@pixelml/claw 3.3.1 → 3.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claw/skill/agenticflow-skill/GUIDES.md +2269 -0
- package/.claw/skill/agenticflow-skill/OPTIMIZATION.md +84 -0
- package/.claw/skill/agenticflow-skill/SKILL.md +56 -0
- package/.claw/skill/agenticflow-skill/references/mcp_integrations.md +373 -0
- package/.claw/skill/agenticflow-skill/references/node_types.md +2562 -0
- package/.claw/skill/agenticflow-skill/references/workflow_guide.md +350 -0
- package/package.json +12 -12
|
@@ -0,0 +1,350 @@
|
|
|
1
|
+
# AgenticFlow Workflow Design Guide
|
|
2
|
+
|
|
3
|
+
## Core Design Principles
|
|
4
|
+
|
|
5
|
+
### Progressive Disclosure Approach
|
|
6
|
+
Design workflows with clear phases: data collection → processing → distribution. Each phase should build on the previous one.
|
|
7
|
+
|
|
8
|
+
### Template Variable Syntax
|
|
9
|
+
Use `{{node_name.field}}` syntax for data flow between nodes:
|
|
10
|
+
```javascript
|
|
11
|
+
{{node_name.response}} // API call response
|
|
12
|
+
{{node_name.content}} // LLM output
|
|
13
|
+
{{node_name.output}} // MCP action output
|
|
14
|
+
{{input_parameter_name}} // Input parameters
|
|
15
|
+
{{__app_connections__['uuid']}} // MCP connections
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
## Hybrid Workflow Patterns
|
|
19
|
+
|
|
20
|
+
### Pattern 1: Data Collection + AI Processing + Multi-Channel Distribution
|
|
21
|
+
```javascript
|
|
22
|
+
{
|
|
23
|
+
"name": "crm_enrichment_workflow",
|
|
24
|
+
"nodes": [
|
|
25
|
+
// Collect data from multiple sources
|
|
26
|
+
{
|
|
27
|
+
"name": "get_crm_data",
|
|
28
|
+
"node_type_name": "mcp_run_action",
|
|
29
|
+
"input_config": {
|
|
30
|
+
"action": "HUBSPOT-GET-CONTACTS",
|
|
31
|
+
"input_params": {
|
|
32
|
+
"instruction": "Get all contacts created in last 7 days with their engagement scores"
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
},
|
|
36
|
+
// AI Analysis
|
|
37
|
+
{
|
|
38
|
+
"name": "analyze_contacts",
|
|
39
|
+
"node_type_name": "llm",
|
|
40
|
+
"input_config": {
|
|
41
|
+
"model": "DeepSeek V3",
|
|
42
|
+
"human_message": "Analyze these contacts and segment them: {{get_crm_data.output}}"
|
|
43
|
+
}
|
|
44
|
+
},
|
|
45
|
+
// Multi-channel outreach
|
|
46
|
+
{
|
|
47
|
+
"name": "email_campaign",
|
|
48
|
+
"node_type_name": "mcp_run_action",
|
|
49
|
+
"input_config": {
|
|
50
|
+
"action": "SENDGRID-SEND-BULK-EMAIL",
|
|
51
|
+
"input_params": {
|
|
52
|
+
"instruction": "Send personalized emails based on segmentation: {{analyze_contacts.content}}"
|
|
53
|
+
}
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
]
|
|
57
|
+
}
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
### Pattern 2: Web Scraping + External Service Integration
|
|
61
|
+
```javascript
|
|
62
|
+
{
|
|
63
|
+
"name": "competitor_analysis_workflow",
|
|
64
|
+
"nodes": [
|
|
65
|
+
{
|
|
66
|
+
"name": "scrape_competitor",
|
|
67
|
+
"node_type_name": "web_scraping",
|
|
68
|
+
"input_config": {
|
|
69
|
+
"web_url": "{{competitor_url}}",
|
|
70
|
+
"max_tokens": 10000
|
|
71
|
+
}
|
|
72
|
+
},
|
|
73
|
+
{
|
|
74
|
+
"name": "analyze_data",
|
|
75
|
+
"node_type_name": "llm",
|
|
76
|
+
"input_config": {
|
|
77
|
+
"model": "DeepSeek V3",
|
|
78
|
+
"human_message": "Extract pricing and features: {{scrape_competitor.scraped_content}}"
|
|
79
|
+
}
|
|
80
|
+
},
|
|
81
|
+
{
|
|
82
|
+
"name": "update_sheet",
|
|
83
|
+
"node_type_name": "mcp_run_action",
|
|
84
|
+
"input_config": {
|
|
85
|
+
"action": "GOOGLE_SHEETS-UPDATE-RANGE",
|
|
86
|
+
"input_params": {
|
|
87
|
+
"instruction": "Update competitor analysis sheet with: {{analyze_data.content}}"
|
|
88
|
+
}
|
|
89
|
+
}
|
|
90
|
+
}
|
|
91
|
+
]
|
|
92
|
+
}
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
### Pattern 3: Content Creation + Multi-Platform Distribution
|
|
96
|
+
```javascript
|
|
97
|
+
{
|
|
98
|
+
"name": "content_syndication_workflow",
|
|
99
|
+
"nodes": [
|
|
100
|
+
{
|
|
101
|
+
"name": "generate_content",
|
|
102
|
+
"node_type_name": "llm",
|
|
103
|
+
"input_config": {
|
|
104
|
+
"model": "Claude 3.5 Sonnet",
|
|
105
|
+
"human_message": "Create engaging social media post about: {{topic}}"
|
|
106
|
+
}
|
|
107
|
+
},
|
|
108
|
+
{
|
|
109
|
+
"name": "create_image",
|
|
110
|
+
"node_type_name": "generate_image",
|
|
111
|
+
"input_config": {
|
|
112
|
+
"prompt": "Create an image for social media post: {{generate_content.content}}"
|
|
113
|
+
}
|
|
114
|
+
},
|
|
115
|
+
{
|
|
116
|
+
"name": "post_to_linkedin",
|
|
117
|
+
"node_type_name": "mcp_run_action",
|
|
118
|
+
"input_config": {
|
|
119
|
+
"action": "LINKEDIN-CREATE-POST",
|
|
120
|
+
"input_params": {
|
|
121
|
+
"instruction": "Post this content with image: {{generate_content.content}} and {{create_image.image_url}}"
|
|
122
|
+
}
|
|
123
|
+
}
|
|
124
|
+
},
|
|
125
|
+
{
|
|
126
|
+
"name": "post_to_twitter",
|
|
127
|
+
"node_type_name": "mcp_run_action",
|
|
128
|
+
"input_config": {
|
|
129
|
+
"action": "TWITTER-CREATE-TWEET",
|
|
130
|
+
"input_params": {
|
|
131
|
+
"instruction": "Tweet this content: {{generate_content.content}}"
|
|
132
|
+
}
|
|
133
|
+
}
|
|
134
|
+
}
|
|
135
|
+
]
|
|
136
|
+
}
|
|
137
|
+
```
|
|
138
|
+
|
|
139
|
+
## Parallel Processing Patterns
|
|
140
|
+
|
|
141
|
+
### Efficient Parallel Execution
|
|
142
|
+
For workflows that can process multiple items simultaneously:
|
|
143
|
+
```javascript
|
|
144
|
+
{
|
|
145
|
+
"name": "bulk_research_workflow",
|
|
146
|
+
"nodes": [
|
|
147
|
+
{
|
|
148
|
+
"name": "get_competitors",
|
|
149
|
+
"node_type_name": "llm",
|
|
150
|
+
"input_config": {
|
|
151
|
+
"human_message": "List top 5 competitors in {{industry}}"
|
|
152
|
+
}
|
|
153
|
+
},
|
|
154
|
+
// Research branches execute in parallel
|
|
155
|
+
{
|
|
156
|
+
"name": "research_competitor_1",
|
|
157
|
+
"node_type_name": "web_scraping",
|
|
158
|
+
"input_config": {
|
|
159
|
+
"web_url": "{{get_competitors.competitors[0]}}"
|
|
160
|
+
},
|
|
161
|
+
"prevNodeName": null
|
|
162
|
+
},
|
|
163
|
+
{
|
|
164
|
+
"name": "research_competitor_2",
|
|
165
|
+
"node_type_name": "web_scraping",
|
|
166
|
+
"input_config": {
|
|
167
|
+
"web_url": "{{get_competitors.competitors[1]}}"
|
|
168
|
+
},
|
|
169
|
+
"prevNodeName": null
|
|
170
|
+
},
|
|
171
|
+
{
|
|
172
|
+
"name": "research_competitor_3",
|
|
173
|
+
"node_type_name": "web_scraping",
|
|
174
|
+
"input_config": {
|
|
175
|
+
"web_url": "{{get_competitors.competitors[2]}}"
|
|
176
|
+
},
|
|
177
|
+
"prevNodeName": null
|
|
178
|
+
},
|
|
179
|
+
// Final aggregation waits for all research
|
|
180
|
+
{
|
|
181
|
+
"name": "compile_analysis",
|
|
182
|
+
"node_type_name": "llm",
|
|
183
|
+
"input_config": {
|
|
184
|
+
"human_message": "Analyze and compare these competitor research results: {{research_competitor_1.scraped_content}}, {{research_competitor_2.scraped_content}}, {{research_competitor_3.scraped_content}}"
|
|
185
|
+
},
|
|
186
|
+
"prevNodeName": "research_competitor_3"
|
|
187
|
+
}
|
|
188
|
+
]
|
|
189
|
+
}
|
|
190
|
+
```
|
|
191
|
+
|
|
192
|
+
## Error Handling Patterns
|
|
193
|
+
|
|
194
|
+
### Robust Workflow Design
|
|
195
|
+
Always include error handling for critical operations:
|
|
196
|
+
```javascript
|
|
197
|
+
{
|
|
198
|
+
"name": "robust_email_workflow",
|
|
199
|
+
"nodes": [
|
|
200
|
+
{
|
|
201
|
+
"name": "get_email_list",
|
|
202
|
+
"node_type_name": "mcp_run_action",
|
|
203
|
+
"input_config": {
|
|
204
|
+
"action": "GOOGLE_SHEETS-GET-RANGE",
|
|
205
|
+
"input_params": {
|
|
206
|
+
"instruction": "Get email addresses from sheet"
|
|
207
|
+
}
|
|
208
|
+
}
|
|
209
|
+
},
|
|
210
|
+
{
|
|
211
|
+
"name": "validate_emails",
|
|
212
|
+
"node_type_name": "llm",
|
|
213
|
+
"input_config": {
|
|
214
|
+
"model": "DeepSeek V3",
|
|
215
|
+
"human_message": "Validate these email addresses and remove invalid ones: {{get_email_list.output}}"
|
|
216
|
+
}
|
|
217
|
+
},
|
|
218
|
+
{
|
|
219
|
+
"name": "send_emails",
|
|
220
|
+
"node_type_name": "mcp_run_action",
|
|
221
|
+
"input_config": {
|
|
222
|
+
"action": "SENDGRID-SEND-BULK-EMAIL",
|
|
223
|
+
"input_params": {
|
|
224
|
+
"instruction": "Send emails to validated addresses: {{validate_emails.content}}"
|
|
225
|
+
}
|
|
226
|
+
}
|
|
227
|
+
},
|
|
228
|
+
{
|
|
229
|
+
"name": "log_results",
|
|
230
|
+
"node_type_name": "mcp_run_action",
|
|
231
|
+
"input_config": {
|
|
232
|
+
"action": "GOOGLE_SHEETS-APPEND-ROW",
|
|
233
|
+
"input_params": {
|
|
234
|
+
"instruction": "Log email campaign results: {{send_emails.output}}"
|
|
235
|
+
}
|
|
236
|
+
}
|
|
237
|
+
}
|
|
238
|
+
]
|
|
239
|
+
}
|
|
240
|
+
```
|
|
241
|
+
|
|
242
|
+
## Input Schema Design
|
|
243
|
+
|
|
244
|
+
### Professional User Interfaces
|
|
245
|
+
Design input schemas with proper UI metadata:
|
|
246
|
+
```javascript
|
|
247
|
+
{
|
|
248
|
+
"input_schema": {
|
|
249
|
+
"topic": {
|
|
250
|
+
"type": "string",
|
|
251
|
+
"title": "Content Topic",
|
|
252
|
+
"description": "What should the content be about?",
|
|
253
|
+
"ui_metadata": {
|
|
254
|
+
"type": "short_text",
|
|
255
|
+
"order": 0,
|
|
256
|
+
"placeholder": "e.g., AI trends in marketing"
|
|
257
|
+
}
|
|
258
|
+
},
|
|
259
|
+
"platforms": {
|
|
260
|
+
"type": "array",
|
|
261
|
+
"items": {"type": "string"},
|
|
262
|
+
"title": "Target Platforms",
|
|
263
|
+
"description": "Where should this be posted?",
|
|
264
|
+
"ui_metadata": {
|
|
265
|
+
"type": "multi_select",
|
|
266
|
+
"options": ["LinkedIn", "Twitter", "Facebook", "Instagram"],
|
|
267
|
+
"value": ["LinkedIn"],
|
|
268
|
+
"order": 1
|
|
269
|
+
}
|
|
270
|
+
},
|
|
271
|
+
"tone": {
|
|
272
|
+
"type": "string",
|
|
273
|
+
"title": "Content Tone",
|
|
274
|
+
"description": "What tone should the content have?",
|
|
275
|
+
"ui_metadata": {
|
|
276
|
+
"type": "dropdown",
|
|
277
|
+
"options": ["Professional", "Casual", "Humorous", "Inspirational"],
|
|
278
|
+
"value": "Professional",
|
|
279
|
+
"order": 2
|
|
280
|
+
}
|
|
281
|
+
}
|
|
282
|
+
}
|
|
283
|
+
}
|
|
284
|
+
```
|
|
285
|
+
|
|
286
|
+
## Best Practices
|
|
287
|
+
|
|
288
|
+
### Performance Optimization
|
|
289
|
+
1. **Use Parallel Processing**: Execute independent nodes simultaneously
|
|
290
|
+
2. **Cache Results**: Store frequently used data in intermediate nodes
|
|
291
|
+
3. **Batch Operations**: Group similar operations together
|
|
292
|
+
4. **Use Efficient Models**: Choose appropriate LLM models (DeepSeek V3 for simple tasks, Claude 3.5 for complex ones)
|
|
293
|
+
|
|
294
|
+
### Maintainability
|
|
295
|
+
1. **Descriptive Node Names**: Use clear, action-oriented names
|
|
296
|
+
2. **Consistent Data Flow**: Follow predictable patterns
|
|
297
|
+
3. **Documentation**: Include comments for complex logic
|
|
298
|
+
4. **Modular Design**: Break large workflows into reusable components
|
|
299
|
+
|
|
300
|
+
### Error Prevention
|
|
301
|
+
1. **Input Validation**: Validate data before processing
|
|
302
|
+
2. **Connection Checks**: Verify MCP connections exist
|
|
303
|
+
3. **Rate Limiting**: Respect API rate limits
|
|
304
|
+
4. **Fallback Logic**: Provide alternatives for critical operations
|
|
305
|
+
|
|
306
|
+
## Common Architectural Patterns
|
|
307
|
+
|
|
308
|
+
### E-commerce Automation
|
|
309
|
+
```
|
|
310
|
+
Product Data → Price Analysis → Inventory Update → Notification System
|
|
311
|
+
```
|
|
312
|
+
|
|
313
|
+
### Content Marketing Pipeline
|
|
314
|
+
```
|
|
315
|
+
Research → Content Creation → Image Generation → Multi-Platform Posting
|
|
316
|
+
```
|
|
317
|
+
|
|
318
|
+
### Customer Support Automation
|
|
319
|
+
```
|
|
320
|
+
Ticket Analysis → Response Generation → CRM Update → Customer Notification
|
|
321
|
+
```
|
|
322
|
+
|
|
323
|
+
### Data Processing Pipeline
|
|
324
|
+
```
|
|
325
|
+
Data Collection → Cleaning/Validation → AI Processing → Storage/Distribution
|
|
326
|
+
```
|
|
327
|
+
|
|
328
|
+
## Troubleshooting Guide
|
|
329
|
+
|
|
330
|
+
### Common Issues
|
|
331
|
+
|
|
332
|
+
**Template Variable Errors**
|
|
333
|
+
- Verify node names match exactly
|
|
334
|
+
- Check field names in node output
|
|
335
|
+
- Use proper syntax: `{{node_name.field}}`
|
|
336
|
+
|
|
337
|
+
**MCP Connection Issues**
|
|
338
|
+
- Verify connection UUID is correct
|
|
339
|
+
- Ensure MCP service is enabled
|
|
340
|
+
- Check authentication status
|
|
341
|
+
|
|
342
|
+
**Workflow Performance**
|
|
343
|
+
- Reduce parallel execution for complex operations
|
|
344
|
+
- Use lighter LLM models where possible
|
|
345
|
+
- Implement caching for repeated operations
|
|
346
|
+
|
|
347
|
+
**Validation Failures**
|
|
348
|
+
- Check required fields in input_schema
|
|
349
|
+
- Verify node configurations
|
|
350
|
+
- Ensure output_mapping is properly structured
|
package/package.json
CHANGED
|
@@ -6,18 +6,18 @@
|
|
|
6
6
|
"scripts": {
|
|
7
7
|
"postinstall": "bun ./postinstall.mjs || node ./postinstall.mjs"
|
|
8
8
|
},
|
|
9
|
-
"version": "3.3.
|
|
9
|
+
"version": "3.3.3",
|
|
10
10
|
"optionalDependencies": {
|
|
11
|
-
"@pixelml/claw-linux-arm64": "3.3.
|
|
12
|
-
"@pixelml/claw-linux-x64": "3.3.
|
|
13
|
-
"@pixelml/claw-linux-x64-baseline": "3.3.
|
|
14
|
-
"@pixelml/claw-linux-arm64-musl": "3.3.
|
|
15
|
-
"@pixelml/claw-linux-x64-musl": "3.3.
|
|
16
|
-
"@pixelml/claw-linux-x64-baseline-musl": "3.3.
|
|
17
|
-
"@pixelml/claw-darwin-arm64": "3.3.
|
|
18
|
-
"@pixelml/claw-darwin-x64": "3.3.
|
|
19
|
-
"@pixelml/claw-darwin-x64-baseline": "3.3.
|
|
20
|
-
"@pixelml/claw-windows-x64": "3.3.
|
|
21
|
-
"@pixelml/claw-windows-x64-baseline": "3.3.
|
|
11
|
+
"@pixelml/claw-linux-arm64": "3.3.3",
|
|
12
|
+
"@pixelml/claw-linux-x64": "3.3.3",
|
|
13
|
+
"@pixelml/claw-linux-x64-baseline": "3.3.3",
|
|
14
|
+
"@pixelml/claw-linux-arm64-musl": "3.3.3",
|
|
15
|
+
"@pixelml/claw-linux-x64-musl": "3.3.3",
|
|
16
|
+
"@pixelml/claw-linux-x64-baseline-musl": "3.3.3",
|
|
17
|
+
"@pixelml/claw-darwin-arm64": "3.3.3",
|
|
18
|
+
"@pixelml/claw-darwin-x64": "3.3.3",
|
|
19
|
+
"@pixelml/claw-darwin-x64-baseline": "3.3.3",
|
|
20
|
+
"@pixelml/claw-windows-x64": "3.3.3",
|
|
21
|
+
"@pixelml/claw-windows-x64-baseline": "3.3.3"
|
|
22
22
|
}
|
|
23
23
|
}
|