@promptbook/browser 0.103.0-37 → 0.103.0-40
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +113 -96
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +0 -81
- package/esm/typings/src/_packages/core.index.d.ts +12 -10
- package/esm/typings/src/_packages/node.index.d.ts +4 -2
- package/esm/typings/src/_packages/types.index.d.ts +3 -1
- package/esm/typings/src/book-components/_common/Modal/Modal.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/start-agents-server.d.ts +14 -0
- package/esm/typings/src/cli/cli-commands/{start-server.d.ts → start-pipelines-server.d.ts} +2 -2
- package/esm/typings/src/collection/agent-collection/AgentCollection.d.ts +36 -0
- package/esm/typings/src/collection/agent-collection/constructors/AgentCollectionInDirectory.d.ts +88 -0
- package/esm/typings/src/collection/{PipelineCollection.d.ts → pipeline-collection/PipelineCollection.d.ts} +7 -3
- package/esm/typings/src/collection/{SimplePipelineCollection.d.ts → pipeline-collection/SimplePipelineCollection.d.ts} +5 -5
- package/esm/typings/src/collection/{constructors/createCollectionFromDirectory.d.ts → pipeline-collection/constructors/createPipelineCollectionFromDirectory.d.ts} +8 -10
- package/esm/typings/src/collection/pipeline-collection/constructors/createPipelineCollectionFromJson.d.ts +13 -0
- package/esm/typings/src/collection/{constructors/createCollectionFromPromise.d.ts → pipeline-collection/constructors/createPipelineCollectionFromPromise.d.ts} +6 -5
- package/esm/typings/src/collection/pipeline-collection/constructors/createPipelineCollectionFromPromise.test.d.ts +1 -0
- package/esm/typings/src/collection/{constructors/createCollectionFromUrl.d.ts → pipeline-collection/constructors/createPipelineCollectionFromUrl.d.ts} +3 -3
- package/esm/typings/src/collection/{constructors/createSubcollection.d.ts → pipeline-collection/constructors/createPipelineSubcollection.d.ts} +3 -3
- package/esm/typings/src/collection/pipeline-collection/pipelineCollectionToJson.d.ts +13 -0
- package/esm/typings/src/config.d.ts +8 -1
- package/esm/typings/src/execution/FilesystemTools.d.ts +1 -1
- package/esm/typings/src/execution/LlmExecutionTools.d.ts +6 -0
- package/esm/typings/src/llm-providers/agent/Agent.d.ts +6 -1
- package/esm/typings/src/llm-providers/agent/AgentLlmExecutionTools.d.ts +9 -4
- package/esm/typings/src/llm-providers/agent/createAgentLlmExecutionTools.d.ts +0 -4
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +17 -1
- package/esm/typings/src/other/templates/getTemplatesPipelineCollection.d.ts +1 -1
- package/esm/typings/src/remote-server/startRemoteServer.d.ts +1 -1
- package/esm/typings/src/remote-server/types/RemoteServerOptions.d.ts +22 -8
- package/esm/typings/src/transpilers/formatted-book-in-markdown/register.d.ts +1 -1
- package/esm/typings/src/utils/files/listAllFiles.d.ts +2 -3
- package/esm/typings/src/version.d.ts +1 -1
- package/esm/typings/src/wizard/$getCompiledBook.d.ts +1 -2
- package/package.json +2 -2
- package/umd/index.umd.js +112 -95
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/collection/collectionToJson.d.ts +0 -13
- package/esm/typings/src/collection/constructors/createCollectionFromJson.d.ts +0 -13
- /package/esm/typings/src/collection/{constructors/createCollectionFromDirectory.test.d.ts → agent-collection/constructors/AgentCollectionInDirectory.test.d.ts} +0 -0
- /package/esm/typings/src/collection/{constructors/createCollectionFromJson.test.d.ts → pipeline-collection/constructors/createPipelineCollectionFromDirectory.test.d.ts} +0 -0
- /package/esm/typings/src/collection/{constructors/createCollectionFromPromise.test.d.ts → pipeline-collection/constructors/createPipelineCollectionFromJson.test.d.ts} +0 -0
- /package/esm/typings/src/collection/{collectionToJson.test.d.ts → pipeline-collection/pipelineCollectionToJson.test.d.ts} +0 -0
package/esm/index.es.js
CHANGED
|
@@ -2,7 +2,7 @@ import spaceTrim$1, { spaceTrim } from 'spacetrim';
|
|
|
2
2
|
import { randomBytes } from 'crypto';
|
|
3
3
|
import { basename, join, dirname, isAbsolute } from 'path';
|
|
4
4
|
import { Subject } from 'rxjs';
|
|
5
|
-
import { forTime } from 'waitasecond';
|
|
5
|
+
import { forTime, forEver } from 'waitasecond';
|
|
6
6
|
import hexEncoder from 'crypto-js/enc-hex';
|
|
7
7
|
import sha256 from 'crypto-js/sha256';
|
|
8
8
|
import { SHA256 } from 'crypto-js';
|
|
@@ -28,7 +28,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
28
28
|
* @generated
|
|
29
29
|
* @see https://github.com/webgptorg/promptbook
|
|
30
30
|
*/
|
|
31
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-
|
|
31
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.103.0-40';
|
|
32
32
|
/**
|
|
33
33
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
34
34
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -1253,7 +1253,7 @@ const DEFAULT_MAX_PARALLEL_COUNT = 5; // <- TODO: [🤹♂️]
|
|
|
1253
1253
|
* @public exported from `@promptbook/core`
|
|
1254
1254
|
*/
|
|
1255
1255
|
const DEFAULT_MAX_EXECUTION_ATTEMPTS = 7; // <- TODO: [🤹♂️]
|
|
1256
|
-
// <- TODO: [🕝] Make also `
|
|
1256
|
+
// <- TODO: [🕝] Make also `AGENTS_DIRNAME_ALTERNATIVES`
|
|
1257
1257
|
// TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
|
|
1258
1258
|
/**
|
|
1259
1259
|
* Where to store the temporary downloads
|
|
@@ -3742,7 +3742,7 @@ function getSessionStorage() {
|
|
|
3742
3742
|
* Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
|
|
3743
3743
|
*/
|
|
3744
3744
|
|
|
3745
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"},{title:"📊 Curriculum Audit",pipelineUrl:"https://promptbook.studio/promptbook//examples/lsvp-asistent.book",formfactorName:"GENERIC",parameters:[{name:"result",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"prompt",title:"Prompt",content:"Asistent pro LŠVP\n\nPERSONA Jsi asistent pro RVP Lyceum v rámci Národního pedagogického institutu České Republiky\nMETA IMAGE https://edulk.cz/getFile/id:475818/type:large/02%20zna%C4%8Dka%20npi.jpg\nRULE Pokud jsi nejsi jistý, napiš nevím\nKNOWLEDGE ./241129_Lyceum_final.pdf\nCONTEXT Obecně dokážeš řešit libovolné ŠVP, aktuálně řešíš {Školní vzdělávací program LYCEUM}\nRULE Z {Porovnání RVP a ŠVP - postup} je nejdůležitější fáze 3\nKNOWLEDGE {Školní vzdělávací program LYCEUM} ./ŠVP Lyceum - Finance v digitální době.pdf\nKNOWLEDGE @Slovník\n\n**Interní slovník - RVP/ŠVP**\n\n**RVP**\n\nRámcový vzdělávací program pro obor vzdělání Lyceum je dokument na národní úrovni, který formuluje požadavky na školní vzdělávací programy ve formě především očekávaných výsledků učení, kterých mají žáci absolvováním tohoto programu na dané škole dosáhnout.\n\n**ŠVP**\n\nŠkolní vzdělávací program pro obor vzdělání Lyceum je dokument každé jednotlivé školy, který popisuje v jakých vyučovacích předmětech/ vzdělávacích modulech a v jakých ročnících budou požadované očekávané výsledky učení naplněny. Zároveň formuluje další očekávané výsledky učení, které naplňují disponibilní část vyučovacího času určeného RVP pro tento obor vzdělání.\n\n**Očekávaný výsledek učení (OVU)**\n\nVyjadřuje jednotlivý požadavek na to, co mají žáci umět na konci vzdělávacího programu, tzn. jejich požadované kompetence. Je vyjádřen formulací, která je uvozena činnostním slovesem a dále obsahuje předmět této činnosti. Formulace je konkretizována resp. doplněna zpravidla formou odrážek vymezením dílčích znalostí, dovedností, postojů, jejichž splnění je předpokladem dosažení OVU jako celku.\n\n_Příklad:_\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th><p><strong>Žák/žákyně řídí realizaci jednoduchého projektu</strong></p></th></tr><tr><td><ul><li>naplánuje aktivity projektu</li></ul></td></tr><tr><td><ul><li>navrhne rozpočet projektu vzhledem k navrženým aktivitám</li></ul></td></tr><tr><td><ul><li>stanoví základní ukazatele a sleduje jejich naplňování</li></ul></td></tr><tr><td><ul><li>vede projektový tým</li></ul></td></tr><tr><td><ul><li>uvede, jak by řešil krizové situace v projektu</li></ul></td></tr><tr><td><ul><li>vyhodnotí úspěšnost projektu</li></ul></td></tr></tbody></table></div>\n\n**Vzdělávací oblasti**\n\nOčekávané výsledky učení jsou v **_RVP členěny do 4 vzdělávacích oblastí_**, které tvoří společný všeobecně vzdělávací základ:\n\n- Osobnostní rozvoj, vzdělávání ke zdraví, bezpečí a produktivnímu pracovnímu životu (kariéře)\n- Komunikační a jazykové vzdělávání\n- Aplikované vzdělávání STEM (Science, Technology, Engeneering, Math), tj. přírodní vědy, informatika, technika, matematika\n- Prakticky orientované vzdělávání společenskovědní a humanitní\n\nKaždá vzdělávací oblast se dále člení na okruhy, v jejichž rámci jsou OVU samostatně číslované.\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th rowspan=\"21\"><ul><li>Prakticky orientované vzdělávání společenskovědní a humanitní</li></ul></th><th rowspan=\"21\"><p><strong>Člověk, ekonomie a podnikání</strong></p></th><th rowspan=\"7\"><p><strong>1</strong></p></th><th><p><strong>zpracuje podklady související s podnikáním</strong></p></th></tr><tr><td><p>připraví podnikatelský záměr</p></td></tr><tr><td><p>sestaví zakladatelský rozpočet</p></td></tr><tr><td><p>zkalkuluje cenu zboží nebo služby</p></td></tr><tr><td><p>vysvětlí na příkladu základní povinnosti podnikatele vůči státu a zaměstnancům</p></td></tr><tr><td><p>vede daňovou evidenci</p></td></tr><tr><td><p>vysvětlí na příkladech etiku v podnikání</p></td></tr><tr><td rowspan=\"7\"><p><strong>2</strong></p></td><td><p><strong>řídí realizaci jednoduchého projektu</strong></p></td></tr><tr><td><p>naplánuje aktivity projektu</p></td></tr><tr><td><p>navrhne rozpočet projektu vzhledem k navrženým aktivitám</p></td></tr><tr><td><p>stanoví základní ukazatele a sleduje jejich naplňování</p></td></tr><tr><td><p>vede projektový tým</p></td></tr><tr><td><p>uvede, jak by řešil krizové situace v projektu</p></td></tr><tr><td><p>vyhodnotí úspěšnost projektu</p></td></tr><tr><td rowspan=\"7\"><p><strong>3</strong></p></td><td><p><strong>aplikuje ekonomické teorie v osobním a profesním životě</strong></p></td></tr><tr><td><p>vysvětlí základní ekonomické otázky</p></td></tr><tr><td><p>vysvětí stanovení rovnovážné ceny na dokonalém i nedokonalém trhu</p></td></tr><tr><td><p>charakterizuje výrobní faktory a vysvětlí hranici produkčních možností a náklady obětované příležitosti</p></td></tr><tr><td><p>uvede nejdůležitější makroekonomické pojmy a vliv jejich výše na kvalitu života a podnikání v daném státě</p></td></tr><tr><td><p>vysvětlí podstatu inflace a její důsledky na finanční situaci obyvatel a na příkladu ukáže jak se bránit jejím nepříznivým důsledkům</p></td></tr><tr><td><p>uvede hlavní výhody a nevýhody mezinárodního obchodu a vliv ochranářských opatření na ekonomickou situaci dané země</p></td></tr><tr><td></td><td></td><td><p><strong>4</strong></p></td><td><p>Atd.</p></td></tr></tbody></table></div>\n\n**Vyučovací předmět / vzdělávací modul**\n\nOčekávané výsledky učení jsou v **ŠVP** členěny do vyučovacích předmětů nebo vzdělávacích modulů, které jsou dále zařazeny do jednoho nebo více ročníků 4letého studia. Vyučovací předmět / vzdělávací modul tvoří vyučovací jednotku, kde jsou očekávané výsledky učení dále rozpracovány pro potřeby výuky podle následující šablony\n\n| **A. VSTUPNÍ ČÁST** |\n| --- |\n| **1\\. Název** |\n| **2\\. Kód** (kódy by měly být navázány na obory vzdělání a výsledky učení) |\n| **2a) Kategorie vzdělání** - v případě, že nebude součástí kódu |\n| **3\\. Typ vyučovací jednotky** (modul, předmět, stáž apod.) |\n| **4\\. Délka** (počet hodin - dělitelný čtyřmi (optimální modul 16, 32 hodin = týden výuky) |\n| **5\\. Platnost** (datum, od kterého platí) |\n| **6\\. Vstupní předpoklady** (vymezení požadované úrovně vstupních vědomostí a dovedností, které jsou předpokladem úspěšného studia) |\n| |\n| **B. JÁDRO VYUČOVACÍ JEDNOTKY** |\n| **1\\. Charakteristika** (stručná anotace popisující obecné cíle a pojetí) |\n| **2\\. Očekávané výsledky učení a jejich indikátory (převzaté z RVP nebo dále konkretizované)** |\n| **3\\. Podpora rozvoje klíčových kompetencí a základních gramotností** (které klíčové kompetence jsou v rozvíjeny) |\n| **4\\. Obsah vzdělávání** (rozpis učiva) |\n| **5\\. Vzdělávací strategie** (strategie výuky, resp. učební činnosti žáků, které jsou doporučené pro dosažení výsledků) |\n| |\n| **C. VÝSTUPNÍ ČÁST** |\n| **1\\. Způsob ověřování dosažených výsledků** (ve vazbě na jednotlivé výsledky učení) |\n| **2\\. Kritéria hodnocení** (co znamená splnění výsledků učení, kdy je splněna celá vyučovací jednotka, kritéria pro známky, příp. procentuální, slovní hodnocení) |\n| **3\\. Doporučená studijní literatura, odkazy na ilustrační zdroje** |\n| **4\\. Poznámky** |\n\n**Soulad OVU RVP a ŠVP**\n\nTento soulad je předmětem zjišťování. Soulad nastává, jestliže jsou očekávané výsledky učení z jednotlivých vzdělávacích oblastí RVP **obsaženy** ve vyučovacích předmětech/ vzdělávacích modulech ŠVP jednotlivých škol, tzn. že v ŠVP se objevuje jejich formulace buď v doslovném nebo podobném znění v jednom nebo více vyučovacích předmětech/ vzdělávacích modulech.\n\n_Příklad souladu:_\n\nRVP ŠVP - komunikace a marketing (SŠ obchodní Č.\n\n| **2** | **řídí realizaci jednoduchého projektu** |\n| --- | --- |\n| naplánuje aktivity projektu |\n| navrhne rozpočet projektu vzhledem k navrženým aktivitám |\n| stanoví základní ukazatele a sleduje jejich naplňování |\n| vede projektový tým |\n| uvede, jak by řešil krizové situace v projektu |\n| vyhodnotí úspěšnost projektu |\n\nKNOWLEDGE {Porovnání RVP a ŠVP - postup}\n\n\n# AUDITNÍ PROTOKOL ŠVP-RVP\n\n# (POPIS KONTROLNÍHO ALGORITMU)\n\nMetodika je určena pro **Kvantifikaci Shody** školního vzdělávacího programu (ŠVP) s Rámcovým vzdělávacím programem (RVP).\n\n## FÁZE 1: VALIDACE DOKUMENTACE\n\n**Cíl:** Ověřit platnost, aktuálnost a strukturu zdrojových dokumentů.\n\n- **RVP Verifikace:** Otevřít aktuální verzi RVP (např. RVP ZV/G/SOŠ).\n- **Typová shoda:** Ověřit, že RVP se vztahuje k danému typu školy.\n- **ŠVP Dimenze:** Identifikovat a izolovat relevantní části ŠVP: Profil absolventa, Klíčové kompetence (KK), Vzdělávací oblasti (VO), případně Učební plán (UP).\n- **Verzování:** Potvrdit, že obě verze (RVP a ŠVP) jsou nejnovější a platné (včetně dodatků RVP).\n\n## FÁZE 2: DATABÁZOVÉ MAPOVÁNÍ VÝSTUPŮ (MASTER MATICE)\n\n**Cíl:** Vytvořit systémovou databázi pro křížové porovnání všech povinných komponent RVP se ŠVP.\n\n- **Dekompozice RVP:** Rozložit RVP na základní povinné komponenty: Klíčové kompetence, Vzdělávací oblasti a obory, Očekávané výstupy (OVU), Průřezová témata (PT).\n- **Přiřazovací mapa:** Vytvořit hlavní kontrolní matici (Master Matice) pro záznam vazeb.\n\n| Oblast RVP | Výstup RVP (OVU) | Odpovídající Část ŠVP (Předmět/Ročník) | Konkrétní Tématický Celek v ŠVP | Stav Shody (Protokol) |\n| --- | --- | --- | --- | --- |\n| ... | ... | ... | ... | ... |\n| --- | --- | --- | --- | --- |\n\n## FÁZE 3: ALGORITMICKÁ KONTROLA POKRYTÍ A HLOUBKY\n\n**Cíl:** Posoudit, zda každý povinný výstup RVP je adekvátně reflektován v obsahu ŠVP, a přidělit bodovou hodnotu pro kvantifikaci.\n\n- **Audit OVU:** Projít každý jednotlivý Očekávaný výstup (OVU) z RVP.\n- **Kódování stavu a bodování:** U každého OVU v matici označit stav pokrytí dle následujícího schématu:\n\n| Kód (Protokol) | Popis (Kvalitativní zjištění) | Bodová hodnota (Kvantifikace) |\n| --- | --- | --- |\n| ✅ | Plná shoda (Výstup pokryt v plném rozsahu, odpovídající úrovni RVP) | 1,0 |\n| --- | --- | --- |\n| ⚠️ | Částečná shoda (Formální pokrytí, omezený rozsah, chybná návaznost) | 0,5 |\n| --- | --- | --- |\n| ❌ | Absence (Výstup zcela chybí v obsahu ŠVP) | 0,0 |\n| --- | --- | --- |\n\n- **Defektologie ŠVP:** Identifikovat a zaznamenat deficity ŠVP: Chybějící výstupy (❌), Sémantické překryvy, Přetížení obsahu.\n- **Kvalitativní posun:** Ověřit, zda je formulace výstupů v ŠVP **aktivní, měřitelná a v souladu** s úrovní RVP.\n\n## FÁZE 4: STRUKTURÁLNÍ VERIFIKACE NÁVAZNOSTI (VERTIKÁLA/HORIZONTÁLA)\n\n**Cíl:** Zkontrolovat logickou posloupnost a provázanost učiva v rámci ŠVP.\n\n- **Vertikální Kontrola:** Ověřit posloupnost OVU a učiva uvnitř jednoho předmětu/oblasti (postup od jednodušších ke složitějším konceptům napříč ročníky).\n- **Horizontální Kontrola:** Zkontrolovat logické provázání napříč vzdělávacími oblastmi a předměty (např. fyzika ↔ matematika).\n- **PT Integrace:** Audit reálné integrace Průřezových témat (PT) do konkrétních částí obsahu, metod a projektů.\n\n## FÁZE 5: ANALÝZA ŠKOLNÍ PROFILACE A ROZŠÍŘENÍ RVP\n\n**Cíl:** Validovat, že profilace školy je **v souladu** s RVP a nejedná se o **rozpor**.\n\n- **Nekonfliktnost:** Porovnat definovaný Profil absolventa školy s Klíčovými kompetencemi RVP. Profil ŠVP musí RVP rozvíjet, nikoli mu odporovat.\n- **Modularita:** Zkontrolovat, zda volitelné předměty a rozšiřující moduly logicky navazují na vzdělávací oblasti RVP.\n- **Implementace specializace:** Popisně uvést, jak je školní profilace (např. STEM zaměření, projektová výuka) integrována do OVU a kompetencí definovaných RVP.\n\n## FÁZE 6: GENERÁTOR ZÁVĚREČNÉ ZPRÁVY A KVANTIFIKACE\n\n**Cíl:** Syntetizovat výsledky, kvantifikovat soulad a generovat závazné návrhy na korekce.\n\n### 6.1 Kvantifikace Souladu\n\nVypočítat Index shody (IS) na základě bodového hodnocení (Fáze 3):\n\n### 6.2 Interpretace Indexu Shody (IS)\n\nKlasifikace souladu pro standardizované vyhodnocení:\n\n| Interval IS | Klasifikace souladu | Popis |\n| --- | --- | --- |\n| 95-100 % | Výborný soulad | ŠVP plně odpovídá RVP, pouze stylistické nebo formální rozdíly. |\n| --- | --- | --- |\n| 85-94 % | Dobrá shoda | ŠVP pokrývá všechny klíčové výstupy, menší korekce nutné. |\n| --- | --- | --- |\n| 70-84 % | Částečná shoda | Významné nedostatky v některých oblastech, nutná revize obsahu. |\n| --- | --- | --- |\n| < 70 % | Kritická neshoda | ŠVP neplní rámcové požadavky, ohrožuje legislativní soulad. |\n| --- | --- | --- |\n\n### 6.3 Doplňkové Indexy\n\nVypočítat následující doplňkové indexy pro detailní kvalitativní analýzu:\n\n- **Index kompetenčního souladu (IKS):** Poměr pokrytí klíčových kompetencí RVP v ŠVP.\n- **Index průřezové integrace (IPI):** Míra reálné integrace průřezových témat do výuky.\n- **Index hloubky pokrytí (IHP):** Procento výstupů, které jsou v ŠVP rozvedeny na konkrétní výukové cíle (měřitelné, aktivní formulace).\n- **Index profilové rozšiřitelnosti (IPR):** Kolik rozšiřujících nebo profilových výstupů přesahuje rámec RVP, aniž by narušily jeho strukturu.\n\n### 6.4 Vizuální výstupy\n\nZajistit generování následujících vizualizací pro Závěrečnou zprávu:\n\n- Graf pokrytí po vzdělávacích oblastech (Sloupcový graf IS pro VO).\n- Pavoukový diagram Klíčových kompetencí (RVP vs. ŠVP).\n- Mapa defektů (Vizualizace ❌ a ⚠️ výstupů).\n\n### 6.5 Struktura Závěrečné Zprávy\n\nZpráva musí být strukturována dle standardizovaného formátu:\n\n| Oddíl | Obsah |\n| --- | --- |\n| A. Identifikace | Název školy, IZO, typ školy, datum revize, zpracovatel, verze ŠVP a RVP. |\n| --- | --- |\n| B. Shrnutí výsledků | Celkový Index Shody (IS), hlavní závěry a doporučení. |\n| --- | --- |\n| C. Kvantitativní analýza | Přehled IS v % dle kategorií OVU / VO / kompetencí. |\n| --- | --- |\n| D. Kvalitativní analýza | Slovní zhodnocení kvality souladu (formulace, obtížnost, integrace PT). |\n| --- | --- |\n| E. Rizikové oblasti | Přehled nalezených defektů (chybějící OVU, přetížení, formální shoda). |\n| --- | --- |\n| F. Návrhy opatření (Korekční plán) | Přesné návrhy změn - **Co, Kde, Kdo** má upravit, včetně termínu. |\n| --- | --- |\n| G. Přílohy | Master Matice (Fáze 2-3), revizní tabulka, výstupní grafy a metriky. |\n| --- | --- |\n\n\n\n\n.",resultingParameterName:"result",dependentParameterNames:[]}],personas:[],preparations:[{id:1,promptbookVersion:"0.103.0-36",usage:{price:{value:0},input:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}},output:{tokensCount:{value:0},charactersCount:{value:0},wordsCount:{value:0},sentencesCount:{value:0},linesCount:{value:0},paragraphsCount:{value:0},pagesCount:{value:0}}}}],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"Asistent pro LŠVP\n\nPERSONA Jsi asistent pro RVP Lyceum v rámci Národního pedagogického institutu České Republiky\nMETA IMAGE https://edulk.cz/getFile/id:475818/type:large/02%20zna%C4%8Dka%20npi.jpg\nRULE Pokud jsi nejsi jistý, napiš nevím\nKNOWLEDGE ./241129_Lyceum_final.pdf\nCONTEXT Obecně dokážeš řešit libovolné ŠVP, aktuálně řešíš {Školní vzdělávací program LYCEUM}\nRULE Z {Porovnání RVP a ŠVP - postup} je nejdůležitější fáze 3\nKNOWLEDGE {Školní vzdělávací program LYCEUM} ./ŠVP Lyceum - Finance v digitální době.pdf\nKNOWLEDGE @Slovník\n\n**Interní slovník - RVP/ŠVP**\n\n**RVP**\n\nRámcový vzdělávací program pro obor vzdělání Lyceum je dokument na národní úrovni, který formuluje požadavky na školní vzdělávací programy ve formě především očekávaných výsledků učení, kterých mají žáci absolvováním tohoto programu na dané škole dosáhnout.\n\n**ŠVP**\n\nŠkolní vzdělávací program pro obor vzdělání Lyceum je dokument každé jednotlivé školy, který popisuje v jakých vyučovacích předmětech/ vzdělávacích modulech a v jakých ročnících budou požadované očekávané výsledky učení naplněny. Zároveň formuluje další očekávané výsledky učení, které naplňují disponibilní část vyučovacího času určeného RVP pro tento obor vzdělání.\n\n**Očekávaný výsledek učení (OVU)**\n\nVyjadřuje jednotlivý požadavek na to, co mají žáci umět na konci vzdělávacího programu, tzn. jejich požadované kompetence. Je vyjádřen formulací, která je uvozena činnostním slovesem a dále obsahuje předmět této činnosti. Formulace je konkretizována resp. doplněna zpravidla formou odrážek vymezením dílčích znalostí, dovedností, postojů, jejichž splnění je předpokladem dosažení OVU jako celku.\n\n_Příklad:_\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th><p><strong>Žák/žákyně řídí realizaci jednoduchého projektu</strong></p></th></tr><tr><td><ul><li>naplánuje aktivity projektu</li></ul></td></tr><tr><td><ul><li>navrhne rozpočet projektu vzhledem k navrženým aktivitám</li></ul></td></tr><tr><td><ul><li>stanoví základní ukazatele a sleduje jejich naplňování</li></ul></td></tr><tr><td><ul><li>vede projektový tým</li></ul></td></tr><tr><td><ul><li>uvede, jak by řešil krizové situace v projektu</li></ul></td></tr><tr><td><ul><li>vyhodnotí úspěšnost projektu</li></ul></td></tr></tbody></table></div>\n\n**Vzdělávací oblasti**\n\nOčekávané výsledky učení jsou v **_RVP členěny do 4 vzdělávacích oblastí_**, které tvoří společný všeobecně vzdělávací základ:\n\n- Osobnostní rozvoj, vzdělávání ke zdraví, bezpečí a produktivnímu pracovnímu životu (kariéře)\n- Komunikační a jazykové vzdělávání\n- Aplikované vzdělávání STEM (Science, Technology, Engeneering, Math), tj. přírodní vědy, informatika, technika, matematika\n- Prakticky orientované vzdělávání společenskovědní a humanitní\n\nKaždá vzdělávací oblast se dále člení na okruhy, v jejichž rámci jsou OVU samostatně číslované.\n\n<div class=\"joplin-table-wrapper\"><table><tbody><tr><th rowspan=\"21\"><ul><li>Prakticky orientované vzdělávání společenskovědní a humanitní</li></ul></th><th rowspan=\"21\"><p><strong>Člověk, ekonomie a podnikání</strong></p></th><th rowspan=\"7\"><p><strong>1</strong></p></th><th><p><strong>zpracuje podklady související s podnikáním</strong></p></th></tr><tr><td><p>připraví podnikatelský záměr</p></td></tr><tr><td><p>sestaví zakladatelský rozpočet</p></td></tr><tr><td><p>zkalkuluje cenu zboží nebo služby</p></td></tr><tr><td><p>vysvětlí na příkladu základní povinnosti podnikatele vůči státu a zaměstnancům</p></td></tr><tr><td><p>vede daňovou evidenci</p></td></tr><tr><td><p>vysvětlí na příkladech etiku v podnikání</p></td></tr><tr><td rowspan=\"7\"><p><strong>2</strong></p></td><td><p><strong>řídí realizaci jednoduchého projektu</strong></p></td></tr><tr><td><p>naplánuje aktivity projektu</p></td></tr><tr><td><p>navrhne rozpočet projektu vzhledem k navrženým aktivitám</p></td></tr><tr><td><p>stanoví základní ukazatele a sleduje jejich naplňování</p></td></tr><tr><td><p>vede projektový tým</p></td></tr><tr><td><p>uvede, jak by řešil krizové situace v projektu</p></td></tr><tr><td><p>vyhodnotí úspěšnost projektu</p></td></tr><tr><td rowspan=\"7\"><p><strong>3</strong></p></td><td><p><strong>aplikuje ekonomické teorie v osobním a profesním životě</strong></p></td></tr><tr><td><p>vysvětlí základní ekonomické otázky</p></td></tr><tr><td><p>vysvětí stanovení rovnovážné ceny na dokonalém i nedokonalém trhu</p></td></tr><tr><td><p>charakterizuje výrobní faktory a vysvětlí hranici produkčních možností a náklady obětované příležitosti</p></td></tr><tr><td><p>uvede nejdůležitější makroekonomické pojmy a vliv jejich výše na kvalitu života a podnikání v daném státě</p></td></tr><tr><td><p>vysvětlí podstatu inflace a její důsledky na finanční situaci obyvatel a na příkladu ukáže jak se bránit jejím nepříznivým důsledkům</p></td></tr><tr><td><p>uvede hlavní výhody a nevýhody mezinárodního obchodu a vliv ochranářských opatření na ekonomickou situaci dané země</p></td></tr><tr><td></td><td></td><td><p><strong>4</strong></p></td><td><p>Atd.</p></td></tr></tbody></table></div>\n\n**Vyučovací předmět / vzdělávací modul**\n\nOčekávané výsledky učení jsou v **ŠVP** členěny do vyučovacích předmětů nebo vzdělávacích modulů, které jsou dále zařazeny do jednoho nebo více ročníků 4letého studia. Vyučovací předmět / vzdělávací modul tvoří vyučovací jednotku, kde jsou očekávané výsledky učení dále rozpracovány pro potřeby výuky podle následující šablony\n\n| **A. VSTUPNÍ ČÁST** |\n| --- |\n| **1\\. Název** |\n| **2\\. Kód** (kódy by měly být navázány na obory vzdělání a výsledky učení) |\n| **2a) Kategorie vzdělání** - v případě, že nebude součástí kódu |\n| **3\\. Typ vyučovací jednotky** (modul, předmět, stáž apod.) |\n| **4\\. Délka** (počet hodin - dělitelný čtyřmi (optimální modul 16, 32 hodin = týden výuky) |\n| **5\\. Platnost** (datum, od kterého platí) |\n| **6\\. Vstupní předpoklady** (vymezení požadované úrovně vstupních vědomostí a dovedností, které jsou předpokladem úspěšného studia) |\n| |\n| **B. JÁDRO VYUČOVACÍ JEDNOTKY** |\n| **1\\. Charakteristika** (stručná anotace popisující obecné cíle a pojetí) |\n| **2\\. Očekávané výsledky učení a jejich indikátory (převzaté z RVP nebo dále konkretizované)** |\n| **3\\. Podpora rozvoje klíčových kompetencí a základních gramotností** (které klíčové kompetence jsou v rozvíjeny) |\n| **4\\. Obsah vzdělávání** (rozpis učiva) |\n| **5\\. Vzdělávací strategie** (strategie výuky, resp. učební činnosti žáků, které jsou doporučené pro dosažení výsledků) |\n| |\n| **C. VÝSTUPNÍ ČÁST** |\n| **1\\. Způsob ověřování dosažených výsledků** (ve vazbě na jednotlivé výsledky učení) |\n| **2\\. Kritéria hodnocení** (co znamená splnění výsledků učení, kdy je splněna celá vyučovací jednotka, kritéria pro známky, příp. procentuální, slovní hodnocení) |\n| **3\\. Doporučená studijní literatura, odkazy na ilustrační zdroje** |\n| **4\\. Poznámky** |\n\n**Soulad OVU RVP a ŠVP**\n\nTento soulad je předmětem zjišťování. Soulad nastává, jestliže jsou očekávané výsledky učení z jednotlivých vzdělávacích oblastí RVP **obsaženy** ve vyučovacích předmětech/ vzdělávacích modulech ŠVP jednotlivých škol, tzn. že v ŠVP se objevuje jejich formulace buď v doslovném nebo podobném znění v jednom nebo více vyučovacích předmětech/ vzdělávacích modulech.\n\n_Příklad souladu:_\n\nRVP ŠVP - komunikace a marketing (SŠ obchodní Č.\n\n| **2** | **řídí realizaci jednoduchého projektu** |\n| --- | --- |\n| naplánuje aktivity projektu |\n| navrhne rozpočet projektu vzhledem k navrženým aktivitám |\n| stanoví základní ukazatele a sleduje jejich naplňování |\n| vede projektový tým |\n| uvede, jak by řešil krizové situace v projektu |\n| vyhodnotí úspěšnost projektu |\n\nKNOWLEDGE {Porovnání RVP a ŠVP - postup}\n\n\n# AUDITNÍ PROTOKOL ŠVP-RVP\n\n# (POPIS KONTROLNÍHO ALGORITMU)\n\nMetodika je určena pro **Kvantifikaci Shody** školního vzdělávacího programu (ŠVP) s Rámcovým vzdělávacím programem (RVP).\n\n## FÁZE 1: VALIDACE DOKUMENTACE\n\n**Cíl:** Ověřit platnost, aktuálnost a strukturu zdrojových dokumentů.\n\n- **RVP Verifikace:** Otevřít aktuální verzi RVP (např. RVP ZV/G/SOŠ).\n- **Typová shoda:** Ověřit, že RVP se vztahuje k danému typu školy.\n- **ŠVP Dimenze:** Identifikovat a izolovat relevantní části ŠVP: Profil absolventa, Klíčové kompetence (KK), Vzdělávací oblasti (VO), případně Učební plán (UP).\n- **Verzování:** Potvrdit, že obě verze (RVP a ŠVP) jsou nejnovější a platné (včetně dodatků RVP).\n\n## FÁZE 2: DATABÁZOVÉ MAPOVÁNÍ VÝSTUPŮ (MASTER MATICE)\n\n**Cíl:** Vytvořit systémovou databázi pro křížové porovnání všech povinných komponent RVP se ŠVP.\n\n- **Dekompozice RVP:** Rozložit RVP na základní povinné komponenty: Klíčové kompetence, Vzdělávací oblasti a obory, Očekávané výstupy (OVU), Průřezová témata (PT).\n- **Přiřazovací mapa:** Vytvořit hlavní kontrolní matici (Master Matice) pro záznam vazeb.\n\n| Oblast RVP | Výstup RVP (OVU) | Odpovídající Část ŠVP (Předmět/Ročník) | Konkrétní Tématický Celek v ŠVP | Stav Shody (Protokol) |\n| --- | --- | --- | --- | --- |\n| ... | ... | ... | ... | ... |\n| --- | --- | --- | --- | --- |\n\n## FÁZE 3: ALGORITMICKÁ KONTROLA POKRYTÍ A HLOUBKY\n\n**Cíl:** Posoudit, zda každý povinný výstup RVP je adekvátně reflektován v obsahu ŠVP, a přidělit bodovou hodnotu pro kvantifikaci.\n\n- **Audit OVU:** Projít každý jednotlivý Očekávaný výstup (OVU) z RVP.\n- **Kódování stavu a bodování:** U každého OVU v matici označit stav pokrytí dle následujícího schématu:\n\n| Kód (Protokol) | Popis (Kvalitativní zjištění) | Bodová hodnota (Kvantifikace) |\n| --- | --- | --- |\n| ✅ | Plná shoda (Výstup pokryt v plném rozsahu, odpovídající úrovni RVP) | 1,0 |\n| --- | --- | --- |\n| ⚠️ | Částečná shoda (Formální pokrytí, omezený rozsah, chybná návaznost) | 0,5 |\n| --- | --- | --- |\n| ❌ | Absence (Výstup zcela chybí v obsahu ŠVP) | 0,0 |\n| --- | --- | --- |\n\n- **Defektologie ŠVP:** Identifikovat a zaznamenat deficity ŠVP: Chybějící výstupy (❌), Sémantické překryvy, Přetížení obsahu.\n- **Kvalitativní posun:** Ověřit, zda je formulace výstupů v ŠVP **aktivní, měřitelná a v souladu** s úrovní RVP.\n\n## FÁZE 4: STRUKTURÁLNÍ VERIFIKACE NÁVAZNOSTI (VERTIKÁLA/HORIZONTÁLA)\n\n**Cíl:** Zkontrolovat logickou posloupnost a provázanost učiva v rámci ŠVP.\n\n- **Vertikální Kontrola:** Ověřit posloupnost OVU a učiva uvnitř jednoho předmětu/oblasti (postup od jednodušších ke složitějším konceptům napříč ročníky).\n- **Horizontální Kontrola:** Zkontrolovat logické provázání napříč vzdělávacími oblastmi a předměty (např. fyzika ↔ matematika).\n- **PT Integrace:** Audit reálné integrace Průřezových témat (PT) do konkrétních částí obsahu, metod a projektů.\n\n## FÁZE 5: ANALÝZA ŠKOLNÍ PROFILACE A ROZŠÍŘENÍ RVP\n\n**Cíl:** Validovat, že profilace školy je **v souladu** s RVP a nejedná se o **rozpor**.\n\n- **Nekonfliktnost:** Porovnat definovaný Profil absolventa školy s Klíčovými kompetencemi RVP. Profil ŠVP musí RVP rozvíjet, nikoli mu odporovat.\n- **Modularita:** Zkontrolovat, zda volitelné předměty a rozšiřující moduly logicky navazují na vzdělávací oblasti RVP.\n- **Implementace specializace:** Popisně uvést, jak je školní profilace (např. STEM zaměření, projektová výuka) integrována do OVU a kompetencí definovaných RVP.\n\n## FÁZE 6: GENERÁTOR ZÁVĚREČNÉ ZPRÁVY A KVANTIFIKACE\n\n**Cíl:** Syntetizovat výsledky, kvantifikovat soulad a generovat závazné návrhy na korekce.\n\n### 6.1 Kvantifikace Souladu\n\nVypočítat Index shody (IS) na základě bodového hodnocení (Fáze 3):\n\n### 6.2 Interpretace Indexu Shody (IS)\n\nKlasifikace souladu pro standardizované vyhodnocení:\n\n| Interval IS | Klasifikace souladu | Popis |\n| --- | --- | --- |\n| 95-100 % | Výborný soulad | ŠVP plně odpovídá RVP, pouze stylistické nebo formální rozdíly. |\n| --- | --- | --- |\n| 85-94 % | Dobrá shoda | ŠVP pokrývá všechny klíčové výstupy, menší korekce nutné. |\n| --- | --- | --- |\n| 70-84 % | Částečná shoda | Významné nedostatky v některých oblastech, nutná revize obsahu. |\n| --- | --- | --- |\n| < 70 % | Kritická neshoda | ŠVP neplní rámcové požadavky, ohrožuje legislativní soulad. |\n| --- | --- | --- |\n\n### 6.3 Doplňkové Indexy\n\nVypočítat následující doplňkové indexy pro detailní kvalitativní analýzu:\n\n- **Index kompetenčního souladu (IKS):** Poměr pokrytí klíčových kompetencí RVP v ŠVP.\n- **Index průřezové integrace (IPI):** Míra reálné integrace průřezových témat do výuky.\n- **Index hloubky pokrytí (IHP):** Procento výstupů, které jsou v ŠVP rozvedeny na konkrétní výukové cíle (měřitelné, aktivní formulace).\n- **Index profilové rozšiřitelnosti (IPR):** Kolik rozšiřujících nebo profilových výstupů přesahuje rámec RVP, aniž by narušily jeho strukturu.\n\n### 6.4 Vizuální výstupy\n\nZajistit generování následujících vizualizací pro Závěrečnou zprávu:\n\n- Graf pokrytí po vzdělávacích oblastech (Sloupcový graf IS pro VO).\n- Pavoukový diagram Klíčových kompetencí (RVP vs. ŠVP).\n- Mapa defektů (Vizualizace ❌ a ⚠️ výstupů).\n\n### 6.5 Struktura Závěrečné Zprávy\n\nZpráva musí být strukturována dle standardizovaného formátu:\n\n| Oddíl | Obsah |\n| --- | --- |\n| A. Identifikace | Název školy, IZO, typ školy, datum revize, zpracovatel, verze ŠVP a RVP. |\n| --- | --- |\n| B. Shrnutí výsledků | Celkový Index Shody (IS), hlavní závěry a doporučení. |\n| --- | --- |\n| C. Kvantitativní analýza | Přehled IS v % dle kategorií OVU / VO / kompetencí. |\n| --- | --- |\n| D. Kvalitativní analýza | Slovní zhodnocení kvality souladu (formulace, obtížnost, integrace PT). |\n| --- | --- |\n| E. Rizikové oblasti | Přehled nalezených defektů (chybějící OVU, přetížení, formální shoda). |\n| --- | --- |\n| F. Návrhy opatření (Korekční plán) | Přesné návrhy změn - **Co, Kde, Kdo** má upravit, včetně termínu. |\n| --- | --- |\n| G. Přílohy | Master Matice (Fáze 2-3), revizní tabulka, výstupní grafy a metriky. |\n| --- | --- |\n\n\n\n\n.\n"}],sourceFile:"./books/examples/lsvp-asistent.book"}];
|
|
3745
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
3746
3746
|
|
|
3747
3747
|
/**
|
|
3748
3748
|
* Function `validatePipelineString` will validate the if the string is a valid pipeline string
|
|
@@ -4258,7 +4258,7 @@ function unpreparePipeline(pipeline) {
|
|
|
4258
4258
|
* Library of pipelines that groups together pipelines for an application.
|
|
4259
4259
|
* This implementation is a very thin wrapper around the Array / Map of pipelines.
|
|
4260
4260
|
*
|
|
4261
|
-
* @private internal function of `
|
|
4261
|
+
* @private internal function of `createPipelineCollectionFromJson`, use `createPipelineCollectionFromJson` instead
|
|
4262
4262
|
* @see https://github.com/webgptorg/pipeline#pipeline-collection
|
|
4263
4263
|
*/
|
|
4264
4264
|
class SimplePipelineCollection {
|
|
@@ -4268,7 +4268,7 @@ class SimplePipelineCollection {
|
|
|
4268
4268
|
* @param pipelines Array of pipeline JSON objects to include in the collection
|
|
4269
4269
|
*
|
|
4270
4270
|
* Note: During the construction logic of all pipelines are validated
|
|
4271
|
-
* Note: It is not recommended to use this constructor directly, use `
|
|
4271
|
+
* Note: It is not recommended to use this constructor directly, use `createPipelineCollectionFromJson` *(or other variant)* instead
|
|
4272
4272
|
*/
|
|
4273
4273
|
constructor(...pipelines) {
|
|
4274
4274
|
this.collection = new Map();
|
|
@@ -4356,16 +4356,16 @@ class SimplePipelineCollection {
|
|
|
4356
4356
|
}
|
|
4357
4357
|
|
|
4358
4358
|
/**
|
|
4359
|
-
* Creates PipelineCollection from array of PipelineJson or PipelineString
|
|
4359
|
+
* Creates `PipelineCollection` from array of PipelineJson or PipelineString
|
|
4360
4360
|
*
|
|
4361
|
-
* Note: Functions `
|
|
4361
|
+
* Note: Functions `pipelineCollectionToJson` and `createPipelineCollectionFromJson` are complementary
|
|
4362
4362
|
* Note: Syntax, parsing, and logic consistency checks are performed on all sources during build
|
|
4363
4363
|
*
|
|
4364
4364
|
* @param promptbookSources
|
|
4365
4365
|
* @returns PipelineCollection
|
|
4366
4366
|
* @public exported from `@promptbook/core`
|
|
4367
4367
|
*/
|
|
4368
|
-
function
|
|
4368
|
+
function createPipelineCollectionFromJson(...promptbooks) {
|
|
4369
4369
|
return new SimplePipelineCollection(...promptbooks);
|
|
4370
4370
|
}
|
|
4371
4371
|
|
|
@@ -5714,7 +5714,7 @@ async function preparePipeline(pipeline, tools, options) {
|
|
|
5714
5714
|
let title = pipeline.title;
|
|
5715
5715
|
if (title === undefined || title === '' || title === DEFAULT_BOOK_TITLE) {
|
|
5716
5716
|
// TODO: [🌼] In future use `ptbk make` and made getPipelineCollection
|
|
5717
|
-
const collection =
|
|
5717
|
+
const collection = createPipelineCollectionFromJson(...PipelineCollection);
|
|
5718
5718
|
const prepareTitleExecutor = createPipelineExecutor({
|
|
5719
5719
|
pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book'),
|
|
5720
5720
|
tools,
|
|
@@ -7706,7 +7706,7 @@ async function preparePersona(personaDescription, tools, options) {
|
|
|
7706
7706
|
throw new MissingToolsError('LLM tools are required for preparing persona');
|
|
7707
7707
|
}
|
|
7708
7708
|
// TODO: [🌼] In future use `ptbk make` and made getPipelineCollection
|
|
7709
|
-
const collection =
|
|
7709
|
+
const collection = createPipelineCollectionFromJson(...PipelineCollection);
|
|
7710
7710
|
const preparePersonaExecutor = createPipelineExecutor({
|
|
7711
7711
|
pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
|
|
7712
7712
|
tools,
|
|
@@ -12010,6 +12010,12 @@ class OpenAiExecutionTools extends OpenAiCompatibleExecutionTools {
|
|
|
12010
12010
|
*
|
|
12011
12011
|
* This is useful for calling OpenAI API with a single assistant, for more wide usage use `OpenAiExecutionTools`.
|
|
12012
12012
|
*
|
|
12013
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
12014
|
+
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
12015
|
+
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
12016
|
+
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
12017
|
+
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
12018
|
+
*
|
|
12013
12019
|
* @public exported from `@promptbook/openai`
|
|
12014
12020
|
*/
|
|
12015
12021
|
class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
@@ -12175,10 +12181,32 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
12175
12181
|
},
|
|
12176
12182
|
});
|
|
12177
12183
|
}
|
|
12178
|
-
async
|
|
12184
|
+
async playground() {
|
|
12185
|
+
const client = await this.getClient();
|
|
12186
|
+
// List all assistants
|
|
12187
|
+
const assistants = await client.beta.assistants.list();
|
|
12188
|
+
console.log('!!! Assistants:', assistants);
|
|
12189
|
+
// Get details of a specific assistant
|
|
12190
|
+
const assistantId = 'asst_MO8fhZf4dGloCfXSHeLcIik0';
|
|
12191
|
+
const assistant = await client.beta.assistants.retrieve(assistantId);
|
|
12192
|
+
console.log('!!! Assistant Details:', assistant);
|
|
12193
|
+
// Update an assistant
|
|
12194
|
+
const updatedAssistant = await client.beta.assistants.update(assistantId, {
|
|
12195
|
+
name: assistant.name + '(M)',
|
|
12196
|
+
description: 'Updated description via Promptbook',
|
|
12197
|
+
metadata: {
|
|
12198
|
+
[Math.random().toString(36).substring(2, 15)]: new Date().toISOString(),
|
|
12199
|
+
},
|
|
12200
|
+
});
|
|
12201
|
+
console.log('!!! Updated Assistant:', updatedAssistant);
|
|
12202
|
+
await forEver();
|
|
12203
|
+
}
|
|
12204
|
+
async createNewAssistant(options) {
|
|
12179
12205
|
if (!this.isCreatingNewAssistantsAllowed) {
|
|
12180
12206
|
throw new NotAllowed(`Creating new assistants is not allowed. Set \`isCreatingNewAssistantsAllowed: true\` in options to enable this feature.`);
|
|
12181
12207
|
}
|
|
12208
|
+
await this.playground();
|
|
12209
|
+
const { name, instructions } = options;
|
|
12182
12210
|
const client = await this.getClient();
|
|
12183
12211
|
/*
|
|
12184
12212
|
TODO: !!!
|
|
@@ -12226,21 +12254,20 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
|
|
|
12226
12254
|
uploadedFiles.push(file.id);
|
|
12227
12255
|
}
|
|
12228
12256
|
*/
|
|
12257
|
+
alert('!!!! Creating new OpenAI assistant');
|
|
12229
12258
|
// 3️⃣ Create assistant with uploaded files
|
|
12230
12259
|
const assistant = await client.beta.assistants.create({
|
|
12231
|
-
name
|
|
12232
|
-
description: 'Assistant
|
|
12260
|
+
name,
|
|
12261
|
+
description: 'Assistant created via Promptbook',
|
|
12233
12262
|
model: 'gpt-4o',
|
|
12234
|
-
instructions
|
|
12235
|
-
|
|
12236
|
-
Quote parts from uploaded files if needed.
|
|
12237
|
-
`),
|
|
12238
|
-
// <- TODO: !!!! Generate the `instructions` from passed `agentSource` (generate outside of this class)
|
|
12239
|
-
tools: [{ type: 'code_interpreter' }, { type: 'file_search' }],
|
|
12263
|
+
instructions,
|
|
12264
|
+
tools: [/* TODO: [🧠] Maybe add { type: 'code_interpreter' }, */ { type: 'file_search' }],
|
|
12240
12265
|
// !!!! file_ids: uploadedFiles,
|
|
12241
12266
|
});
|
|
12242
|
-
// TODO: !!!! Change Czech to English
|
|
12243
12267
|
console.log(`✅ Assistant created: ${assistant.id}`);
|
|
12268
|
+
// TODO: !!!! Try listing existing assistants
|
|
12269
|
+
// TODO: !!!! Try marking existing assistants by DISCRIMINANT
|
|
12270
|
+
// TODO: !!!! Allow to update and reconnect to existing assistants
|
|
12244
12271
|
return new OpenAiAssistantExecutionTools({
|
|
12245
12272
|
...this.options,
|
|
12246
12273
|
isCreatingNewAssistantsAllowed: false,
|
|
@@ -12279,6 +12306,12 @@ const DISCRIMINANT = 'OPEN_AI_ASSISTANT_V1';
|
|
|
12279
12306
|
* Execution Tools for calling LLM models with a predefined agent "soul"
|
|
12280
12307
|
* This wraps underlying LLM execution tools and applies agent-specific system prompts and requirements
|
|
12281
12308
|
*
|
|
12309
|
+
* Note: [🦖] There are several different things in Promptbook:
|
|
12310
|
+
* - `Agent` - which represents an AI Agent with its source, memories, actions, etc. Agent is a higher-level abstraction which is internally using:
|
|
12311
|
+
* - `LlmExecutionTools` - which wraps one or more LLM models and provides an interface to execute them
|
|
12312
|
+
* - `AgentLlmExecutionTools` - which is a specific implementation of `LlmExecutionTools` that wraps another LlmExecutionTools and applies agent-specific system prompts and requirements
|
|
12313
|
+
* - `OpenAiAssistantExecutionTools` - which is a specific implementation of `LlmExecutionTools` for OpenAI models with assistant capabilities, recommended for usage in `Agent` or `AgentLlmExecutionTools`
|
|
12314
|
+
*
|
|
12282
12315
|
* @public exported from `@promptbook/core`
|
|
12283
12316
|
*/
|
|
12284
12317
|
class AgentLlmExecutionTools {
|
|
@@ -12288,9 +12321,8 @@ class AgentLlmExecutionTools {
|
|
|
12288
12321
|
* @param llmTools The underlying LLM execution tools to wrap
|
|
12289
12322
|
* @param agentSource The agent source string that defines the agent's behavior
|
|
12290
12323
|
*/
|
|
12291
|
-
constructor(
|
|
12292
|
-
this.
|
|
12293
|
-
this.agentSource = agentSource;
|
|
12324
|
+
constructor(options) {
|
|
12325
|
+
this.options = options;
|
|
12294
12326
|
/**
|
|
12295
12327
|
* Cached model requirements to avoid re-parsing the agent source
|
|
12296
12328
|
*/
|
|
@@ -12299,15 +12331,13 @@ class AgentLlmExecutionTools {
|
|
|
12299
12331
|
* Cached parsed agent information
|
|
12300
12332
|
*/
|
|
12301
12333
|
this._cachedAgentInfo = null;
|
|
12302
|
-
// <- TODO: !!!! CreateAgentLlmExecutionToolsOptions
|
|
12303
|
-
// <- TODO: !!!! Leverage `OpenAiAssistantExecutionTools`
|
|
12304
12334
|
}
|
|
12305
12335
|
/**
|
|
12306
12336
|
* Get cached or parse agent information
|
|
12307
12337
|
*/
|
|
12308
12338
|
getAgentInfo() {
|
|
12309
12339
|
if (this._cachedAgentInfo === null) {
|
|
12310
|
-
this._cachedAgentInfo = parseAgentSource(this.agentSource);
|
|
12340
|
+
this._cachedAgentInfo = parseAgentSource(this.options.agentSource);
|
|
12311
12341
|
}
|
|
12312
12342
|
return this._cachedAgentInfo;
|
|
12313
12343
|
}
|
|
@@ -12317,8 +12347,8 @@ class AgentLlmExecutionTools {
|
|
|
12317
12347
|
async getAgentModelRequirements() {
|
|
12318
12348
|
if (this._cachedModelRequirements === null) {
|
|
12319
12349
|
// Get available models from underlying LLM tools for best model selection
|
|
12320
|
-
const availableModels = await this.llmTools.listModels();
|
|
12321
|
-
this._cachedModelRequirements = await createAgentModelRequirements(this.agentSource, undefined, // Let the function pick the best model
|
|
12350
|
+
const availableModels = await this.options.llmTools.listModels();
|
|
12351
|
+
this._cachedModelRequirements = await createAgentModelRequirements(this.options.agentSource, undefined, // Let the function pick the best model
|
|
12322
12352
|
availableModels);
|
|
12323
12353
|
}
|
|
12324
12354
|
return this._cachedModelRequirements;
|
|
@@ -12345,13 +12375,13 @@ class AgentLlmExecutionTools {
|
|
|
12345
12375
|
}
|
|
12346
12376
|
checkConfiguration() {
|
|
12347
12377
|
// Check underlying tools configuration
|
|
12348
|
-
return this.llmTools.checkConfiguration();
|
|
12378
|
+
return this.options.llmTools.checkConfiguration();
|
|
12349
12379
|
}
|
|
12350
12380
|
/**
|
|
12351
12381
|
* Returns a virtual model name representing the agent behavior
|
|
12352
12382
|
*/
|
|
12353
12383
|
get modelName() {
|
|
12354
|
-
const hash = SHA256(hexEncoder.parse(this.agentSource))
|
|
12384
|
+
const hash = SHA256(hexEncoder.parse(this.options.agentSource))
|
|
12355
12385
|
// <- TODO: [🥬] Encapsulate sha256 to some private utility function
|
|
12356
12386
|
.toString( /* hex */);
|
|
12357
12387
|
// <- TODO: [🥬] Make some system for hashes and ids of promptbook
|
|
@@ -12374,24 +12404,26 @@ class AgentLlmExecutionTools {
|
|
|
12374
12404
|
* Calls the chat model with agent-specific system prompt and requirements
|
|
12375
12405
|
*/
|
|
12376
12406
|
async callChatModel(prompt) {
|
|
12377
|
-
if (!this.llmTools.callChatModel) {
|
|
12407
|
+
if (!this.options.llmTools.callChatModel) {
|
|
12378
12408
|
throw new Error('Underlying LLM execution tools do not support chat model calls');
|
|
12379
12409
|
}
|
|
12380
12410
|
// Ensure we're working with a chat prompt
|
|
12381
12411
|
if (prompt.modelRequirements.modelVariant !== 'CHAT') {
|
|
12382
12412
|
throw new Error('AgentLlmExecutionTools only supports chat prompts');
|
|
12383
12413
|
}
|
|
12414
|
+
const modelRequirements = await this.getAgentModelRequirements();
|
|
12384
12415
|
const chatPrompt = prompt;
|
|
12385
12416
|
let underlyingLlmResult;
|
|
12386
|
-
if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.llmTools)) {
|
|
12417
|
+
if (OpenAiAssistantExecutionTools.isOpenAiAssistantExecutionTools(this.options.llmTools)) {
|
|
12387
12418
|
// <- TODO: !!! Check also `isCreatingNewAssistantsAllowed` and warn about it
|
|
12388
|
-
const assistant = await this.llmTools.createNewAssistant(
|
|
12419
|
+
const assistant = await this.options.llmTools.createNewAssistant({
|
|
12420
|
+
name: this.title,
|
|
12421
|
+
instructions: modelRequirements.systemMessage,
|
|
12422
|
+
});
|
|
12389
12423
|
// <- TODO: !!! Cache the assistant in prepareCache
|
|
12390
12424
|
underlyingLlmResult = await assistant.callChatModel(chatPrompt);
|
|
12391
12425
|
}
|
|
12392
12426
|
else {
|
|
12393
|
-
// Get agent model requirements (cached with best model selection)
|
|
12394
|
-
const modelRequirements = await this.getAgentModelRequirements();
|
|
12395
12427
|
// Create modified chat prompt with agent system message
|
|
12396
12428
|
const modifiedChatPrompt = {
|
|
12397
12429
|
...chatPrompt,
|
|
@@ -12405,7 +12437,7 @@ class AgentLlmExecutionTools {
|
|
|
12405
12437
|
: ''),
|
|
12406
12438
|
},
|
|
12407
12439
|
};
|
|
12408
|
-
underlyingLlmResult = await this.llmTools.callChatModel(modifiedChatPrompt);
|
|
12440
|
+
underlyingLlmResult = await this.options.llmTools.callChatModel(modifiedChatPrompt);
|
|
12409
12441
|
}
|
|
12410
12442
|
let content = underlyingLlmResult.content;
|
|
12411
12443
|
// Note: Cleanup the AI artifacts from the content
|
|
@@ -12431,19 +12463,11 @@ class AgentLlmExecutionTools {
|
|
|
12431
12463
|
* @public exported from `@promptbook/core`
|
|
12432
12464
|
*/
|
|
12433
12465
|
const createAgentLlmExecutionTools = Object.assign((options) => {
|
|
12434
|
-
|
|
12435
|
-
if (llmTools instanceof OpenAiAssistantExecutionTools) {
|
|
12436
|
-
// !!!!! Leverage `OpenAiAssistantExecutionTools` specific features here
|
|
12437
|
-
}*/
|
|
12438
|
-
return new AgentLlmExecutionTools(options.llmTools, options.agentSource);
|
|
12466
|
+
return new AgentLlmExecutionTools(options);
|
|
12439
12467
|
}, {
|
|
12440
12468
|
packageName: '@promptbook/core',
|
|
12441
12469
|
className: 'AgentLlmExecutionTools',
|
|
12442
12470
|
});
|
|
12443
|
-
/**
|
|
12444
|
-
* TODO: [🧠] Consider adding validation for agent source format
|
|
12445
|
-
* TODO: [🧠] Consider adding options for caching behavior
|
|
12446
|
-
*/
|
|
12447
12471
|
|
|
12448
12472
|
/**
|
|
12449
12473
|
* Metadata for Agent LLM execution tools
|
|
@@ -13129,56 +13153,6 @@ new $Register('book_transpilers');
|
|
|
13129
13153
|
* TODO: [®] DRY Register logic
|
|
13130
13154
|
*/
|
|
13131
13155
|
|
|
13132
|
-
// import { ObjectUrl } from './ObjectUrl';
|
|
13133
|
-
/**
|
|
13134
|
-
* Download a File in a browser
|
|
13135
|
-
*
|
|
13136
|
-
* Note: `$` is used to indicate that this function is not a pure function - its purpose is to cause a side effect (download a file)
|
|
13137
|
-
*
|
|
13138
|
-
* @public exported from `@promptbook/browser`
|
|
13139
|
-
*/
|
|
13140
|
-
async function $induceFileDownload(fileOrBlobOrUrl) {
|
|
13141
|
-
/*
|
|
13142
|
-
TODO: !!!! Is this fixing Vercel deployment issue ??? !!!!
|
|
13143
|
-
|
|
13144
|
-
|
|
13145
|
-
if (!$isRunningInBrowser()) {
|
|
13146
|
-
throw new Error('Function `$induceFileDownload` is available ONLY in browser');
|
|
13147
|
-
}
|
|
13148
|
-
|
|
13149
|
-
const objectUrl = ObjectUrl.fromBlobOrUrl(fileOrBlobOrUrl);
|
|
13150
|
-
const link = window.document.createElement('a');
|
|
13151
|
-
link.href = objectUrl.href;
|
|
13152
|
-
link.download = (fileOrBlobOrUrl as File).name || 'untitled' /* <- TODO: Add proper extension according to url * /;
|
|
13153
|
-
link.click();
|
|
13154
|
-
await objectUrl.destroy();
|
|
13155
|
-
*/
|
|
13156
|
-
}
|
|
13157
|
-
/**
|
|
13158
|
-
* Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
|
|
13159
|
-
*/
|
|
13160
|
-
|
|
13161
|
-
/**
|
|
13162
|
-
* Download a Book in a browser
|
|
13163
|
-
*
|
|
13164
|
-
* Note: `$` is used to indicate that this function is not a pure function - its purpose is to cause a side effect (download a file)
|
|
13165
|
-
*
|
|
13166
|
-
* @public exported from `@promptbook/browser`
|
|
13167
|
-
*/
|
|
13168
|
-
async function $induceBookDownload(book) {
|
|
13169
|
-
if (!$isRunningInBrowser()) {
|
|
13170
|
-
throw new Error('Function `$induceBookDownload` is available ONLY in browser');
|
|
13171
|
-
}
|
|
13172
|
-
const { agentName } = parseAgentSource(book);
|
|
13173
|
-
new File([book], `${titleToName(agentName || 'AI Avatar')}.book`, {
|
|
13174
|
-
type: 'application/json',
|
|
13175
|
-
});
|
|
13176
|
-
return /* not await */ $induceFileDownload();
|
|
13177
|
-
}
|
|
13178
|
-
/**
|
|
13179
|
-
* Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
|
|
13180
|
-
*/
|
|
13181
|
-
|
|
13182
13156
|
/**
|
|
13183
13157
|
* Converts Blob, File or MediaSource to url using URL.createObjectURL
|
|
13184
13158
|
*
|
|
@@ -13254,5 +13228,48 @@ class ObjectUrl extends Registration {
|
|
|
13254
13228
|
* Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
|
|
13255
13229
|
*/
|
|
13256
13230
|
|
|
13231
|
+
/**
|
|
13232
|
+
* Download a File in a browser
|
|
13233
|
+
*
|
|
13234
|
+
* Note: `$` is used to indicate that this function is not a pure function - its purpose is to cause a side effect (download a file)
|
|
13235
|
+
*
|
|
13236
|
+
* @public exported from `@promptbook/browser`
|
|
13237
|
+
*/
|
|
13238
|
+
async function $induceFileDownload(fileOrBlobOrUrl) {
|
|
13239
|
+
if (!$isRunningInBrowser()) {
|
|
13240
|
+
throw new Error('Function `$induceFileDownload` is available ONLY in browser');
|
|
13241
|
+
}
|
|
13242
|
+
const objectUrl = ObjectUrl.fromBlobOrUrl(fileOrBlobOrUrl);
|
|
13243
|
+
const link = window.document.createElement('a');
|
|
13244
|
+
link.href = objectUrl.href;
|
|
13245
|
+
link.download = fileOrBlobOrUrl.name || 'untitled' /* <- TODO: Add proper extension according to url */;
|
|
13246
|
+
link.click();
|
|
13247
|
+
await objectUrl.destroy();
|
|
13248
|
+
}
|
|
13249
|
+
/**
|
|
13250
|
+
* Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
|
|
13251
|
+
*/
|
|
13252
|
+
|
|
13253
|
+
/**
|
|
13254
|
+
* Download a Book in a browser
|
|
13255
|
+
*
|
|
13256
|
+
* Note: `$` is used to indicate that this function is not a pure function - its purpose is to cause a side effect (download a file)
|
|
13257
|
+
*
|
|
13258
|
+
* @public exported from `@promptbook/browser`
|
|
13259
|
+
*/
|
|
13260
|
+
async function $induceBookDownload(book) {
|
|
13261
|
+
if (!$isRunningInBrowser()) {
|
|
13262
|
+
throw new Error('Function `$induceBookDownload` is available ONLY in browser');
|
|
13263
|
+
}
|
|
13264
|
+
const { agentName } = parseAgentSource(book);
|
|
13265
|
+
const bookFile = new File([book], `${titleToName(agentName || 'AI Avatar')}.book`, {
|
|
13266
|
+
type: 'application/json',
|
|
13267
|
+
});
|
|
13268
|
+
return /* not await */ $induceFileDownload(bookFile);
|
|
13269
|
+
}
|
|
13270
|
+
/**
|
|
13271
|
+
* Note: [🔵] Code in this file should never be published outside of `@promptbook/browser`
|
|
13272
|
+
*/
|
|
13273
|
+
|
|
13257
13274
|
export { $induceBookDownload, $induceFileDownload, $provideScrapersForBrowser, BOOK_LANGUAGE_VERSION, ObjectUrl, PROMPTBOOK_ENGINE_VERSION, SimplePromptInterfaceTools, getIndexedDbStorage, getLocalStorage, getSessionStorage };
|
|
13258
13275
|
//# sourceMappingURL=index.es.js.map
|