@platforma-open/milaboratories.top-antibodies.workflow 1.16.0 → 1.17.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.turbo/turbo-build.log +1 -1
- package/CHANGELOG.md +22 -0
- package/dist/tengo/lib/utils.lib.tengo +421 -1
- package/dist/tengo/tpl/assembling-fasta.plj.gz +0 -0
- package/dist/tengo/tpl/filter-and-sample.plj.gz +0 -0
- package/dist/tengo/tpl/main.plj.gz +0 -0
- package/package.json +9 -11
- package/src/main.tpl.tengo +22 -259
- package/src/utils.lib.tengo +423 -3
- package/index.d.ts +0 -4
- package/index.js +0 -3
- package/tsconfig.json +0 -16
- package/vitest.config.mts +0 -9
package/src/main.tpl.tengo
CHANGED
|
@@ -49,12 +49,17 @@ wf.prepare(func(args){
|
|
|
49
49
|
}
|
|
50
50
|
|
|
51
51
|
|
|
52
|
-
// Add linker
|
|
52
|
+
// Add linker columns
|
|
53
53
|
bundleBuilder.addMulti({
|
|
54
54
|
axes: [{ anchor: "main", idx: 1 }], // this will do partial axes match (unlike in the model)
|
|
55
55
|
annotations: { "pl7.app/isLinkerColumn": "true" },
|
|
56
56
|
partialAxesMatch: true
|
|
57
57
|
}, "linkers")
|
|
58
|
+
|
|
59
|
+
// Add clusterColumn as a named anchor for matching in body phase
|
|
60
|
+
if !is_undefined(args.clusterColumn) {
|
|
61
|
+
bundleBuilder.addAnchor("selectedCluster", args.clusterColumn)
|
|
62
|
+
}
|
|
58
63
|
|
|
59
64
|
// Add cluster size columns from clustering blocks
|
|
60
65
|
bundleBuilder.addMulti({
|
|
@@ -116,180 +121,19 @@ wf.body(func(args) {
|
|
|
116
121
|
isSingleCell := datasetSpec.axesSpec[1].name == "pl7.app/vdj/scClonotypeKey"
|
|
117
122
|
|
|
118
123
|
////////// Clonotype Filtering //////////
|
|
119
|
-
//
|
|
120
|
-
|
|
121
|
-
cloneTable.
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
addedCols := false
|
|
128
|
-
if len(args.filters) > 0 {
|
|
129
|
-
for i, filter in args.filters {
|
|
130
|
-
// we check for value presence and for actual pcolumn (cases where upstream block is deleted)
|
|
131
|
-
if filter.value != undefined && columns.getColumn(filter.value.column).spec != undefined {
|
|
132
|
-
// Columns added here might also be in ranking list, so we add default IDs
|
|
133
|
-
cloneTable.add(columns.getColumn(filter.value.column),
|
|
134
|
-
{header: "Filter_" + string(i), id: "filter_" + string(i)})
|
|
135
|
-
addedCols = true
|
|
136
|
-
// Store reference value and filter type associated to this column
|
|
137
|
-
filterMap["Filter_" + string(i)] = filter.filter
|
|
138
|
-
filterMap["Filter_" + string(i)]["valueType"] = columns.getSpec(filter.value.column).valueType
|
|
139
|
-
|
|
140
|
-
// If column does not have main anchor axis we have to include theirs
|
|
141
|
-
colsSpec := columns.getSpec(filter.value.column)
|
|
142
|
-
axesNames := slices.map(colsSpec.axesSpec, func (a) { return a.name})
|
|
143
|
-
if !slices.hasElement(axesNames, datasetSpec.axesSpec[1].name) {
|
|
144
|
-
for na, ax in colsSpec.axesSpec {
|
|
145
|
-
if ax.name != datasetSpec.axesSpec[1].name {
|
|
146
|
-
cloneTable.setAxisHeader(ax, "cluster_" + string(i) + string(na))
|
|
147
|
-
addedAxes = append(addedAxes, ax.name)
|
|
148
|
-
}
|
|
149
|
-
}
|
|
150
|
-
}
|
|
151
|
-
}
|
|
152
|
-
}
|
|
153
|
-
}
|
|
154
|
-
|
|
155
|
-
// Add ranking columns to table
|
|
156
|
-
validRanks := false
|
|
157
|
-
clusterPropertyIdx := 0
|
|
158
|
-
clonotypePropertyIdx := 0
|
|
159
|
-
|
|
160
|
-
if len(args.rankingOrder) > 0 {
|
|
161
|
-
for i, col in args.rankingOrder {
|
|
162
|
-
// we check for value presence and for actual pcolumn (cases where upstream block is deleted)
|
|
163
|
-
if col.value != undefined && columns.getColumn(col.value.column).spec != undefined {
|
|
164
|
-
validRanks = true
|
|
165
|
-
|
|
166
|
-
// Process the ranking column to determine header and cluster axis
|
|
167
|
-
colsSpec := columns.getSpec(col.value.column)
|
|
168
|
-
linkerColumns := columns.getColumns("linkers")
|
|
169
|
-
result := utils.processRankingColumn(colsSpec, datasetSpec.axesSpec[1].name, linkerColumns, clusterPropertyIdx)
|
|
170
|
-
|
|
171
|
-
header := ""
|
|
172
|
-
if result.isClusterProperty {
|
|
173
|
-
header = result.header
|
|
174
|
-
clusterPropertyIdx = result.newClusterPropertyIdx
|
|
175
|
-
|
|
176
|
-
// Add cluster axis with matching index
|
|
177
|
-
for na, ax in colsSpec.axesSpec {
|
|
178
|
-
if ax.name != datasetSpec.axesSpec[1].name && !slices.hasElement(addedAxes, ax.name) {
|
|
179
|
-
axisHeader := "cluster_" + string(result.clusterAxisIdx)
|
|
180
|
-
cloneTable.setAxisHeader(ax, axisHeader)
|
|
181
|
-
addedAxes = append(addedAxes, ax.name)
|
|
182
|
-
}
|
|
183
|
-
}
|
|
184
|
-
} else {
|
|
185
|
-
header = "Col" + string(clonotypePropertyIdx)
|
|
186
|
-
clonotypePropertyIdx = clonotypePropertyIdx + 1
|
|
187
|
-
}
|
|
188
|
-
|
|
189
|
-
cloneTable.add(columns.getColumn(col.value.column), {header: header})
|
|
190
|
-
addedCols = true
|
|
191
|
-
rankingMap[header] = col.rankingOrder
|
|
192
|
-
}
|
|
193
|
-
}
|
|
194
|
-
}
|
|
195
|
-
|
|
196
|
-
// Get linker columns if needed
|
|
197
|
-
linkerAxisSpec := {}
|
|
198
|
-
linkerClusterIdAxes := []
|
|
199
|
-
if len(columns.getColumns("linkers")) > 0 {
|
|
200
|
-
for i, col in columns.getColumns("linkers") {
|
|
201
|
-
clusterIdAxis := undefined
|
|
202
|
-
if datasetSpec.axesSpec[1].name == col.spec.axesSpec[1].name {
|
|
203
|
-
cloneTable.add(col, {header: "linker." + string(i)})
|
|
204
|
-
cloneTable.setAxisHeader(col.spec.axesSpec[0], "cluster_" + string(i))
|
|
205
|
-
linkerAxisSpec["cluster_" + string(i)] = col.spec.axesSpec[0]
|
|
206
|
-
clusterIdAxis = col.spec.axesSpec[0]
|
|
207
|
-
addedCols = true
|
|
208
|
-
} else if datasetSpec.axesSpec[1].name == col.spec.axesSpec[0].name {
|
|
209
|
-
cloneTable.add(col, {header: "linker." + string(i)})
|
|
210
|
-
cloneTable.setAxisHeader(col.spec.axesSpec[1], "cluster_" + string(i))
|
|
211
|
-
linkerAxisSpec["cluster_" + string(i)] = col.spec.axesSpec[1]
|
|
212
|
-
clusterIdAxis = col.spec.axesSpec[1]
|
|
213
|
-
addedCols = true
|
|
214
|
-
}
|
|
215
|
-
// Collect clusterId axes from linker columns to match cluster size columns
|
|
216
|
-
if !is_undefined(clusterIdAxis) && clusterIdAxis.name == "pl7.app/vdj/clusterId" {
|
|
217
|
-
linkerClusterIdAxes = append(linkerClusterIdAxes, clusterIdAxis)
|
|
218
|
-
}
|
|
219
|
-
}
|
|
220
|
-
}
|
|
221
|
-
|
|
222
|
-
// Add cluster size columns if available, but only those matching linker columns' clusterId axes
|
|
223
|
-
// This ensures we only join columns from the same clustering run
|
|
224
|
-
if len(columns.getColumns("clusterSizes")) > 0 {
|
|
225
|
-
clusterSizeIdx := 0
|
|
226
|
-
for col in columns.getColumns("clusterSizes") {
|
|
227
|
-
// Find the clusterId axis in this cluster size column
|
|
228
|
-
clusterSizeClusterIdAxis := undefined
|
|
229
|
-
for axis in col.spec.axesSpec {
|
|
230
|
-
if axis.name == "pl7.app/vdj/clusterId" {
|
|
231
|
-
clusterSizeClusterIdAxis = axis
|
|
232
|
-
break
|
|
233
|
-
}
|
|
234
|
-
}
|
|
235
|
-
|
|
236
|
-
// Only add if we have linker columns and this cluster size matches one of them
|
|
237
|
-
shouldAdd := false
|
|
238
|
-
if len(linkerClusterIdAxes) > 0 && !is_undefined(clusterSizeClusterIdAxis) {
|
|
239
|
-
// Check if this cluster size column matches any linker's clusterId axis
|
|
240
|
-
for linkerAxis in linkerClusterIdAxes {
|
|
241
|
-
// Compare domains - they must match exactly for same clustering run
|
|
242
|
-
if clusterSizeClusterIdAxis.name == linkerAxis.name &&
|
|
243
|
-
clusterSizeClusterIdAxis.type == linkerAxis.type &&
|
|
244
|
-
utils.clusterAxisDomainsMatch(clusterSizeClusterIdAxis, linkerAxis) {
|
|
245
|
-
shouldAdd = true
|
|
246
|
-
break
|
|
247
|
-
}
|
|
248
|
-
}
|
|
249
|
-
}
|
|
250
|
-
|
|
251
|
-
// Only add cluster size columns that match a linker column's clustering run
|
|
252
|
-
if shouldAdd {
|
|
253
|
-
// Trace elements are already present in col.spec from the clustering block.
|
|
254
|
-
// deriveLabels (in label.ts) will use these existing trace elements to construct
|
|
255
|
-
// distinguishing labels when multiple clustering blocks are joined, similar to
|
|
256
|
-
// how LabelTypeFull ('__LABEL__@1') works. The trace includes:
|
|
257
|
-
// - Original dataset trace
|
|
258
|
-
// - "milaboratories.clonotype-clustering.sequences" trace element
|
|
259
|
-
// - "milaboratories.clonotype-clustering.clustering" trace element
|
|
260
|
-
// No modification needed - just preserve the existing trace.
|
|
261
|
-
|
|
262
|
-
cloneTable.add(col, {header: "clusterSize." + string(clusterSizeIdx)})
|
|
263
|
-
addedCols = true
|
|
264
|
-
// Add the cluster axis header
|
|
265
|
-
for axisIdx, axis in col.spec.axesSpec {
|
|
266
|
-
if axis.name != datasetSpec.axesSpec[1].name {
|
|
267
|
-
cloneTable.setAxisHeader(axis, "clusterAxis_" + string(clusterSizeIdx) + "_" + string(axisIdx))
|
|
268
|
-
}
|
|
269
|
-
}
|
|
270
|
-
clusterSizeIdx = clusterSizeIdx + 1
|
|
271
|
-
}
|
|
272
|
-
}
|
|
273
|
-
}
|
|
274
|
-
|
|
275
|
-
// Fallback: if no columns have been added yet, add at least one CDR3 sequence column
|
|
276
|
-
// This ensures the table can be built even when no filters/ranking columns are specified
|
|
277
|
-
if !addedCols {
|
|
278
|
-
cdr3Sequences := columns.getColumns("cdr3Sequences")
|
|
279
|
-
if len(cdr3Sequences) > 0 {
|
|
280
|
-
// Add the first CDR3 sequence as a fallback column
|
|
281
|
-
cloneTable.add(cdr3Sequences[0], {header: "cdr3_fallback"})
|
|
282
|
-
addedCols = true
|
|
283
|
-
}
|
|
284
|
-
}
|
|
124
|
+
// Initialize and build clone table with all columns
|
|
125
|
+
tableInit := utils.initializeCloneTable(pframes, columns, args, datasetSpec)
|
|
126
|
+
cloneTable := tableInit.cloneTable
|
|
127
|
+
filterMap := tableInit.filterMap
|
|
128
|
+
rankingMap := tableInit.rankingMap
|
|
129
|
+
sortedLinkers := tableInit.sortedLinkers
|
|
130
|
+
clusterColumnHeader := tableInit.clusterColumnHeader
|
|
131
|
+
addedCols := tableInit.addedCols
|
|
285
132
|
|
|
286
133
|
// Continue only if we have at least a column
|
|
287
134
|
// This condition prevents temporal intermittent error while filters are
|
|
288
135
|
// being processed and possibly in other situations too
|
|
289
136
|
if addedCols {
|
|
290
|
-
cloneTable.mem("16GiB")
|
|
291
|
-
cloneTable.cpu(1)
|
|
292
|
-
cloneTable = cloneTable.build()
|
|
293
137
|
|
|
294
138
|
// Use ender.create to call the filter-clonotypes template
|
|
295
139
|
filterSampleResult := render.create(filterAndSampleTpl, {
|
|
@@ -302,7 +146,7 @@ wf.body(func(args) {
|
|
|
302
146
|
datasetSpec: datasetSpec,
|
|
303
147
|
topClonotypes: args.topClonotypes,
|
|
304
148
|
disableClusterRanking: args.disableClusterRanking,
|
|
305
|
-
clusterColumn:
|
|
149
|
+
clusterColumn: clusterColumnHeader
|
|
306
150
|
})
|
|
307
151
|
|
|
308
152
|
// Get the filtered clonotypes from the template result
|
|
@@ -312,70 +156,8 @@ wf.body(func(args) {
|
|
|
312
156
|
finalClonotypes := filterSampleResult.output("finalClonotypes", 24 * 60 * 60 * 1000)
|
|
313
157
|
|
|
314
158
|
////////// CDR3 Length Calculation //////////
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
cdr3SeqTable.setAxisHeader(datasetSpec.axesSpec[1].name, "clonotypeKey")
|
|
318
|
-
|
|
319
|
-
// Must deal with multiple CDR3 sequences (two for each cell in single cell data)
|
|
320
|
-
// Chain will be added in the header as cdr3Sequence.chain and used in python script
|
|
321
|
-
// Notice chain is in spec.domain for single cell data and spec.axesSpec[0].domain for bulk data
|
|
322
|
-
|
|
323
|
-
// Helper function to add chain information to the headers dynamically
|
|
324
|
-
chainMapping := {
|
|
325
|
-
"IG": { "A": "Heavy", "B": "Light" },
|
|
326
|
-
"TCRAB": { "A": "TRA", "B": "TRB" },
|
|
327
|
-
"TCRGD": { "A": "TRG", "B": "TRD" }
|
|
328
|
-
}
|
|
329
|
-
|
|
330
|
-
makeHeaderName := func(col, baseHeaderName, isSingleCell) {
|
|
331
|
-
if isSingleCell {
|
|
332
|
-
chain := col.spec.domain["pl7.app/vdj/scClonotypeChain"] // e.g., "A", "B"
|
|
333
|
-
receptor := col.spec.axesSpec[0].domain["pl7.app/vdj/receptor"] // e.g., "IG", "TCRAB", "TCRGD"
|
|
334
|
-
chainLabel := chainMapping[receptor][chain]
|
|
335
|
-
return baseHeaderName + "." + chainLabel // e.g., "cdr3Sequence.Heavy"
|
|
336
|
-
} else {
|
|
337
|
-
// For bulk, if chain info is available (e.g. IGH, IGK, IGL)
|
|
338
|
-
chainFromDomain := col.spec.axesSpec[0].domain["pl7.app/vdj/chain"] // e.g. "IGH", "IGK"
|
|
339
|
-
if chainFromDomain != undefined {
|
|
340
|
-
return baseHeaderName + "." + chainFromDomain // e.g., "cdr3Sequence.IGH"
|
|
341
|
-
}
|
|
342
|
-
}
|
|
343
|
-
return baseHeaderName
|
|
344
|
-
};
|
|
345
|
-
|
|
346
|
-
// Process CDR3 sequences
|
|
347
|
-
cdr3Sequences := columns.getColumns("cdr3Sequences")
|
|
348
|
-
|
|
349
|
-
for col in cdr3Sequences {
|
|
350
|
-
headerName := makeHeaderName(col, "cdr3Sequence", isSingleCell)
|
|
351
|
-
if isSingleCell {
|
|
352
|
-
if col.spec.domain["pl7.app/vdj/scClonotypeChain/index"] == "primary" {
|
|
353
|
-
cdr3SeqTable.add(col, {header: headerName})
|
|
354
|
-
}
|
|
355
|
-
} else {
|
|
356
|
-
cdr3SeqTable.add(col, {header: headerName})
|
|
357
|
-
}
|
|
358
|
-
}
|
|
359
|
-
|
|
360
|
-
// Process V genes
|
|
361
|
-
vGenes := columns.getColumns("VGenes")
|
|
362
|
-
|
|
363
|
-
for col in vGenes {
|
|
364
|
-
headerName := makeHeaderName(col, "vGene", isSingleCell)
|
|
365
|
-
cdr3SeqTable.add(col, {header: headerName})
|
|
366
|
-
}
|
|
367
|
-
|
|
368
|
-
// Process J genes
|
|
369
|
-
jGenes := columns.getColumns("JGenes")
|
|
370
|
-
|
|
371
|
-
for col in jGenes {
|
|
372
|
-
headerName := makeHeaderName(col, "jGene", isSingleCell)
|
|
373
|
-
cdr3SeqTable.add(col, {header: headerName})
|
|
374
|
-
}
|
|
375
|
-
|
|
376
|
-
cdr3SeqTable.mem("16GiB")
|
|
377
|
-
cdr3SeqTable.cpu(1)
|
|
378
|
-
cdr3SeqTableBuilt := cdr3SeqTable.build()
|
|
159
|
+
// Initialize and build CDR3 sequence table
|
|
160
|
+
cdr3SeqTableBuilt := utils.initializeCdr3SeqTable(pframes, columns, datasetSpec, isSingleCell)
|
|
379
161
|
|
|
380
162
|
cdr3VspectratypeCmd := exec.builder().
|
|
381
163
|
software(assets.importSoftware("@platforma-open/milaboratories.top-antibodies.spectratype:main")).
|
|
@@ -416,33 +198,14 @@ wf.body(func(args) {
|
|
|
416
198
|
|
|
417
199
|
if args.kabatNumbering == true {
|
|
418
200
|
////////// Assembling AA sequences //////////
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
assemSeqTable
|
|
422
|
-
|
|
423
|
-
seqCols :=
|
|
424
|
-
for col in seqCols {
|
|
425
|
-
headerName := makeHeaderName(col, "assemblingFeature", isSingleCell)
|
|
426
|
-
assemSeqTable.add(col, {header: headerName})
|
|
427
|
-
}
|
|
428
|
-
|
|
429
|
-
assemSeqTable.mem("16GiB")
|
|
430
|
-
assemSeqTable.cpu(1)
|
|
431
|
-
assemSeqTableBuilt := assemSeqTable.build()
|
|
201
|
+
// Initialize and build assembling sequence table
|
|
202
|
+
assemInit := utils.initializeAssemSeqTable(pframes, columns, datasetSpec, isSingleCell)
|
|
203
|
+
assemSeqTableBuilt := assemInit.assemSeqTable
|
|
204
|
+
bulkChain := assemInit.bulkChain
|
|
205
|
+
seqCols := assemInit.seqCols
|
|
432
206
|
|
|
433
207
|
// Convert assembling feature sequences to FASTA via sub-template
|
|
434
208
|
assemFastaTpl := assets.importTemplate(":assembling-fasta")
|
|
435
|
-
bulkChain := undefined
|
|
436
|
-
if !isSingleCell {
|
|
437
|
-
// infer bulk chain by header names of incoming seq columns (domain uses IGHeavy / IGLight)
|
|
438
|
-
chainDetected := "KL"
|
|
439
|
-
for col in seqCols {
|
|
440
|
-
ch := col.spec.axesSpec[0].domain["pl7.app/vdj/chain"] // e.g., IGHeavy, IGLight
|
|
441
|
-
if ch == "IGHeavy" { chainDetected = "H"; break }
|
|
442
|
-
if ch == "IGLight" { chainDetected = "KL" }
|
|
443
|
-
}
|
|
444
|
-
bulkChain = chainDetected
|
|
445
|
-
}
|
|
446
209
|
assem := render.create(assemFastaTpl, {
|
|
447
210
|
inputTsv: assemSeqTableBuilt,
|
|
448
211
|
keyColumn: "clonotypeKey",
|