@platforma-open/milaboratories.top-antibodies.workflow 1.13.1 → 1.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.turbo/turbo-build.log +11 -11
- package/CHANGELOG.md +21 -0
- package/dist/index.cjs +0 -1
- package/dist/index.d.ts +1 -1
- package/dist/index.js +0 -1
- package/dist/tengo/lib/libs.data-utils.lib.tengo +324 -0
- package/dist/tengo/lib/{pf-kabat-conv.lib.tengo → libs.pf-kabat-conv.lib.tengo} +4 -5
- package/dist/tengo/lib/{pf-spectratype-conv.lib.tengo → libs.pf-spectratype-conv.lib.tengo} +1 -0
- package/{src/pf-vj-usage-conv.lib.tengo → dist/tengo/lib/libs.pf-vj-usage-conv.lib.tengo} +1 -0
- package/dist/tengo/lib/{sampled-cols-conv.lib.tengo → libs.sampled-cols-conv.lib.tengo} +1 -0
- package/dist/tengo/tpl/assembling-fasta.plj.gz +0 -0
- package/dist/tengo/tpl/main.plj.gz +0 -0
- package/dist/tengo/tpl/prerun.plj.gz +0 -0
- package/package.json +9 -9
- package/src/assembling-fasta.tpl.tengo +4 -7
- package/src/libs/data-utils.lib.tengo +324 -0
- package/src/{pf-kabat-conv.lib.tengo → libs/pf-kabat-conv.lib.tengo} +4 -5
- package/src/{pf-spectratype-conv.lib.tengo → libs/pf-spectratype-conv.lib.tengo} +1 -0
- package/{dist/tengo/lib → src/libs}/pf-vj-usage-conv.lib.tengo +1 -0
- package/src/{sampled-cols-conv.lib.tengo → libs/sampled-cols-conv.lib.tengo} +1 -0
- package/src/prerun.tpl.tengo +71 -214
- package/dist/tengo/tpl/filter-and-sample.plj.gz +0 -0
- package/src/filter-and-sample.tpl.tengo +0 -83
package/.turbo/turbo-build.log
CHANGED
|
@@ -1,24 +1,24 @@
|
|
|
1
1
|
WARN Issue while reading "/home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/.npmrc". Failed to replace env in config: ${NPMJS_TOKEN}
|
|
2
2
|
|
|
3
|
-
> @platforma-open/milaboratories.top-antibodies.workflow@1.
|
|
3
|
+
> @platforma-open/milaboratories.top-antibodies.workflow@1.14.0 build /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow
|
|
4
4
|
> rm -rf dist && pl-tengo check && pl-tengo build
|
|
5
5
|
|
|
6
6
|
Processing "src/assembling-fasta.tpl.tengo"...
|
|
7
|
-
Processing "src/
|
|
7
|
+
Processing "src/libs/data-utils.lib.tengo"...
|
|
8
|
+
Processing "src/libs/pf-kabat-conv.lib.tengo"...
|
|
9
|
+
Processing "src/libs/pf-spectratype-conv.lib.tengo"...
|
|
10
|
+
Processing "src/libs/pf-vj-usage-conv.lib.tengo"...
|
|
11
|
+
Processing "src/libs/sampled-cols-conv.lib.tengo"...
|
|
8
12
|
Processing "src/main.tpl.tengo"...
|
|
9
|
-
Processing "src/pf-kabat-conv.lib.tengo"...
|
|
10
|
-
Processing "src/pf-spectratype-conv.lib.tengo"...
|
|
11
|
-
Processing "src/pf-vj-usage-conv.lib.tengo"...
|
|
12
13
|
Processing "src/prerun.tpl.tengo"...
|
|
13
|
-
Processing "src/sampled-cols-conv.lib.tengo"...
|
|
14
14
|
No syntax errors found.
|
|
15
15
|
info: Compiling 'dist'...
|
|
16
|
-
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/
|
|
17
|
-
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/pf-
|
|
18
|
-
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/pf-
|
|
19
|
-
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/
|
|
16
|
+
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/libs.data-utils.lib.tengo
|
|
17
|
+
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/libs.pf-kabat-conv.lib.tengo
|
|
18
|
+
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/libs.pf-spectratype-conv.lib.tengo
|
|
19
|
+
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/libs.pf-vj-usage-conv.lib.tengo
|
|
20
|
+
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/lib/libs.sampled-cols-conv.lib.tengo
|
|
20
21
|
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/tpl/assembling-fasta.plj.gz
|
|
21
|
-
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/tpl/filter-and-sample.plj.gz
|
|
22
22
|
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/tpl/prerun.plj.gz
|
|
23
23
|
info: - writing /home/runner/work/antibody-tcr-lead-selection/antibody-tcr-lead-selection/workflow/dist/tengo/tpl/main.plj.gz
|
|
24
24
|
info: Template Pack build done.
|
package/CHANGELOG.md
CHANGED
|
@@ -1,5 +1,26 @@
|
|
|
1
1
|
# @platforma-open/milaboratories.top-antibodies.workflow
|
|
2
2
|
|
|
3
|
+
## 1.14.0
|
|
4
|
+
|
|
5
|
+
### Minor Changes
|
|
6
|
+
|
|
7
|
+
- 532b9ed: Block performance optimization
|
|
8
|
+
|
|
9
|
+
### Patch Changes
|
|
10
|
+
|
|
11
|
+
- Updated dependencies [532b9ed]
|
|
12
|
+
- @platforma-open/milaboratories.top-antibodies.sample-clonotypes@1.7.0
|
|
13
|
+
- @platforma-open/milaboratories.top-antibodies.assembling-fasta@1.2.0
|
|
14
|
+
- @platforma-open/milaboratories.top-antibodies.anarci-kabat@1.2.0
|
|
15
|
+
- @platforma-open/milaboratories.top-antibodies.spectratype@1.7.0
|
|
16
|
+
- @platforma-open/milaboratories.top-antibodies.umap@1.2.0
|
|
17
|
+
|
|
18
|
+
## 1.13.2
|
|
19
|
+
|
|
20
|
+
### Patch Changes
|
|
21
|
+
|
|
22
|
+
- e17b19a: Remove unused `saveStdoutContent` calls, update sdk
|
|
23
|
+
|
|
3
24
|
## 1.13.1
|
|
4
25
|
|
|
5
26
|
### Patch Changes
|
package/dist/index.cjs
CHANGED
|
@@ -1,6 +1,5 @@
|
|
|
1
1
|
module.exports = { Templates: {
|
|
2
2
|
'assembling-fasta': { type: 'from-file', path: require.resolve('./tengo/tpl/assembling-fasta.plj.gz') },
|
|
3
|
-
'filter-and-sample': { type: 'from-file', path: require.resolve('./tengo/tpl/filter-and-sample.plj.gz') },
|
|
4
3
|
'prerun': { type: 'from-file', path: require.resolve('./tengo/tpl/prerun.plj.gz') },
|
|
5
4
|
'main': { type: 'from-file', path: require.resolve('./tengo/tpl/main.plj.gz') }
|
|
6
5
|
}};
|
package/dist/index.d.ts
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
1
|
declare type TemplateFromFile = { readonly type: "from-file"; readonly path: string; };
|
|
2
|
-
declare type TplName = "assembling-fasta" | "
|
|
2
|
+
declare type TplName = "assembling-fasta" | "prerun" | "main";
|
|
3
3
|
declare const Templates: Record<TplName, TemplateFromFile>;
|
|
4
4
|
export { Templates };
|
package/dist/index.js
CHANGED
|
@@ -1,7 +1,6 @@
|
|
|
1
1
|
import { resolve } from 'node:path';
|
|
2
2
|
export const Templates = {
|
|
3
3
|
'assembling-fasta': { type: 'from-file', path: resolve(import.meta.dirname, './tengo/tpl/assembling-fasta.plj.gz') },
|
|
4
|
-
'filter-and-sample': { type: 'from-file', path: resolve(import.meta.dirname, './tengo/tpl/filter-and-sample.plj.gz') },
|
|
5
4
|
'prerun': { type: 'from-file', path: resolve(import.meta.dirname, './tengo/tpl/prerun.plj.gz') },
|
|
6
5
|
'main': { type: 'from-file', path: resolve(import.meta.dirname, './tengo/tpl/main.plj.gz') }
|
|
7
6
|
};
|
|
@@ -0,0 +1,324 @@
|
|
|
1
|
+
|
|
2
|
+
slices := import("@platforma-sdk/workflow-tengo:slices")
|
|
3
|
+
pt := import("@platforma-sdk/workflow-tengo:pt")
|
|
4
|
+
ll := import("@platforma-sdk/workflow-tengo:ll")
|
|
5
|
+
times := import("times")
|
|
6
|
+
text := import("text")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
makeHeaderName := func(col, baseHeaderName, isSingleCell) {
|
|
10
|
+
chainMapping := {
|
|
11
|
+
"IG": { "A": "Heavy", "B": "Light" },
|
|
12
|
+
"TCRAB": { "A": "TRA", "B": "TRB" },
|
|
13
|
+
"TCRGD": { "A": "TRG", "B": "TRD" }
|
|
14
|
+
}
|
|
15
|
+
|
|
16
|
+
if isSingleCell {
|
|
17
|
+
chain := col.spec.domain["pl7.app/vdj/scClonotypeChain"] // e.g., "A", "B"
|
|
18
|
+
receptor := col.spec.axesSpec[0].domain["pl7.app/vdj/receptor"] // e.g., "IG", "TCRAB", "TCRGD"
|
|
19
|
+
chainLabel := chainMapping[receptor][chain]
|
|
20
|
+
return baseHeaderName + "." + chainLabel // e.g., "cdr3Sequence.Heavy"
|
|
21
|
+
} else {
|
|
22
|
+
|
|
23
|
+
chainFromDomain := col.spec.axesSpec[0].domain["pl7.app/vdj/chain"] // e.g. "IGH", "IGK"
|
|
24
|
+
if chainFromDomain != undefined {
|
|
25
|
+
return baseHeaderName + "." + chainFromDomain // e.g., "cdr3Sequence.IGH"
|
|
26
|
+
}
|
|
27
|
+
}
|
|
28
|
+
return baseHeaderName
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
prepareClonotypeData := func(filters, rankingOrder, rankingOrderDefault, columns, datasetSpec) {
|
|
33
|
+
structuredMap := {}
|
|
34
|
+
axisRenames := {}
|
|
35
|
+
filterMap := {}
|
|
36
|
+
rankingMap := {}
|
|
37
|
+
addedAxes := []
|
|
38
|
+
addedCols := false
|
|
39
|
+
linkerAxisSpec := {}
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
if len(filters) > 0 {
|
|
43
|
+
for i, filter in filters {
|
|
44
|
+
if filter.value != undefined {
|
|
45
|
+
|
|
46
|
+
col := columns.getColumn(filter.value.column)
|
|
47
|
+
structuredMap["Filter_" + string(i)] = { spec: col.spec, data: col.data }
|
|
48
|
+
addedCols = true
|
|
49
|
+
|
|
50
|
+
filterMap["Filter_" + string(i)] = filter.filter
|
|
51
|
+
filterMap["Filter_" + string(i)]["valueType"] = columns.getSpec(filter.value.column).valueType
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
colsSpec := columns.getSpec(filter.value.column)
|
|
55
|
+
axesNames := slices.map(colsSpec.axesSpec, func (a) { return a.name})
|
|
56
|
+
if !slices.hasElement(axesNames, datasetSpec.axesSpec[1].name) {
|
|
57
|
+
for na, ax in colsSpec.axesSpec {
|
|
58
|
+
if ax.name != datasetSpec.axesSpec[1].name {
|
|
59
|
+
axisAlias := "cluster_" + string(i) + string(na)
|
|
60
|
+
axisRenames[ax.name] = axisAlias
|
|
61
|
+
addedAxes = append(addedAxes, ax.name)
|
|
62
|
+
}
|
|
63
|
+
}
|
|
64
|
+
}
|
|
65
|
+
}
|
|
66
|
+
}
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
validRanks := false
|
|
71
|
+
if len(rankingOrder) > 0 {
|
|
72
|
+
for i, rankCol in rankingOrder {
|
|
73
|
+
if rankCol.value != undefined {
|
|
74
|
+
validRanks = true
|
|
75
|
+
col := columns.getColumn(rankCol.value.column)
|
|
76
|
+
structuredMap["Col" + string(i)] = { spec: col.spec, data: col.data }
|
|
77
|
+
addedCols = true
|
|
78
|
+
|
|
79
|
+
rankingMap["Col" + string(i)] = rankCol.rankingOrder
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
colsSpec := columns.getSpec(rankCol.value.column)
|
|
83
|
+
axesNames := slices.map(colsSpec.axesSpec, func (a) { return a.name})
|
|
84
|
+
if !slices.hasElement(axesNames, datasetSpec.axesSpec[1].name) {
|
|
85
|
+
for na, ax in colsSpec.axesSpec {
|
|
86
|
+
if ax.name != datasetSpec.axesSpec[1].name && !slices.hasElement(addedAxes, ax.name) {
|
|
87
|
+
axisAlias := "cluster_" + string(i) + string(na)
|
|
88
|
+
axisRenames[ax.name] = axisAlias
|
|
89
|
+
}
|
|
90
|
+
}
|
|
91
|
+
}
|
|
92
|
+
}
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
|
|
96
|
+
if !validRanks {
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
if rankingOrderDefault.value != undefined {
|
|
100
|
+
i := 0
|
|
101
|
+
col := columns.getColumn(rankingOrderDefault.value.column)
|
|
102
|
+
structuredMap["Col" + string(i)] = { spec: col.spec, data: col.data }
|
|
103
|
+
addedCols = true
|
|
104
|
+
|
|
105
|
+
rankingMap["Col" + string(i)] = rankingOrderDefault.rankingOrder
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
colsSpec := columns.getSpec(rankingOrderDefault.value.column)
|
|
109
|
+
axesNames := slices.map(colsSpec.axesSpec, func (a) { return a.name})
|
|
110
|
+
if !slices.hasElement(axesNames, datasetSpec.axesSpec[1].name) {
|
|
111
|
+
for na, ax in colsSpec.axesSpec {
|
|
112
|
+
if ax.name != datasetSpec.axesSpec[1].name {
|
|
113
|
+
axisAlias := "cluster_" + string(i) + string(na)
|
|
114
|
+
axisRenames[ax.name] = axisAlias
|
|
115
|
+
}
|
|
116
|
+
}
|
|
117
|
+
}
|
|
118
|
+
}
|
|
119
|
+
}
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
if len(columns.getColumns("linkers")) > 0 {
|
|
123
|
+
for i, col in columns.getColumns("linkers") {
|
|
124
|
+
if datasetSpec.axesSpec[1].name == col.spec.axesSpec[1].name {
|
|
125
|
+
structuredMap["linker." + string(i)] = { spec: col.spec, data: col.data }
|
|
126
|
+
axisAlias := "cluster_" + string(i)
|
|
127
|
+
axisRenames[col.spec.axesSpec[0].name] = axisAlias
|
|
128
|
+
linkerAxisSpec[axisAlias] = col.spec.axesSpec[0]
|
|
129
|
+
} else if datasetSpec.axesSpec[1].name == col.spec.axesSpec[0].name {
|
|
130
|
+
structuredMap["linker." + string(i)] = { spec: col.spec, data: col.data }
|
|
131
|
+
axisAlias := "cluster_" + string(i)
|
|
132
|
+
axisRenames[col.spec.axesSpec[1].name] = axisAlias
|
|
133
|
+
linkerAxisSpec[axisAlias] = col.spec.axesSpec[1]
|
|
134
|
+
}
|
|
135
|
+
addedCols = true
|
|
136
|
+
}
|
|
137
|
+
}
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
if len(columns.getColumns("clusterSizes")) > 0 {
|
|
141
|
+
for i, col in columns.getColumns("clusterSizes") {
|
|
142
|
+
structuredMap["clusterSize." + string(i)] = { spec: col.spec, data: col.data }
|
|
143
|
+
addedCols = true
|
|
144
|
+
|
|
145
|
+
for axisIdx, axis in col.spec.axesSpec {
|
|
146
|
+
if axis.name != datasetSpec.axesSpec[1].name {
|
|
147
|
+
axisAlias := "clusterAxis_" + string(i) + "_" + string(axisIdx)
|
|
148
|
+
axisRenames[axis.name] = axisAlias
|
|
149
|
+
}
|
|
150
|
+
}
|
|
151
|
+
}
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
return {
|
|
155
|
+
structuredMap: structuredMap,
|
|
156
|
+
axisRenames: axisRenames,
|
|
157
|
+
filterMap: filterMap,
|
|
158
|
+
rankingMap: rankingMap,
|
|
159
|
+
addedCols: addedCols,
|
|
160
|
+
linkerAxisSpec: linkerAxisSpec
|
|
161
|
+
}
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
prepareCdr3Data := func(columns, datasetSpec, isSingleCell) {
|
|
166
|
+
cdr3SeqStructuredMap := {}
|
|
167
|
+
cdr3SeqAxisRenames := {}
|
|
168
|
+
cdr3SeqAxisRenames[datasetSpec.axesSpec[1].name] = "clonotypeKey"
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
cdr3Sequences := columns.getColumns("cdr3Sequences")
|
|
172
|
+
|
|
173
|
+
for col in cdr3Sequences {
|
|
174
|
+
headerName := makeHeaderName(col, "cdr3Sequence", isSingleCell)
|
|
175
|
+
if isSingleCell {
|
|
176
|
+
if col.spec.domain["pl7.app/vdj/scClonotypeChain/index"] == "primary" {
|
|
177
|
+
cdr3SeqStructuredMap[headerName] = { spec: col.spec, data: col.data }
|
|
178
|
+
}
|
|
179
|
+
} else {
|
|
180
|
+
cdr3SeqStructuredMap[headerName] = { spec: col.spec, data: col.data }
|
|
181
|
+
}
|
|
182
|
+
}
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
vGenes := columns.getColumns("VGenes")
|
|
186
|
+
|
|
187
|
+
for col in vGenes {
|
|
188
|
+
headerName := makeHeaderName(col, "vGene", isSingleCell)
|
|
189
|
+
cdr3SeqStructuredMap[headerName] = { spec: col.spec, data: col.data }
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
jGenes := columns.getColumns("JGenes")
|
|
194
|
+
|
|
195
|
+
for col in jGenes {
|
|
196
|
+
headerName := makeHeaderName(col, "jGene", isSingleCell)
|
|
197
|
+
cdr3SeqStructuredMap[headerName] = { spec: col.spec, data: col.data }
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
return {
|
|
201
|
+
structuredMap: cdr3SeqStructuredMap,
|
|
202
|
+
axisRenames: cdr3SeqAxisRenames
|
|
203
|
+
}
|
|
204
|
+
}
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
filterClonotypes := func(structuredMap, axisRenames, filterMap, datasetSpec) {
|
|
209
|
+
|
|
210
|
+
buildFilterPredicate := func(columnName, filterSpec) {
|
|
211
|
+
filterType := filterSpec["type"]
|
|
212
|
+
referenceValue := filterSpec["reference"]
|
|
213
|
+
col := pt.col(columnName)
|
|
214
|
+
|
|
215
|
+
if filterType == "number_greaterThan" {
|
|
216
|
+
return col.gt(referenceValue)
|
|
217
|
+
} else if filterType == "number_greaterThanOrEqualTo" {
|
|
218
|
+
return col.ge(referenceValue)
|
|
219
|
+
} else if filterType == "number_lessThan" {
|
|
220
|
+
return col.lt(referenceValue)
|
|
221
|
+
} else if filterType == "number_lessThanOrEqualTo" {
|
|
222
|
+
return col.le(referenceValue)
|
|
223
|
+
} else if filterType == "number_equals" {
|
|
224
|
+
return col.eq(referenceValue)
|
|
225
|
+
} else if filterType == "number_notEquals" {
|
|
226
|
+
return col.neq(referenceValue)
|
|
227
|
+
} else if filterType == "string_equals" {
|
|
228
|
+
return col.eq(string(referenceValue))
|
|
229
|
+
} else if filterType == "string_notEquals" {
|
|
230
|
+
return col.neq(string(referenceValue))
|
|
231
|
+
} else if filterType == "string_contains" {
|
|
232
|
+
return col.strContains(string(referenceValue), {literal: true})
|
|
233
|
+
} else if filterType == "string_doesNotContain" {
|
|
234
|
+
return col.strContains(string(referenceValue), {literal: true}).not()
|
|
235
|
+
}
|
|
236
|
+
ll.panic("Unknown filter type: %s", filterType)
|
|
237
|
+
return undefined
|
|
238
|
+
}
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
projection := []
|
|
242
|
+
|
|
243
|
+
projection = append(projection, pt.axis(datasetSpec.axesSpec[1].name).alias("clonotypeKey"))
|
|
244
|
+
|
|
245
|
+
for origAxis, aliasName in axisRenames {
|
|
246
|
+
projection = append(projection, pt.axis(origAxis).alias(aliasName))
|
|
247
|
+
}
|
|
248
|
+
|
|
249
|
+
for colName, _ in structuredMap {
|
|
250
|
+
projection = append(projection, pt.col(colName))
|
|
251
|
+
}
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
wfPt := pt.workflow().cacheInputs(24 * 60 * 60 * 1000)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
dfPt := wfPt.frame(pt.p.full(structuredMap)).select(projection...)
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
filterPredicates := []
|
|
262
|
+
for filterColName, filterSpec in filterMap {
|
|
263
|
+
filterType := filterSpec["type"]
|
|
264
|
+
valueType := filterSpec["valueType"]
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
isValidFilter := false
|
|
268
|
+
if valueType == "String" && text.has_prefix(filterType, "string_") {
|
|
269
|
+
isValidFilter = true
|
|
270
|
+
} else if valueType != "String" && text.has_prefix(filterType, "number_") {
|
|
271
|
+
isValidFilter = true
|
|
272
|
+
}
|
|
273
|
+
|
|
274
|
+
if isValidFilter {
|
|
275
|
+
predicate := buildFilterPredicate(filterColName, filterSpec)
|
|
276
|
+
filterPredicates = append(filterPredicates, predicate)
|
|
277
|
+
}
|
|
278
|
+
}
|
|
279
|
+
|
|
280
|
+
if len(filterPredicates) > 0 {
|
|
281
|
+
dfPt = dfPt.filter(filterPredicates...)
|
|
282
|
+
}
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
dfPt = dfPt.withColumns(pt.lit(1).alias("top"))
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
frameParams := {
|
|
289
|
+
axes: [{
|
|
290
|
+
column: "clonotypeKey",
|
|
291
|
+
spec: datasetSpec.axesSpec[1]
|
|
292
|
+
}],
|
|
293
|
+
columns: [{
|
|
294
|
+
column: "top",
|
|
295
|
+
spec: {
|
|
296
|
+
name: "pl7.app/vdj/sampling-column",
|
|
297
|
+
valueType: "Int",
|
|
298
|
+
domain: {},
|
|
299
|
+
annotations: {
|
|
300
|
+
"pl7.app/label": "Sampling column",
|
|
301
|
+
"pl7.app/table/visibility": "optional",
|
|
302
|
+
"pl7.app/isSubset": "true"
|
|
303
|
+
}
|
|
304
|
+
}
|
|
305
|
+
}]
|
|
306
|
+
}
|
|
307
|
+
|
|
308
|
+
dfPt.save("filteredClonotypes.parquet")
|
|
309
|
+
dfPt.saveFrameDirect("filteredClonotypes", frameParams)
|
|
310
|
+
wfPtResult := wfPt.run()
|
|
311
|
+
|
|
312
|
+
return {
|
|
313
|
+
filteredParquet: wfPtResult.getFile("filteredClonotypes.parquet"),
|
|
314
|
+
pframe: wfPtResult.getFrameDirect("filteredClonotypes")
|
|
315
|
+
}
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
export ll.toStrict({
|
|
319
|
+
makeHeaderName: makeHeaderName,
|
|
320
|
+
prepareClonotypeData: prepareClonotypeData,
|
|
321
|
+
prepareCdr3Data: prepareCdr3Data,
|
|
322
|
+
filterClonotypes: filterClonotypes
|
|
323
|
+
})
|
|
324
|
+
|
|
@@ -19,7 +19,7 @@ getColumns := func(datasetSpec, featureName, bulkChain) {
|
|
|
19
19
|
annotations: {
|
|
20
20
|
"pl7.app/label": "KABAT sequence " + featureName + " Heavy",
|
|
21
21
|
"pl7.app/table/orderPriority": "10",
|
|
22
|
-
|
|
22
|
+
"pl7.app/table/visibility": "default"
|
|
23
23
|
}
|
|
24
24
|
}
|
|
25
25
|
},
|
|
@@ -34,7 +34,7 @@ getColumns := func(datasetSpec, featureName, bulkChain) {
|
|
|
34
34
|
annotations: {
|
|
35
35
|
"pl7.app/label": "KABAT positions " + featureName + " Heavy",
|
|
36
36
|
"pl7.app/table/orderPriority": "9",
|
|
37
|
-
|
|
37
|
+
"pl7.app/table/visibility": "optional"
|
|
38
38
|
}
|
|
39
39
|
}
|
|
40
40
|
}
|
|
@@ -53,7 +53,7 @@ getColumns := func(datasetSpec, featureName, bulkChain) {
|
|
|
53
53
|
annotations: {
|
|
54
54
|
"pl7.app/label": "KABAT sequence " + featureName + " Light",
|
|
55
55
|
"pl7.app/table/orderPriority": "8",
|
|
56
|
-
|
|
56
|
+
"pl7.app/table/visibility": "default"
|
|
57
57
|
}
|
|
58
58
|
}
|
|
59
59
|
},
|
|
@@ -68,7 +68,7 @@ getColumns := func(datasetSpec, featureName, bulkChain) {
|
|
|
68
68
|
annotations: {
|
|
69
69
|
"pl7.app/label": "KABAT positions " + featureName + " Light",
|
|
70
70
|
"pl7.app/table/orderPriority": "7",
|
|
71
|
-
|
|
71
|
+
"pl7.app/table/visibility": "optional"
|
|
72
72
|
}
|
|
73
73
|
}
|
|
74
74
|
}
|
|
@@ -128,4 +128,3 @@ export ll.toStrict({
|
|
|
128
128
|
getColumns: getColumns
|
|
129
129
|
})
|
|
130
130
|
|
|
131
|
-
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
package/package.json
CHANGED
|
@@ -1,20 +1,20 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@platforma-open/milaboratories.top-antibodies.workflow",
|
|
3
|
-
"version": "1.
|
|
3
|
+
"version": "1.14.0",
|
|
4
4
|
"type": "module",
|
|
5
5
|
"description": "Block Workflow",
|
|
6
6
|
"dependencies": {
|
|
7
|
-
"@platforma-sdk/workflow-tengo": "^5.
|
|
7
|
+
"@platforma-sdk/workflow-tengo": "^5.6.4",
|
|
8
8
|
"@platforma-open/milaboratories.software-anarci": "^0.0.3",
|
|
9
|
-
"@platforma-open/milaboratories.top-antibodies.sample-clonotypes": "1.
|
|
10
|
-
"@platforma-open/milaboratories.top-antibodies.
|
|
11
|
-
"@platforma-open/milaboratories.top-antibodies.
|
|
12
|
-
"@platforma-open/milaboratories.top-antibodies.
|
|
13
|
-
"@platforma-open/milaboratories.top-antibodies.
|
|
9
|
+
"@platforma-open/milaboratories.top-antibodies.sample-clonotypes": "1.7.0",
|
|
10
|
+
"@platforma-open/milaboratories.top-antibodies.umap": "1.2.0",
|
|
11
|
+
"@platforma-open/milaboratories.top-antibodies.anarci-kabat": "1.2.0",
|
|
12
|
+
"@platforma-open/milaboratories.top-antibodies.spectratype": "1.7.0",
|
|
13
|
+
"@platforma-open/milaboratories.top-antibodies.assembling-fasta": "1.2.0"
|
|
14
14
|
},
|
|
15
15
|
"devDependencies": {
|
|
16
|
-
"@platforma-sdk/tengo-builder": "^2.3.
|
|
17
|
-
"@platforma-sdk/test": "^1.
|
|
16
|
+
"@platforma-sdk/tengo-builder": "^2.3.14",
|
|
17
|
+
"@platforma-sdk/test": "^1.46.3",
|
|
18
18
|
"vitest": "^2.1.8"
|
|
19
19
|
},
|
|
20
20
|
"scripts": {
|
|
@@ -12,7 +12,7 @@ self.body(func(inputs) {
|
|
|
12
12
|
|
|
13
13
|
inputTsv := inputs.inputTsv
|
|
14
14
|
keyColumn := inputs.keyColumn // "clonotypeKey" or "scClonotypeKey"
|
|
15
|
-
|
|
15
|
+
finalClonotypesParquet := inputs.finalClonotypesParquet // optional
|
|
16
16
|
isSingleCell := inputs.isSingleCell // boolean
|
|
17
17
|
bulkChain := inputs.bulkChain // "H" or "KL" when !isSingleCell
|
|
18
18
|
|
|
@@ -25,14 +25,13 @@ self.body(func(inputs) {
|
|
|
25
25
|
arg("--key_column").arg(keyColumn).
|
|
26
26
|
arg("--output_fasta").arg("assembling.fasta")
|
|
27
27
|
|
|
28
|
-
if
|
|
29
|
-
cmd = cmd.addFile("finalClonotypes.
|
|
30
|
-
arg("--
|
|
28
|
+
if finalClonotypesParquet != undefined {
|
|
29
|
+
cmd = cmd.addFile("finalClonotypes.parquet", finalClonotypesParquet).
|
|
30
|
+
arg("--final_clonotypes_parquet").arg("finalClonotypes.parquet")
|
|
31
31
|
}
|
|
32
32
|
|
|
33
33
|
cmd = cmd.saveFile("assembling.fasta").
|
|
34
34
|
printErrStreamToStdout().
|
|
35
|
-
saveStdoutContent().
|
|
36
35
|
cache(24 * 60 * 60 * 1000).
|
|
37
36
|
run()
|
|
38
37
|
|
|
@@ -52,7 +51,6 @@ self.body(func(inputs) {
|
|
|
52
51
|
}
|
|
53
52
|
anarciBuilder = anarciBuilder.
|
|
54
53
|
printErrStreamToStdout().
|
|
55
|
-
saveStdoutContent().
|
|
56
54
|
cache(24 * 60 * 60 * 1000).
|
|
57
55
|
run()
|
|
58
56
|
|
|
@@ -77,7 +75,6 @@ self.body(func(inputs) {
|
|
|
77
75
|
arg("--out_tsv").arg("kabat.tsv").
|
|
78
76
|
saveFile("kabat.tsv").
|
|
79
77
|
printErrStreamToStdout().
|
|
80
|
-
saveStdoutContent().
|
|
81
78
|
cache(24 * 60 * 60 * 1000).
|
|
82
79
|
run()
|
|
83
80
|
|