter' }, { type: 'file_search' }],
12168
+ instructions,
12169
+ tools: [/* TODO: [🧠] Maybe add { type: 'code_interpreter' }, */ { type: 'file_search' }],
12144
12170
  // !!!! file_ids: uploadedFiles,
12145
12171
  });
12146
- // TODO: !!!! Change Czech to English
12147
12172
  console.log(`✅ Assistant created: ${assistant.id}`);
12173
+ // TODO: !!!! Try listing existing assistants
12174
+ // TODO: !!!! Try marking existing assistants by DISCRIMINANT
12175
+ // TODO: !!!! Allow to update and reconnect to existing assistants
12148
12176
  return new OpenAiAssistantExecutionTools({
12149
12177
  ...this.options,
12150
12178
  isCreatingNewAssistantsAllowed: false,
@@ -12183,6 +12211,12 @@ const DISCRIMINANT = 'OPEN_AI_ASSISTANT_V1';
12183
12211
  * Execution Tools for calling LLM models with a predefined agent "soul"
12184
12212
  * This wraps underlying LLM execution tools and applies agent-specific system prompts and requirements
12185
12213
  *
12214
+ * Note: [🦖] There are several different things in Promptbook:
12215
+ * - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
12216
+ * - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
12217
+ * - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
12218
+ * - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
12219
+ *
12186
12220
  * @public exported from `@promptbook/core`
12187
12221
  */
12188
12222
  class AgentLlmExecutionTools {
@@ -12192,9 +12226,8 @@ class AgentLlmExecutionTools {
12192
12226
  * @param llmTools The underlying LLM execution tools to wrap
12193
12227
  * @param agentSource The agent source string that defines the agent's behavior
12194
12228
  */
12195
- constructor(llmTools, agentSource) {
12196
- this.llmTools = llmTools;
12197
- this.agentSource = agentSource;
12229
+ constructor(options) {
12230
+ this.options = options;
12198
12231
  /**
12199
12232
  * Cached model requirements to avoid re-parsing the agent source
12200
12233
  */
@@ -12203,15 +12236,13 @@ class AgentLlmExecutionTools {
12203
12236
  * Cached parsed agent information
12204
12237
  */
12205
12238
  this._cachedAgentInfo = null;
12206
- // <- TODO: !!!! CreateAgentLlmExecutionToolsOptions
12207
- // <- TODO: !!!! Leverage `OpenAiAssistantExecutionTools`
12208
12239
  }
12209
12240
  /**
12210
12241
  * Get cached or parse agent information
12211
12242
  */
12212
12243
  getAgentInfo() {
12213
12244
  if (this._cachedAgentInfo === null) {
12214
- this._cachedAgentInfo = parseAgentSource(this.agentSource);
12245
+ this._cachedAgentInfo = parseAgentSource(this.options.agentSource);
12215
12246
  }
12216
12247
  return this._cachedAgentInfo;
12217
12248
  }
@@ -12221,8 +12252,8 @@ class AgentLlmExecutionTools {
12221
12252
  async getAgentModelRequirements() {
12222
12253
  if (this._cachedModelRequirements === null) {
12223
12254
  // Get available models from underlying LLM tools for best model selection
12224
- const availableModels = await this.llmTools.listModels();
12225
- this._cachedModelRequirements = await createAgentModelRequirements(this.agentSource, undefined, // Let the function pick the best model
12255
+ const availableModels = await this.options.llmTools.listModels();
12256
+ this._cachedModelRequirements = await createAgentModelRequirements(this.options.agentSource, undefined, // Let the function pick the best model
12226
12257
  availableModels);
12227
12258
  }
12228
12259
  return this._cachedModelRequirements;
@@ -12249,13 +12280,13 @@ class AgentLlmExecutionTools {
12249
12280
  }
12250
12281
  checkConfiguration() {
12251
12282
  // Check underlying tools configuration
12252
- return this.llmTools.checkConfiguration();
12283
+ return this.options.llmTools.checkConfiguration();
12253
12284
  }
12254
12285
  /**
12255
12286
  * Returns a virtual model name representing the agent behavior
12256
12287
  */
12257
12288
  get modelName() {
12258
- const hash = SHA256(hexEncoder.parse(this.agentSource))
12289
+ const hash = SHA256(hexEncoder.parse(this.options.agentSource))
12259
12290
  // <- TODO: [🥬] Encapsulate sha256 to some private utility function
12260
12291
  .toString( /* hex */);
12261
12292
  // <- TODO: [🥬] Make some system for hashes and ids of promptbook
@@ -12278,24 +12309,26 @@ class AgentLlmExecutionTools {
12278
12309
  * Calls the chat model with agent-specific system prompt and requirements
12279
12310
  */
12280
12311
  async callChatModel(prompt) {
12281
- if (!this.llmTools.callChatModel) {
12312
+ if (!this.options.llmTools.callChatModel) {
12282
12313
  throw new Error('Underlying LLM execution tools do not support chat model calls');
12283
12314
  }
12284
12315
  // Ensure we're working with a chat prompt
12285
12316
  if (prompt.modelRequirements.modelVariant !== 'CHAT') {
12286
12317
  throw new Error('AgentLlmExecutionTools only supports chat prompts');
12287
12318
  }
12319
+ const modelRequirements = await this.getAgentModelRequirements();
12288
12320
  const chatPrompt = prompt;
12289
12321
  let underlyingLlmResult;
12290
- if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.llmTools)) {
12322
+ if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.options.llmTools)) {
12291
12323
  // <- TODO: !!! Check also `isCreatingNewAssistantsAllowed` and warn about it
12292
- const assistant = await this.llmTools.createNewAssistant( /* <- TODO: !!!! Generate the `instructions` from passed `agentSource` */);
12324
+ const assistant = await this.options.llmTools.createNewAssistant({
12325
+ name: this.title,
12326
+ instructions: modelRequirements.systemMessage,
12327
+ });
12293
12328
  // <- TODO: !!! Cache the assistant in prepareCache
12294
12329
  underlyingLlmResult = await assistant.callChatModel(chatPrompt);
12295
12330
  }
12296
12331
  else {
12297
- // Get agent model requirements (cached with best model selection)
12298
- const modelRequirements = await this.getAgentModelRequirements();
12299
12332
  // Create modified chat prompt with agent system message
12300
12333
  const modifiedChatPrompt = {
12301
12334
  ...chatPrompt,
@@ -12309,7 +12342,7 @@ class AgentLlmExecutionTools {
12309
12342
  : ''),
12310
12343
  },
12311
12344
  };
12312
- underlyingLlmResult = await this.llmTools.callChatModel(modifiedChatPrompt);
12345
+ underlyingLlmResult = await this.options.llmTools.callChatModel(modifiedChatPrompt);
12313
12346
  }
12314
12347
  let content = underlyingLlmResult.content;
12315
12348
  // Note: Cleanup the AI artifacts from the content
@@ -12335,19 +12368,11 @@ class AgentLlmExecutionTools {
12335
12368
  * @public exported from `@promptbook/core`
12336
12369
  */
12337
12370
  const createAgentLlmExecutionTools = Object.assign((options) => {
12338
- /*
12339
- if (llmTools instanceof OpenAiAssistantExecutionTools) {
12340
- // !!!!! Leverage `OpenAiAssistantExecutionTools` specific features here
12341
- }*/
12342
- return new AgentLlmExecutionTools(options.llmTools, options.agentSource);
12371
+ return new AgentLlmExecutionTools(options);
12343
12372
  }, {
12344
12373
  packageName: '@promptbook/core',
12345
12374
  className: 'AgentLlmExecutionTools',
12346
12375
  });
12347
- /**
12348
- * TODO: [🧠] Consider adding validation for agent source format
12349
- * TODO: [🧠] Consider adding options for caching behavior
12350
- */
12351
12376
 
12352
12377
  /**
12353
12378
  * Metadata for Agent LLM execution tools
@@ -13073,7 +13098,81 @@ function aboutPromptbookInformation(options) {
13073
13098
  * TODO: [🗽] Unite branding and make single place for it
13074
13099
  */
13075
13100
 
13076
- // import { ObjectUrl } from './ObjectUrl';
13101
+ /**
13102
+ * Converts Blob, File or MediaSource to url using URL.createObjectURL
13103
+ *
13104
+ * @public exported from `@promptbook/browser`
13105
+ */
13106
+ class ObjectUrl extends Registration {
13107
+ constructor(teardownLogic, src) {
13108
+ super(teardownLogic);
13109
+ this.src = src;
13110
+ }
13111
+ /**
13112
+ * Creates ObjectUrl from multiple input types
13113
+ * Note: DO NOT forget to call destroy() when you are done with it
13114
+ */
13115
+ static from(source, mimeType) {
13116
+ if (typeof source === 'string') {
13117
+ return ObjectUrl.fromString(source, mimeType);
13118
+ }
13119
+ if ((source instanceof Blob || source instanceof File) && source.type !== mimeType) {
13120
+ throw new Error(`Source type ${source.type} does not match given mimeType ${mimeType}`);
13121
+ }
13122
+ return ObjectUrl.fromBlob(source);
13123
+ }
13124
+ /**
13125
+ * Creates ObjectUrl from string
13126
+ * Note: DO NOT forget to call destroy() when you are done with it
13127
+ */
13128
+ static fromString(source, mimeType) {
13129
+ return ObjectUrl.fromBlob(new Blob([source], { type: mimeType }));
13130
+ }
13131
+ /**
13132
+ * Creates ObjectUrl
13133
+ * DO NOT forget to call destroy() when you are done with it
13134
+ */
13135
+ static fromBlob(source) {
13136
+ const src = URL.createObjectURL(source);
13137
+ return new ObjectUrl(() => {
13138
+ URL.revokeObjectURL(src);
13139
+ }, src);
13140
+ }
13141
+ /**
13142
+ * Creates ObjectUrl:
13143
+ * 1) With functionality for Blobs, Files or MediaSources
13144
+ * 2) Just a wrapper for string urls
13145
+ *
13146
+ * DO NOT forget to call destroy() when you are done with it
13147
+ */
13148
+ static fromBlobOrUrl(source) {
13149
+ if (typeof source === 'string' || source instanceof URL /* <- TODO: Probably check isValidUrl */) {
13150
+ return new ObjectUrl(() => {
13151
+ // Note: Nothing to do here
13152
+ }, source.toString());
13153
+ }
13154
+ else {
13155
+ return ObjectUrl.fromBlob(source);
13156
+ }
13157
+ }
13158
+ /**
13159
+ * Gets object url as string
13160
+ * @alias src
13161
+ */
13162
+ get href() {
13163
+ return this.src;
13164
+ }
13165
+ /**
13166
+ * Gets object url as URL object
13167
+ */
13168
+ get url() {
13169
+ return new URL(this.src);
13170
+ }
13171
+ }
13172
+ /**
13173
+ * Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
13174
+ */
13175
+
13077
13176
  /**
13078
13177
  * Download a File in a browser
13079
13178
  *
@@ -13082,21 +13181,15 @@ function aboutPromptbookInformation(options) {
13082
13181
  * @public exported from `@promptbook/browser`
13083
13182
  */
13084
13183
  async function $induceFileDownload(fileOrBlobOrUrl) {
13085
- /*
13086
- TODO: !!!! Is this fixing Vercel deployment issue ??? !!!!
13087
-
13088
-
13089
13184
  if (!$isRunningInBrowser()) {
13090
13185
  throw new Error('Function `$induceFileDownload` is available ONLY in browser');
13091
13186
  }
13092
-
13093
13187
  const objectUrl = ObjectUrl.fromBlobOrUrl(fileOrBlobOrUrl);
13094
13188
  const link = window.document.createElement('a');
13095
13189
  link.href = objectUrl.href;
13096
- link.download = (fileOrBlobOrUrl as File).name || 'untitled' /* <- TODO: Add proper extension according to url * /;
13190
+ link.download = fileOrBlobOrUrl.name || 'untitled' /* <- TODO: Add proper extension according to url */;
13097
13191
  link.click();
13098
13192
  await objectUrl.destroy();
13099
- */
13100
13193
  }
13101
13194
  /**
13102
13195
  * Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
@@ -13114,10 +13207,10 @@ async function $induceBookDownload(book) {
13114
13207
  throw new Error('Function `$induceBookDownload` is available ONLY in browser');
13115
13208
  }
13116
13209
  const { agentName } = parseAgentSource(book);
13117
- new File([book], `${titleToName(agentName || 'AI Avatar')}.book`, {
13210
+ const bookFile = new File([book], `${titleToName(agentName || 'AI Avatar')}.book`, {
13118
13211
  type: 'application/json',
13119
13212
  });
13120
- return /* not await */ $induceFileDownload();
13213
+ return /* not await */ $induceFileDownload(bookFile);
13121
13214
  }
13122
13215
  /**
13123
13216
  * Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
@@ -13825,7 +13918,7 @@ function BookEditor(props) {
13825
13918
  const handleFullscreenToggle = () => {
13826
13919
  setIsFullscreen(!isFullscreen);
13827
13920
  };
13828
- return (jsx("div", { "data-book-component": "BookEditor", className: classNames(styles$4.BookEditor, isVerbose && styles$4.isVerbose, styles$4.bookEditorWrapper, isBorderRadiusDisabled && styles$4.isBorderRadiusDisabled, isFullscreen && styles$4.fullscreen, className), style: isFullscreen
13921
+ const editorContent = (jsx("div", { "data-book-component": "BookEditor", className: classNames(styles$4.BookEditor, isVerbose && styles$4.isVerbose, styles$4.bookEditorWrapper, isBorderRadiusDisabled && styles$4.isBorderRadiusDisabled, isFullscreen && styles$4.fullscreen, className), style: isFullscreen
13829
13922
  ? style
13830
13923
  : {
13831
13924
  ...(style || {}),
@@ -13837,6 +13930,9 @@ function BookEditor(props) {
13837
13930
  : props.height || `${DEFAULT_BOOK_EDITOR_HEIGHT}px`,
13838
13931
  }),
13839
13932
  }, children: jsx(BookEditorMonaco, { value: agentSource || value, onChange: onChange, onFileUpload: onFileUpload, isVerbose: isVerbose, isBorderRadiusDisabled: isBorderRadiusDisabled, isReadonly: isReadonly, translations: translations, isDownloadButtonShown: isDownloadButtonShown, isAboutButtonShown: isAboutButtonShown, isFullscreenButtonShown: isFullscreenButtonShown, onFullscreenClick: handleFullscreenToggle, isFullscreen: isFullscreen, sync: sync, zoom: zoom }) }));
13933
+ return isFullscreen && typeof document !== 'undefined'
13934
+ ? createPortal(editorContent, document.body)
13935
+ : editorContent;
13840
13936
  }
13841
13937
 
13842
13938
  var css_248z$2 = ".AvatarProfile-module_AvatarProfile__CUARY{align-items:flex-start;background:#f0f4f8;border:1px solid #e0e7ef;border-radius:8px;display:flex;padding:16px}.AvatarProfile-module_Avatar__-iSnq{border-radius:50%;flex-shrink:0;height:64px;margin-right:16px;object-fit:cover;width:64px}.AvatarProfile-module_AgentInfo__W0TR6{display:flex;flex-direction:column}.AvatarProfile-module_AgentName__9v6Qk{color:#2a3b4d;font-size:1.25em;font-weight:600;margin:0}.AvatarProfile-module_AgentTitle__nnAQM{color:#5a6b7d;font-size:1em;font-weight:500;margin:4px 0 0}.AvatarProfile-module_AgentDescription__ExidJ{color:#5a6b7d;font-size:.9em;margin:8px 0 0}.AvatarProfile-module_viewSourceButton__oi0dE{background-color:#fff;border:1px solid #e0e7ef;border-radius:6px;color:#2a3b4d;cursor:pointer;font-size:.9em;font-weight:500;margin-top:12px;padding:8px 12px;transition:background-color .2s}.AvatarProfile-module_viewSourceButton__oi0dE:hover{background-color:#f0f4f8}\n/*# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJzb3VyY2VzIjpbIkF2YXRhclByb2ZpbGUubW9kdWxlLmNzcyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSwyQ0FFSSxzQkFBdUIsQ0FHdkIsa0JBQW1CLENBQ25CLHdCQUF5QixDQUZ6QixpQkFBa0IsQ0FIbEIsWUFBYSxDQUViLFlBSUosQ0FFQSxvQ0FHSSxpQkFBa0IsQ0FHbEIsYUFBYyxDQUpkLFdBQVksQ0FHWixpQkFBa0IsQ0FEbEIsZ0JBQWlCLENBSGpCLFVBTUosQ0FFQSx1Q0FDSSxZQUFhLENBQ2IscUJBQ0osQ0FFQSx1Q0FJSSxhQUFjLENBRmQsZ0JBQWlCLENBQ2pCLGVBQWdCLENBRmhCLFFBSUosQ0FFQSx3Q0FJSSxhQUFjLENBRmQsYUFBYyxDQUNkLGVBQWdCLENBRmhCLGNBSUosQ0FFQSw4Q0FHSSxhQUFjLENBRGQsY0FBZ0IsQ0FEaEIsY0FHSixDQUVBLDhDQUtJLHFCQUFzQixDQUZ0Qix3QkFBeUIsQ0FDekIsaUJBQWtCLENBRWxCLGFBQWMsQ0FHZCxjQUFlLENBRmYsY0FBZ0IsQ0FDaEIsZUFBZ0IsQ0FQaEIsZUFBZ0IsQ0FDaEIsZ0JBQWlCLENBUWpCLCtCQUNKLENBRUEsb0RBQ0ksd0JBQ0oiLCJmaWxlIjoiQXZhdGFyUHJvZmlsZS5tb2R1bGUuY3NzIiwic291cmNlc0NvbnRlbnQiOlsiLkF2YXRhclByb2ZpbGUge1xuICAgIGRpc3BsYXk6IGZsZXg7XG4gICAgYWxpZ24taXRlbXM6IGZsZXgtc3RhcnQ7XG4gICAgcGFkZGluZzogMTZweDtcbiAgICBib3JkZXItcmFkaXVzOiA4cHg7XG4gICAgYmFja2dyb3VuZDogI2YwZjRmODtcbiAgICBib3JkZXI6IDFweCBzb2xpZCAjZTBlN2VmO1xufVxuXG4uQXZhdGFyIHtcbiAgICB3aWR0aDogNjRweDtcbiAgICBoZWlnaHQ6IDY0cHg7XG4gICAgYm9yZGVyLXJhZGl1czogNTAlO1xuICAgIG9iamVjdC1maXQ6IGNvdmVyO1xuICAgIG1hcmdpbi1yaWdodDogMTZweDtcbiAgICBmbGV4LXNocmluazogMDtcbn1cblxuLkFnZW50SW5mbyB7XG4gICAgZGlzcGxheTogZmxleDtcbiAgICBmbGV4LWRpcmVjdGlvbjogY29sdW1uO1xufVxuXG4uQWdlbnROYW1lIHtcbiAgICBtYXJnaW46IDA7XG4gICAgZm9udC1zaXplOiAxLjI1ZW07XG4gICAgZm9udC13ZWlnaHQ6IDYwMDtcbiAgICBjb2xvcjogIzJhM2I0ZDtcbn1cblxuLkFnZW50VGl0bGUge1xuICAgIG1hcmdpbjogNHB4IDAgMCAwO1xuICAgIGZvbnQtc2l6ZTogMWVtO1xuICAgIGZvbnQtd2VpZ2h0OiA1MDA7XG4gICAgY29sb3I6ICM1YTZiN2Q7XG59XG5cbi5BZ2VudERlc2NyaXB0aW9uIHtcbiAgICBtYXJnaW46IDhweCAwIDAgMDtcbiAgICBmb250LXNpemU6IDAuOWVtO1xuICAgIGNvbG9yOiAjNWE2YjdkO1xufVxuXG4udmlld1NvdXJjZUJ1dHRvbiB7XG4gICAgbWFyZ2luLXRvcDogMTJweDtcbiAgICBwYWRkaW5nOiA4cHggMTJweDtcbiAgICBib3JkZXI6IDFweCBzb2xpZCAjZTBlN2VmO1xuICAgIGJvcmRlci1yYWRpdXM6IDZweDtcbiAgICBiYWNrZ3JvdW5kLWNvbG9yOiAjZmZmO1xuICAgIGNvbG9yOiAjMmEzYjRkO1xuICAgIGZvbnQtc2l6ZTogMC45ZW07XG4gICAgZm9udC13ZWlnaHQ6IDUwMDtcbiAgICBjdXJzb3I6IHBvaW50ZXI7XG4gICAgdHJhbnNpdGlvbjogYmFja2dyb3VuZC1jb2xvciAwLjJzO1xufVxuXG4udmlld1NvdXJjZUJ1dHRvbjpob3ZlciB7XG4gICAgYmFja2dyb3VuZC1jb2xvcjogI2YwZjRmODtcbn1cbiJdfQ== */";