@promptbook/cli 0.80.0-0 → 0.80.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +0 -4
- package/esm/index.es.js +114 -113
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +4 -4
- package/esm/typings/src/_packages/types.index.d.ts +0 -4
- package/esm/typings/src/commands/_common/getParserForCommand.d.ts +1 -1
- package/esm/typings/src/commands/_common/parseCommand.d.ts +1 -1
- package/esm/typings/src/commands/_common/stringifyCommand.d.ts +1 -1
- package/esm/typings/src/conversion/{pipelineStringToJson.d.ts → compilePipeline.d.ts} +3 -3
- package/esm/typings/src/conversion/{pipelineStringToJsonSync.d.ts → precompilePipeline.d.ts} +3 -3
- package/esm/typings/src/high-level-abstractions/_common/HighLevelAbstraction.d.ts +1 -1
- package/esm/typings/src/high-level-abstractions/index.d.ts +1 -1
- package/esm/typings/src/prepare/unpreparePipeline.d.ts +1 -0
- package/package.json +1 -1
- package/umd/index.umd.js +114 -113
- package/umd/index.umd.js.map +1 -1
- /package/esm/typings/src/conversion/{pipelineStringToJson.test.d.ts → compilePipeline.test.d.ts} +0 -0
- /package/esm/typings/src/conversion/{pipelineStringToJsonSync.test.d.ts → precompilePipeline.test.d.ts} +0 -0
package/README.md
CHANGED
|
@@ -23,10 +23,6 @@
|
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
|
|
26
|
-
<blockquote style="color: #ff8811">
|
|
27
|
-
<b>⚠ Warning:</b> This is a pre-release version of the library. It is not yet ready for production use. Please look at <a href="https://www.npmjs.com/package/@promptbook/core?activeTab=versions">latest stable release</a>.
|
|
28
|
-
</blockquote>
|
|
29
|
-
|
|
30
26
|
## 📦 Package `@promptbook/cli`
|
|
31
27
|
|
|
32
28
|
- Promptbooks are [divided into several](#-packages) packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
|
package/esm/index.es.js
CHANGED
|
@@ -37,7 +37,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
37
37
|
*
|
|
38
38
|
* @see https://github.com/webgptorg/promptbook
|
|
39
39
|
*/
|
|
40
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.
|
|
40
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.80.0-1';
|
|
41
41
|
/**
|
|
42
42
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
43
43
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -2652,6 +2652,100 @@ function collectionToJson(collection) {
|
|
|
2652
2652
|
* TODO: [🧠] Maybe clear `sourceFile` or clear when exposing through API or remote server
|
|
2653
2653
|
*/
|
|
2654
2654
|
|
|
2655
|
+
/**
|
|
2656
|
+
* This error type indicates that some tools are missing for pipeline execution or preparation
|
|
2657
|
+
*
|
|
2658
|
+
* @public exported from `@promptbook/core`
|
|
2659
|
+
*/
|
|
2660
|
+
var MissingToolsError = /** @class */ (function (_super) {
|
|
2661
|
+
__extends(MissingToolsError, _super);
|
|
2662
|
+
function MissingToolsError(message) {
|
|
2663
|
+
var _this = _super.call(this, spaceTrim$1(function (block) { return "\n ".concat(block(message), "\n\n Note: You have probbably forgot to provide some tools for pipeline execution or preparation\n\n "); })) || this;
|
|
2664
|
+
_this.name = 'MissingToolsError';
|
|
2665
|
+
Object.setPrototypeOf(_this, MissingToolsError.prototype);
|
|
2666
|
+
return _this;
|
|
2667
|
+
}
|
|
2668
|
+
return MissingToolsError;
|
|
2669
|
+
}(Error));
|
|
2670
|
+
|
|
2671
|
+
/**
|
|
2672
|
+
* Async version of Array.forEach
|
|
2673
|
+
*
|
|
2674
|
+
* @param array - Array to iterate over
|
|
2675
|
+
* @param options - Options for the function
|
|
2676
|
+
* @param callbackfunction - Function to call for each item
|
|
2677
|
+
* @public exported from `@promptbook/utils`
|
|
2678
|
+
* @deprecated [🪂] Use queues instead
|
|
2679
|
+
*/
|
|
2680
|
+
function forEachAsync(array, options, callbackfunction) {
|
|
2681
|
+
return __awaiter(this, void 0, void 0, function () {
|
|
2682
|
+
var _a, maxParallelCount, index, runningTasks, tasks, _loop_1, _b, _c, item, e_1_1;
|
|
2683
|
+
var e_1, _d;
|
|
2684
|
+
return __generator(this, function (_e) {
|
|
2685
|
+
switch (_e.label) {
|
|
2686
|
+
case 0:
|
|
2687
|
+
_a = options.maxParallelCount, maxParallelCount = _a === void 0 ? Infinity : _a;
|
|
2688
|
+
index = 0;
|
|
2689
|
+
runningTasks = [];
|
|
2690
|
+
tasks = [];
|
|
2691
|
+
_loop_1 = function (item) {
|
|
2692
|
+
var currentIndex, task;
|
|
2693
|
+
return __generator(this, function (_f) {
|
|
2694
|
+
switch (_f.label) {
|
|
2695
|
+
case 0:
|
|
2696
|
+
currentIndex = index++;
|
|
2697
|
+
task = callbackfunction(item, currentIndex, array);
|
|
2698
|
+
tasks.push(task);
|
|
2699
|
+
runningTasks.push(task);
|
|
2700
|
+
/* not await */ Promise.resolve(task).then(function () {
|
|
2701
|
+
runningTasks = runningTasks.filter(function (t) { return t !== task; });
|
|
2702
|
+
});
|
|
2703
|
+
if (!(maxParallelCount < runningTasks.length)) return [3 /*break*/, 2];
|
|
2704
|
+
return [4 /*yield*/, Promise.race(runningTasks)];
|
|
2705
|
+
case 1:
|
|
2706
|
+
_f.sent();
|
|
2707
|
+
_f.label = 2;
|
|
2708
|
+
case 2: return [2 /*return*/];
|
|
2709
|
+
}
|
|
2710
|
+
});
|
|
2711
|
+
};
|
|
2712
|
+
_e.label = 1;
|
|
2713
|
+
case 1:
|
|
2714
|
+
_e.trys.push([1, 6, 7, 8]);
|
|
2715
|
+
_b = __values(array), _c = _b.next();
|
|
2716
|
+
_e.label = 2;
|
|
2717
|
+
case 2:
|
|
2718
|
+
if (!!_c.done) return [3 /*break*/, 5];
|
|
2719
|
+
item = _c.value;
|
|
2720
|
+
return [5 /*yield**/, _loop_1(item)];
|
|
2721
|
+
case 3:
|
|
2722
|
+
_e.sent();
|
|
2723
|
+
_e.label = 4;
|
|
2724
|
+
case 4:
|
|
2725
|
+
_c = _b.next();
|
|
2726
|
+
return [3 /*break*/, 2];
|
|
2727
|
+
case 5: return [3 /*break*/, 8];
|
|
2728
|
+
case 6:
|
|
2729
|
+
e_1_1 = _e.sent();
|
|
2730
|
+
e_1 = { error: e_1_1 };
|
|
2731
|
+
return [3 /*break*/, 8];
|
|
2732
|
+
case 7:
|
|
2733
|
+
try {
|
|
2734
|
+
if (_c && !_c.done && (_d = _b.return)) _d.call(_b);
|
|
2735
|
+
}
|
|
2736
|
+
finally { if (e_1) throw e_1.error; }
|
|
2737
|
+
return [7 /*endfinally*/];
|
|
2738
|
+
case 8: return [4 /*yield*/, Promise.all(tasks)];
|
|
2739
|
+
case 9:
|
|
2740
|
+
_e.sent();
|
|
2741
|
+
return [2 /*return*/];
|
|
2742
|
+
}
|
|
2743
|
+
});
|
|
2744
|
+
});
|
|
2745
|
+
}
|
|
2746
|
+
|
|
2747
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-persona.book.md"}];
|
|
2748
|
+
|
|
2655
2749
|
/**
|
|
2656
2750
|
* Prettify the html code
|
|
2657
2751
|
*
|
|
@@ -2902,100 +2996,6 @@ function taskParameterJsonToString(taskParameterJson) {
|
|
|
2902
2996
|
* TODO: [🧠] Should be in generated .book.md file GENERATOR_WARNING
|
|
2903
2997
|
*/
|
|
2904
2998
|
|
|
2905
|
-
/**
|
|
2906
|
-
* This error type indicates that some tools are missing for pipeline execution or preparation
|
|
2907
|
-
*
|
|
2908
|
-
* @public exported from `@promptbook/core`
|
|
2909
|
-
*/
|
|
2910
|
-
var MissingToolsError = /** @class */ (function (_super) {
|
|
2911
|
-
__extends(MissingToolsError, _super);
|
|
2912
|
-
function MissingToolsError(message) {
|
|
2913
|
-
var _this = _super.call(this, spaceTrim$1(function (block) { return "\n ".concat(block(message), "\n\n Note: You have probbably forgot to provide some tools for pipeline execution or preparation\n\n "); })) || this;
|
|
2914
|
-
_this.name = 'MissingToolsError';
|
|
2915
|
-
Object.setPrototypeOf(_this, MissingToolsError.prototype);
|
|
2916
|
-
return _this;
|
|
2917
|
-
}
|
|
2918
|
-
return MissingToolsError;
|
|
2919
|
-
}(Error));
|
|
2920
|
-
|
|
2921
|
-
/**
|
|
2922
|
-
* Async version of Array.forEach
|
|
2923
|
-
*
|
|
2924
|
-
* @param array - Array to iterate over
|
|
2925
|
-
* @param options - Options for the function
|
|
2926
|
-
* @param callbackfunction - Function to call for each item
|
|
2927
|
-
* @public exported from `@promptbook/utils`
|
|
2928
|
-
* @deprecated [🪂] Use queues instead
|
|
2929
|
-
*/
|
|
2930
|
-
function forEachAsync(array, options, callbackfunction) {
|
|
2931
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2932
|
-
var _a, maxParallelCount, index, runningTasks, tasks, _loop_1, _b, _c, item, e_1_1;
|
|
2933
|
-
var e_1, _d;
|
|
2934
|
-
return __generator(this, function (_e) {
|
|
2935
|
-
switch (_e.label) {
|
|
2936
|
-
case 0:
|
|
2937
|
-
_a = options.maxParallelCount, maxParallelCount = _a === void 0 ? Infinity : _a;
|
|
2938
|
-
index = 0;
|
|
2939
|
-
runningTasks = [];
|
|
2940
|
-
tasks = [];
|
|
2941
|
-
_loop_1 = function (item) {
|
|
2942
|
-
var currentIndex, task;
|
|
2943
|
-
return __generator(this, function (_f) {
|
|
2944
|
-
switch (_f.label) {
|
|
2945
|
-
case 0:
|
|
2946
|
-
currentIndex = index++;
|
|
2947
|
-
task = callbackfunction(item, currentIndex, array);
|
|
2948
|
-
tasks.push(task);
|
|
2949
|
-
runningTasks.push(task);
|
|
2950
|
-
/* not await */ Promise.resolve(task).then(function () {
|
|
2951
|
-
runningTasks = runningTasks.filter(function (t) { return t !== task; });
|
|
2952
|
-
});
|
|
2953
|
-
if (!(maxParallelCount < runningTasks.length)) return [3 /*break*/, 2];
|
|
2954
|
-
return [4 /*yield*/, Promise.race(runningTasks)];
|
|
2955
|
-
case 1:
|
|
2956
|
-
_f.sent();
|
|
2957
|
-
_f.label = 2;
|
|
2958
|
-
case 2: return [2 /*return*/];
|
|
2959
|
-
}
|
|
2960
|
-
});
|
|
2961
|
-
};
|
|
2962
|
-
_e.label = 1;
|
|
2963
|
-
case 1:
|
|
2964
|
-
_e.trys.push([1, 6, 7, 8]);
|
|
2965
|
-
_b = __values(array), _c = _b.next();
|
|
2966
|
-
_e.label = 2;
|
|
2967
|
-
case 2:
|
|
2968
|
-
if (!!_c.done) return [3 /*break*/, 5];
|
|
2969
|
-
item = _c.value;
|
|
2970
|
-
return [5 /*yield**/, _loop_1(item)];
|
|
2971
|
-
case 3:
|
|
2972
|
-
_e.sent();
|
|
2973
|
-
_e.label = 4;
|
|
2974
|
-
case 4:
|
|
2975
|
-
_c = _b.next();
|
|
2976
|
-
return [3 /*break*/, 2];
|
|
2977
|
-
case 5: return [3 /*break*/, 8];
|
|
2978
|
-
case 6:
|
|
2979
|
-
e_1_1 = _e.sent();
|
|
2980
|
-
e_1 = { error: e_1_1 };
|
|
2981
|
-
return [3 /*break*/, 8];
|
|
2982
|
-
case 7:
|
|
2983
|
-
try {
|
|
2984
|
-
if (_c && !_c.done && (_d = _b.return)) _d.call(_b);
|
|
2985
|
-
}
|
|
2986
|
-
finally { if (e_1) throw e_1.error; }
|
|
2987
|
-
return [7 /*endfinally*/];
|
|
2988
|
-
case 8: return [4 /*yield*/, Promise.all(tasks)];
|
|
2989
|
-
case 9:
|
|
2990
|
-
_e.sent();
|
|
2991
|
-
return [2 /*return*/];
|
|
2992
|
-
}
|
|
2993
|
-
});
|
|
2994
|
-
});
|
|
2995
|
-
}
|
|
2996
|
-
|
|
2997
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sourceFile:"./books/prepare-persona.book.md"}];
|
|
2998
|
-
|
|
2999
2999
|
/**
|
|
3000
3000
|
* This error indicates that the promptbook in a markdown format cannot be parsed into a valid promptbook object
|
|
3001
3001
|
*
|
|
@@ -3503,6 +3503,7 @@ function extractParameterNames(template) {
|
|
|
3503
3503
|
/**
|
|
3504
3504
|
* Unprepare just strips the preparation data of the pipeline
|
|
3505
3505
|
*
|
|
3506
|
+
* @deprecated In future version this function will be removed or deprecated
|
|
3506
3507
|
* @public exported from `@promptbook/core`
|
|
3507
3508
|
*/
|
|
3508
3509
|
function unpreparePipeline(pipeline) {
|
|
@@ -8282,7 +8283,7 @@ var parameterCommandParser = {
|
|
|
8282
8283
|
* Note: `$` is used to indicate that this function mutates given `pipelineJson`
|
|
8283
8284
|
*/
|
|
8284
8285
|
$applyToPipelineJson: function (command, $pipelineJson) {
|
|
8285
|
-
// Note: [🍣] Do nothing, its application is implemented separately in `
|
|
8286
|
+
// Note: [🍣] Do nothing, its application is implemented separately in `precompilePipeline`
|
|
8286
8287
|
},
|
|
8287
8288
|
/**
|
|
8288
8289
|
* Apply the PARAMETER command to the `pipelineJson`
|
|
@@ -8290,7 +8291,7 @@ var parameterCommandParser = {
|
|
|
8290
8291
|
* Note: `$` is used to indicate that this function mutates given `taskJson`
|
|
8291
8292
|
*/
|
|
8292
8293
|
$applyToTaskJson: function (command, $taskJson, $pipelineJson) {
|
|
8293
|
-
// Note: [🍣] Do nothing, its application is implemented separately in `
|
|
8294
|
+
// Note: [🍣] Do nothing, its application is implemented separately in `precompilePipeline`
|
|
8294
8295
|
},
|
|
8295
8296
|
/**
|
|
8296
8297
|
* Converts the PARAMETER command back to string
|
|
@@ -8798,7 +8799,7 @@ var COMMANDS = [
|
|
|
8798
8799
|
* @returns the parser for the command
|
|
8799
8800
|
* @throws {UnexpectedError} if the parser is not found
|
|
8800
8801
|
*
|
|
8801
|
-
* @private within the
|
|
8802
|
+
* @private within the compilePipeline
|
|
8802
8803
|
*/
|
|
8803
8804
|
function getParserForCommand(command) {
|
|
8804
8805
|
var commandParser = COMMANDS.find(function (commandParser) { return commandParser.name === command.type; });
|
|
@@ -8834,7 +8835,7 @@ function removeMarkdownFormatting(str) {
|
|
|
8834
8835
|
* @returns parsed command object
|
|
8835
8836
|
* @throws {ParseError} if the command is invalid
|
|
8836
8837
|
*
|
|
8837
|
-
* @private within the
|
|
8838
|
+
* @private within the compilePipeline
|
|
8838
8839
|
*/
|
|
8839
8840
|
function parseCommand(raw, usagePlace) {
|
|
8840
8841
|
if (raw.includes('\n') || raw.includes('\r')) {
|
|
@@ -9249,7 +9250,7 @@ var QuickChatbotHla = {
|
|
|
9249
9250
|
/**
|
|
9250
9251
|
* All high-level abstractions
|
|
9251
9252
|
*
|
|
9252
|
-
* @private internal index of `
|
|
9253
|
+
* @private internal index of `precompilePipeline` (= used for sync) and `preparePipeline` (= used for async)
|
|
9253
9254
|
*/
|
|
9254
9255
|
var HIGH_LEVEL_ABSTRACTIONS = [
|
|
9255
9256
|
ImplicitFormfactorHla,
|
|
@@ -9499,8 +9500,8 @@ function removeContentComments(content) {
|
|
|
9499
9500
|
* Compile pipeline from string (markdown) format to JSON format synchronously
|
|
9500
9501
|
*
|
|
9501
9502
|
* Note: There are 3 similar functions:
|
|
9502
|
-
* - `
|
|
9503
|
-
* - `
|
|
9503
|
+
* - `compilePipeline` **(preferred)** - which propperly compiles the promptbook and use embedding for external knowledge
|
|
9504
|
+
* - `precompilePipeline` - use only if you need to compile promptbook synchronously and it contains NO external knowledge
|
|
9504
9505
|
* - `preparePipeline` - just one step in the compilation process
|
|
9505
9506
|
*
|
|
9506
9507
|
* Note: This function does not validate logic of the pipeline only the parsing
|
|
@@ -9511,7 +9512,7 @@ function removeContentComments(content) {
|
|
|
9511
9512
|
* @throws {ParseError} if the promptbook string is not valid
|
|
9512
9513
|
* @public exported from `@promptbook/core`
|
|
9513
9514
|
*/
|
|
9514
|
-
function
|
|
9515
|
+
function precompilePipeline(pipelineString) {
|
|
9515
9516
|
var e_1, _a, e_2, _b, e_3, _c, e_4, _d, e_5, _e, e_6, _f;
|
|
9516
9517
|
var $pipelineJson = {
|
|
9517
9518
|
title: DEFAULT_TITLE,
|
|
@@ -9931,7 +9932,7 @@ function pipelineStringToJsonSync(pipelineString) {
|
|
|
9931
9932
|
// TODO: [🍙] Maybe do reorder of `$pipelineJson` here
|
|
9932
9933
|
return exportJson({
|
|
9933
9934
|
name: 'pipelineJson',
|
|
9934
|
-
message: "Result of `
|
|
9935
|
+
message: "Result of `precompilePipeline`",
|
|
9935
9936
|
order: ORDER_OF_PIPELINE_JSON,
|
|
9936
9937
|
value: __assign({ formfactorName: 'GENERIC' }, $pipelineJson),
|
|
9937
9938
|
});
|
|
@@ -9952,8 +9953,8 @@ function pipelineStringToJsonSync(pipelineString) {
|
|
|
9952
9953
|
* Compile pipeline from string (markdown) format to JSON format
|
|
9953
9954
|
*
|
|
9954
9955
|
* Note: There are 3 similar functions:
|
|
9955
|
-
* - `
|
|
9956
|
-
* - `
|
|
9956
|
+
* - `compilePipeline` **(preferred)** - which propperly compiles the promptbook and use embedding for external knowledge
|
|
9957
|
+
* - `precompilePipeline` - use only if you need to compile promptbook synchronously and it contains NO external knowledge
|
|
9957
9958
|
* - `preparePipeline` - just one step in the compilation process
|
|
9958
9959
|
*
|
|
9959
9960
|
* Note: This function does not validate logic of the pipeline only the parsing
|
|
@@ -9966,13 +9967,13 @@ function pipelineStringToJsonSync(pipelineString) {
|
|
|
9966
9967
|
* @throws {ParseError} if the promptbook string is not valid
|
|
9967
9968
|
* @public exported from `@promptbook/core`
|
|
9968
9969
|
*/
|
|
9969
|
-
function
|
|
9970
|
+
function compilePipeline(pipelineString, tools, options) {
|
|
9970
9971
|
return __awaiter(this, void 0, void 0, function () {
|
|
9971
9972
|
var pipelineJson;
|
|
9972
9973
|
return __generator(this, function (_a) {
|
|
9973
9974
|
switch (_a.label) {
|
|
9974
9975
|
case 0:
|
|
9975
|
-
pipelineJson =
|
|
9976
|
+
pipelineJson = precompilePipeline(pipelineString);
|
|
9976
9977
|
if (!(tools !== undefined && tools.llm !== undefined)) return [3 /*break*/, 2];
|
|
9977
9978
|
return [4 /*yield*/, preparePipeline(pipelineJson, tools, options || {
|
|
9978
9979
|
rootDirname: null,
|
|
@@ -9981,7 +9982,7 @@ function pipelineStringToJson(pipelineString, tools, options) {
|
|
|
9981
9982
|
pipelineJson = _a.sent();
|
|
9982
9983
|
_a.label = 2;
|
|
9983
9984
|
case 2:
|
|
9984
|
-
// Note: No need to use `$exportJson` because `
|
|
9985
|
+
// Note: No need to use `$exportJson` because `precompilePipeline` and `preparePipeline` already do that
|
|
9985
9986
|
return [2 /*return*/, pipelineJson];
|
|
9986
9987
|
}
|
|
9987
9988
|
});
|
|
@@ -11108,7 +11109,7 @@ function createCollectionFromDirectory(path, tools, options) {
|
|
|
11108
11109
|
return [4 /*yield*/, readFile(fileName, 'utf-8')];
|
|
11109
11110
|
case 2:
|
|
11110
11111
|
pipelineString = (_e.sent());
|
|
11111
|
-
return [4 /*yield*/,
|
|
11112
|
+
return [4 /*yield*/, compilePipeline(pipelineString, tools, {
|
|
11112
11113
|
rootDirname: rootDirname,
|
|
11113
11114
|
})];
|
|
11114
11115
|
case 3:
|
|
@@ -11605,7 +11606,7 @@ function prettifyPipelineString(pipelineString, options) {
|
|
|
11605
11606
|
case 0:
|
|
11606
11607
|
isGraphAdded = options.isGraphAdded, isPrettifyed = options.isPrettifyed;
|
|
11607
11608
|
if (!isGraphAdded) return [3 /*break*/, 2];
|
|
11608
|
-
return [4 /*yield*/,
|
|
11609
|
+
return [4 /*yield*/, compilePipeline(pipelineString)];
|
|
11609
11610
|
case 1:
|
|
11610
11611
|
pipelineJson = _a.sent();
|
|
11611
11612
|
promptbookMermaid_1 = renderPromptbookMermaid(pipelineJson, {
|
|
@@ -12299,7 +12300,7 @@ function initializeRunCommand(program) {
|
|
|
12299
12300
|
_m.label = 12;
|
|
12300
12301
|
case 12:
|
|
12301
12302
|
_m.trys.push([12, 14, , 15]);
|
|
12302
|
-
return [4 /*yield*/,
|
|
12303
|
+
return [4 /*yield*/, compilePipeline(pipelineString, tools)];
|
|
12303
12304
|
case 13:
|
|
12304
12305
|
pipeline = _m.sent();
|
|
12305
12306
|
return [3 /*break*/, 15];
|
|
@@ -12563,7 +12564,7 @@ function initializeTestCommand(program) {
|
|
|
12563
12564
|
return [4 /*yield*/, readFile(filename, 'utf-8')];
|
|
12564
12565
|
case 7:
|
|
12565
12566
|
pipelineMarkdown = (_f.sent());
|
|
12566
|
-
return [4 /*yield*/,
|
|
12567
|
+
return [4 /*yield*/, compilePipeline(pipelineMarkdown, tools)];
|
|
12567
12568
|
case 8:
|
|
12568
12569
|
pipeline = _f.sent();
|
|
12569
12570
|
if (isVerbose) {
|