@pirireis/webglobeplugins 0.16.4 → 0.16.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/Math/arc.js +92 -2
- package/Math/circle-cdf-points.js +2 -2
- package/Math/circle.js +2 -2
- package/Math/juction/arc-plane.js +67 -12
- package/Math/juction/line-sphere.js +6 -6
- package/Math/juction/plane-plane.js +4 -6
- package/Math/methods.js +5 -5
- package/Math/templete-shapes/grid-visually-equal.js +0 -1
- package/Math/tessellation/earcut/adapters.js +37 -0
- package/Math/tessellation/methods.js +46 -0
- package/Math/tessellation/shred-input.js +18 -0
- package/Math/tessellation/tessellation-algorithm.js +67 -0
- package/Math/tessellation/tiler.js +50 -0
- package/Math/tessellation/triangle-tessellation-meta.js +370 -0
- package/Math/tessellation/triangle-tessellation.js +10 -0
- package/Math/tessellation/types.js +1 -0
- package/Math/tessellation/zoom-catch.js +1 -0
- package/Math/vec3.js +26 -1
- package/package.json +4 -2
- package/programs/polygon-on-globe/texture-dem-triangle-test-plugin-triangle.js +178 -0
- package/programs/polygon-on-globe/texture-dem-triangle-test-plugin.js +31 -10
- package/programs/polygon-on-globe/texture-dem-triangles.js +53 -11
- package/programs/totems/camerauniformblock.js +3 -3
- package/semiplugins/shape-on-terrain/arc-plugin.js +5 -5
- package/semiplugins/shape-on-terrain/padding-1-degree.js +0 -1
- package/util/gl-util/uniform-block/manager.js +4 -4
- package/util/shaderfunctions/geometrytransformations.js +6 -0
- package/Math/mesh/mapbox-delaunay.js +0 -544
package/Math/arc.js
CHANGED
|
@@ -10,6 +10,15 @@ const _originPlane = /*@__PURE__*/ planeCreate(vec3create(0, 0, 1), 0);
|
|
|
10
10
|
// dont change distance of _originPlane
|
|
11
11
|
const _rotationQuaternion = /*@__PURE__*/ quaternionCreate();
|
|
12
12
|
const _longLat = /*@__PURE__*/ [0, 0];
|
|
13
|
+
// Normalize angles to [0, 2π)
|
|
14
|
+
function normalizeLon(angle) {
|
|
15
|
+
while (angle < 0)
|
|
16
|
+
angle += 2 * Math.PI;
|
|
17
|
+
while (angle >= 2 * Math.PI)
|
|
18
|
+
angle -= 2 * Math.PI;
|
|
19
|
+
return angle;
|
|
20
|
+
}
|
|
21
|
+
;
|
|
13
22
|
function create(p0, p1) {
|
|
14
23
|
const normal = vec3create(0, 0, 0);
|
|
15
24
|
cross(normal, p0, p1);
|
|
@@ -25,7 +34,6 @@ function create(p0, p1) {
|
|
|
25
34
|
// Handle opposite points case
|
|
26
35
|
const tempPlane = planeCreate(vec3create(), 0);
|
|
27
36
|
_oppositePointsHandle(p0, p1, normal, tempPlane);
|
|
28
|
-
vec3copy(coverPlaneNormal, tempPlane.normal);
|
|
29
37
|
distance = tempPlane.distance;
|
|
30
38
|
}
|
|
31
39
|
return {
|
|
@@ -43,6 +51,7 @@ function set(out, p0, p1) {
|
|
|
43
51
|
vec3copy(out.p0, p0);
|
|
44
52
|
vec3copy(out.p1, p1);
|
|
45
53
|
cross(out.normal, p0, p1);
|
|
54
|
+
normalize(out.normal, out.normal); // ← ADD THIS LINE - normalize the normal vector!
|
|
46
55
|
vec3set(_0vector, p0[0] + p1[0], p0[1] + p1[1], p0[2] + p1[2]);
|
|
47
56
|
const ls = lengthSquared(_0vector);
|
|
48
57
|
if (ls > EPSILON) {
|
|
@@ -52,6 +61,8 @@ function set(out, p0, p1) {
|
|
|
52
61
|
else {
|
|
53
62
|
_oppositePointsHandle(p0, p1, out.normal, out.coverPlane);
|
|
54
63
|
}
|
|
64
|
+
// Also update coverAngle to match what create() does
|
|
65
|
+
out.coverAngle = Math.acos(dot(p0, p1));
|
|
55
66
|
}
|
|
56
67
|
function copy(out, a) {
|
|
57
68
|
vec3copy(out.p0, a.p0);
|
|
@@ -119,6 +130,7 @@ function _oppositePointsHandle(p0, p1, outNormal, outCoverPlane) {
|
|
|
119
130
|
}
|
|
120
131
|
planeFromPoints({ normal: outNormal, distance: 0 }, p0, _0vector, p1);
|
|
121
132
|
cross(outCoverPlane.normal, outNormal, p0);
|
|
133
|
+
normalize(outCoverPlane.normal, outCoverPlane.normal);
|
|
122
134
|
}
|
|
123
135
|
function _populatePointsWithClosestPointInsideArc(out, arc, count, closestPoint) {
|
|
124
136
|
// two parts divided by closest point will be populated seperately
|
|
@@ -199,4 +211,82 @@ function _distanceSampling(out, count, inArc, cameraPosition = vec3create(0, 0,
|
|
|
199
211
|
out[finalIndex * 2 + 1] = _longLat[1];
|
|
200
212
|
}
|
|
201
213
|
}
|
|
202
|
-
|
|
214
|
+
function calculateZLimitPoint(inArc, out) {
|
|
215
|
+
// The arc's plane is perpendicular to the equator, so the arc is on the equator.
|
|
216
|
+
// All points have z=0, so there's no unique z-limit point.
|
|
217
|
+
if (Math.abs(inArc.normal[2]) > 1 - EPSILON) {
|
|
218
|
+
return false;
|
|
219
|
+
}
|
|
220
|
+
// The Z-limit points of a great circle are the two points on it that are
|
|
221
|
+
// closest to the North and South poles. Their 3D coordinates can be
|
|
222
|
+
// calculated from the normal vector of the great circle's plane.
|
|
223
|
+
const nz = inArc.normal[2];
|
|
224
|
+
const n_xy_len = Math.sqrt(inArc.normal[0] * inArc.normal[0] + inArc.normal[1] * inArc.normal[1]);
|
|
225
|
+
// Candidate 1: Highest Z value (closest to North Pole)
|
|
226
|
+
const p_max_z = vec3.create(-inArc.normal[0] * nz / n_xy_len, -inArc.normal[1] * nz / n_xy_len, n_xy_len);
|
|
227
|
+
// Candidate 2: Lowest Z value (closest to South Pole)
|
|
228
|
+
const p_min_z = vec3.create(inArc.normal[0] * nz / n_xy_len, inArc.normal[1] * nz / n_xy_len, -n_xy_len);
|
|
229
|
+
// Now, we check if either of these points lie on the given arc segment.
|
|
230
|
+
// A point is on the shorter arc if its projection onto the cover plane's
|
|
231
|
+
// normal is on the positive side.
|
|
232
|
+
const d_max = dot(p_max_z, inArc.coverPlane.normal);
|
|
233
|
+
const d_min = dot(p_min_z, inArc.coverPlane.normal);
|
|
234
|
+
if (d_max >= inArc.coverPlane.distance - EPSILON) {
|
|
235
|
+
vec3.copy(out, p_max_z);
|
|
236
|
+
return true;
|
|
237
|
+
}
|
|
238
|
+
if (d_min >= inArc.coverPlane.distance - EPSILON) {
|
|
239
|
+
vec3.copy(out, p_min_z);
|
|
240
|
+
return true;
|
|
241
|
+
}
|
|
242
|
+
return false;
|
|
243
|
+
}
|
|
244
|
+
function doesArcPassThroughMeridian(inArc, meridians) {
|
|
245
|
+
const result = new Array(meridians.length).fill(false);
|
|
246
|
+
// Get longitude angles for p0 and p1
|
|
247
|
+
const p0Lon = Math.atan2(inArc.p0[1], inArc.p0[0]);
|
|
248
|
+
const p1Lon = Math.atan2(inArc.p1[1], inArc.p1[0]);
|
|
249
|
+
if (inArc.p0[2] >= 1 - EPSILON || inArc.p1[2] >= 1 - EPSILON) {
|
|
250
|
+
return result;
|
|
251
|
+
}
|
|
252
|
+
const p0LonNorm = normalizeLon(p0Lon);
|
|
253
|
+
const p1LonNorm = normalizeLon(p1Lon);
|
|
254
|
+
// Determine if we're taking the shorter or longer arc
|
|
255
|
+
let startLon = p0LonNorm;
|
|
256
|
+
let endLon = p1LonNorm;
|
|
257
|
+
// Calculate the angular difference both ways
|
|
258
|
+
const diff1 = normalizeLon(endLon - startLon);
|
|
259
|
+
// Take the shorter path (great circle property)
|
|
260
|
+
const takeShorterPath = diff1 <= Math.PI;
|
|
261
|
+
if (!takeShorterPath) {
|
|
262
|
+
// Swap start and end for the shorter path
|
|
263
|
+
[startLon, endLon] = [endLon, startLon];
|
|
264
|
+
}
|
|
265
|
+
for (let i = 0; i < meridians.length; i++) {
|
|
266
|
+
const meridian = normalizeLon(meridians[i]);
|
|
267
|
+
// Check if meridian is between start and end longitudes
|
|
268
|
+
if (takeShorterPath) {
|
|
269
|
+
if (startLon <= endLon) {
|
|
270
|
+
// Normal case: no wraparound
|
|
271
|
+
result[i] = meridian >= startLon && meridian <= endLon;
|
|
272
|
+
}
|
|
273
|
+
else {
|
|
274
|
+
// Wraparound case: arc crosses 0°/360°
|
|
275
|
+
result[i] = meridian >= startLon || meridian <= endLon;
|
|
276
|
+
}
|
|
277
|
+
}
|
|
278
|
+
else {
|
|
279
|
+
// Taking the longer path
|
|
280
|
+
if (startLon <= endLon) {
|
|
281
|
+
// Arc goes the long way around
|
|
282
|
+
result[i] = meridian <= startLon || meridian >= endLon;
|
|
283
|
+
}
|
|
284
|
+
else {
|
|
285
|
+
// Normal case for long path
|
|
286
|
+
result[i] = meridian >= endLon && meridian <= startLon;
|
|
287
|
+
}
|
|
288
|
+
}
|
|
289
|
+
}
|
|
290
|
+
return result;
|
|
291
|
+
}
|
|
292
|
+
export { create, set, copy, clone, isPointOn, equals, closestPoint, populatePoints, calculateZLimitPoint, doesArcPassThroughMeridian };
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
import {
|
|
1
|
+
import { RADIAN } from "./methods";
|
|
2
2
|
function createCummulativeTemplate(numberOfPoints, strength, denseRatio = 0.5 // Ratio of points to be densely packed at the start.
|
|
3
3
|
) {
|
|
4
4
|
// Handle edge cases for the number of points.
|
|
@@ -60,7 +60,7 @@ function globeFindPointByPolar(out, globe, centerLong, centerLat, radius, ratios
|
|
|
60
60
|
}
|
|
61
61
|
}
|
|
62
62
|
function globeFindPointByPolarHalfCircle(out, globe, centerLong, centerLat, radius, rotation, ratios) {
|
|
63
|
-
const rotCentigrade = rotation /
|
|
63
|
+
const rotCentigrade = rotation / RADIAN + 720;
|
|
64
64
|
for (let i = 0; i < ratios.length; i++) {
|
|
65
65
|
const point = globe.Math.FindPointByPolar(centerLong, centerLat, radius, (ratios[i] * 180 + rotCentigrade) % 360);
|
|
66
66
|
out[i * 2] = point.long;
|
package/Math/circle.js
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
import {
|
|
1
|
+
import { RADIAN } from './methods';
|
|
2
2
|
import { subtract, normalize, dot, fromLongLatToUnitVector, copy, multiplyScalar, clone } from './vec3';
|
|
3
3
|
const _0vec3 = [0, 0, 0];
|
|
4
4
|
function closestAzimuthAngle(circleProperties, point) {
|
|
@@ -15,7 +15,7 @@ function closestAzimuthAngle(circleProperties, point) {
|
|
|
15
15
|
}
|
|
16
16
|
function createCircleClosestAzimuthAngleProperties(circle) {
|
|
17
17
|
const normal = Array(3);
|
|
18
|
-
fromLongLatToUnitVector(normal, [circle.center[0] *
|
|
18
|
+
fromLongLatToUnitVector(normal, [circle.center[0] * RADIAN, circle.center[1] * RADIAN]);
|
|
19
19
|
const N = clone(normal);
|
|
20
20
|
const distance = dot([0, 0, 1], normal);
|
|
21
21
|
multiplyScalar(N, N, distance);
|
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
import { EPSILON } from "../constants";
|
|
2
|
-
import { create as vec3create, copy as vec3copy, dot, distanceSquared, } from "../vec3";
|
|
2
|
+
import { create as vec3create, copy as vec3copy, dot, distanceSquared, copy, normalize } from "../vec3";
|
|
3
3
|
import { create as lineCreate } from "../line";
|
|
4
4
|
import { create as planeCreate, distanceToPoint, getUnitSphereRadiusAngle } from "../plane";
|
|
5
5
|
import { copy as arcCopy, set as arcSet } from "../arc";
|
|
6
|
-
import {
|
|
6
|
+
import { planePlaneJunction } from "./plane-plane";
|
|
7
7
|
import { lineSphereIntersection } from "./line-sphere";
|
|
8
8
|
const _intersectionLine = /*@__PURE__*/ lineCreate();
|
|
9
9
|
const _originPlane = /*@__PURE__*/ planeCreate();
|
|
@@ -39,9 +39,9 @@ export function arcSlice(out, inArc, junctionPlane) {
|
|
|
39
39
|
}
|
|
40
40
|
// plane-plane intersection line should be calculated for the rest of the calculations
|
|
41
41
|
vec3copy(_originPlane.normal, inArc.normal);
|
|
42
|
-
const isPlaneJunctions =
|
|
42
|
+
const isPlaneJunctions = planePlaneJunction(_intersectionLine, _originPlane, junctionPlane);
|
|
43
43
|
if (!isPlaneJunctions) { // case C: planes are parallel.
|
|
44
|
-
if (junctionPlane.distance <= 0) {
|
|
44
|
+
if (junctionPlane.distance <= 0) { // same direction
|
|
45
45
|
arcCopy(out[0], inArc);
|
|
46
46
|
return 1; // No intersection
|
|
47
47
|
}
|
|
@@ -53,23 +53,35 @@ export function arcSlice(out, inArc, junctionPlane) {
|
|
|
53
53
|
// calculate the intersection points
|
|
54
54
|
const isSphereIntersection = lineSphereIntersection(_intersectionPoints, _intersectionLine, _originSphere);
|
|
55
55
|
if (!isSphereIntersection) {
|
|
56
|
-
// other edge caes should be covered by now
|
|
57
56
|
return 0; // No intersection
|
|
58
57
|
}
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
const
|
|
58
|
+
// ← ADD NORMALIZATION HERE
|
|
59
|
+
normalize(_intersectionPoints[0], _intersectionPoints[0]);
|
|
60
|
+
normalize(_intersectionPoints[1], _intersectionPoints[1]);
|
|
61
|
+
const i0IsCovered = distanceToPoint(inArc.coverPlane, _intersectionPoints[0]) > EPSILON;
|
|
62
|
+
const i1IsCovered = distanceToPoint(inArc.coverPlane, _intersectionPoints[1]) > EPSILON;
|
|
63
|
+
const p0IsVisible = distanceToPoint(junctionPlane, inArc.p0) > EPSILON;
|
|
64
|
+
const p1IsVisible = distanceToPoint(junctionPlane, inArc.p1) > EPSILON;
|
|
63
65
|
if (!p0IsVisible && !p1IsVisible && !i0IsCovered && !i1IsCovered) {
|
|
64
66
|
return 0; // No intersection
|
|
65
67
|
}
|
|
66
68
|
if (i0IsCovered && i1IsCovered && p0IsVisible && p1IsVisible) {
|
|
67
69
|
// calculate which points are closer
|
|
70
|
+
if (dot(inArc.coverPlane.normal, junctionPlane.normal) > 1 - EPSILON) {
|
|
71
|
+
arcCopy(out[0], inArc);
|
|
72
|
+
return 1;
|
|
73
|
+
}
|
|
74
|
+
else if (dot(inArc.coverPlane.normal, junctionPlane.normal) < -1 + EPSILON) {
|
|
75
|
+
return 0;
|
|
76
|
+
}
|
|
77
|
+
// Determine which intersection point is closer to p0
|
|
68
78
|
const p0i0DistanceSquared = distanceSquared(inArc.p0, _intersectionPoints[0]);
|
|
69
79
|
const p0i1DistanceSquared = distanceSquared(inArc.p0, _intersectionPoints[1]);
|
|
70
|
-
const
|
|
71
|
-
|
|
72
|
-
arcSet(out[
|
|
80
|
+
const closerToP0 = p0i0DistanceSquared < p0i1DistanceSquared ? 0 : 1;
|
|
81
|
+
// The visible portion is from p0 to the closer intersection point
|
|
82
|
+
arcSet(out[0], inArc.p0, _intersectionPoints[closerToP0]);
|
|
83
|
+
// The second arc goes from the farther point to p1
|
|
84
|
+
arcSet(out[1], _intersectionPoints[1 - closerToP0], inArc.p1);
|
|
73
85
|
return 2;
|
|
74
86
|
}
|
|
75
87
|
if (i0IsCovered && i1IsCovered) {
|
|
@@ -86,3 +98,46 @@ export function arcSlice(out, inArc, junctionPlane) {
|
|
|
86
98
|
arcSet(out[0], p0IsVisible ? inArc.p0 : inArc.p1, i0IsCovered ? _intersectionPoints[0] : _intersectionPoints[1]);
|
|
87
99
|
return 1;
|
|
88
100
|
}
|
|
101
|
+
function showArc(arc) {
|
|
102
|
+
return `Arc: p0(${arc.p0[0].toFixed(2)}, ${arc.p0[1].toFixed(2)}, ${arc.p0[2]}) - p1(${arc.p1[0]}, ${arc.p1[1].toFixed(2)}, ${arc.p1[2].toFixed(2)})`;
|
|
103
|
+
}
|
|
104
|
+
function showPlane(plane) {
|
|
105
|
+
return `Plane: n(${plane.normal[0].toFixed(2)}, ${plane.normal[1].toFixed(2)}, ${plane.normal[2].toFixed(2)}) d(${plane.distance.toFixed(2)})`;
|
|
106
|
+
}
|
|
107
|
+
export function pointsOnArc(inArc, junctionPlane, out) {
|
|
108
|
+
// case A: junction plane is too far
|
|
109
|
+
if (Math.abs(junctionPlane.distance) > 1) {
|
|
110
|
+
return 0;
|
|
111
|
+
}
|
|
112
|
+
// Calculate plane-plane intersection
|
|
113
|
+
vec3copy(_originPlane.normal, inArc.normal);
|
|
114
|
+
const isPlaneJunctions = planePlaneJunction(_intersectionLine, _originPlane, junctionPlane);
|
|
115
|
+
// case B: planes are parallel
|
|
116
|
+
if (!isPlaneJunctions) {
|
|
117
|
+
return 0;
|
|
118
|
+
}
|
|
119
|
+
// Calculate intersection points with unit sphere
|
|
120
|
+
const isSphereIntersection = lineSphereIntersection(_intersectionPoints, _intersectionLine, _originSphere);
|
|
121
|
+
// case C: intersection line does not intersect the unit sphere
|
|
122
|
+
if (!isSphereIntersection) {
|
|
123
|
+
return 0;
|
|
124
|
+
}
|
|
125
|
+
// Check which intersection points are covered by the arc
|
|
126
|
+
const i0IsCovered = distanceToPoint(inArc.coverPlane, _intersectionPoints[0]) > -EPSILON;
|
|
127
|
+
const i1IsCovered = distanceToPoint(inArc.coverPlane, _intersectionPoints[1]) > -EPSILON;
|
|
128
|
+
// Check which endpoints are visible
|
|
129
|
+
let count = 0;
|
|
130
|
+
// Add covered intersection points
|
|
131
|
+
if (i0IsCovered) {
|
|
132
|
+
copy(out[count], _intersectionPoints[0]);
|
|
133
|
+
count++;
|
|
134
|
+
}
|
|
135
|
+
if (Math.abs(Math.abs(junctionPlane.distance) - 1) < EPSILON) {
|
|
136
|
+
return count; // Tangent case, only one intersection point
|
|
137
|
+
}
|
|
138
|
+
if (i1IsCovered) {
|
|
139
|
+
copy(out[count], _intersectionPoints[1]);
|
|
140
|
+
count++;
|
|
141
|
+
}
|
|
142
|
+
return count;
|
|
143
|
+
}
|
|
@@ -3,18 +3,18 @@ import { at } from "../line";
|
|
|
3
3
|
const _0vector = /*@__PURE__*/ create(0, 0, 0);
|
|
4
4
|
export function lineSphereIntersection(out, inLine, inSphere) {
|
|
5
5
|
subtract(_0vector, inLine.origin, inSphere.center);
|
|
6
|
+
const dirLengthSq = lengthSquared(inLine.direction);
|
|
7
|
+
const dot_ = dot(_0vector, inLine.direction);
|
|
6
8
|
const distanceSquared = lengthSquared(_0vector);
|
|
7
9
|
const radiusSquared = inSphere.radius * inSphere.radius;
|
|
8
|
-
const
|
|
9
|
-
const dotSquared = dot_ * dot_;
|
|
10
|
-
const discriminant = dotSquared + radiusSquared - distanceSquared;
|
|
10
|
+
const discriminant = dot_ * dot_ - dirLengthSq * (distanceSquared - radiusSquared);
|
|
11
11
|
if (discriminant < 0) {
|
|
12
12
|
return false; // no intersection
|
|
13
13
|
}
|
|
14
14
|
else {
|
|
15
|
-
const
|
|
16
|
-
const t1 = -dot_ -
|
|
17
|
-
const t2 = -dot_ +
|
|
15
|
+
const sqrtDiscriminant = Math.sqrt(discriminant);
|
|
16
|
+
const t1 = (-dot_ - sqrtDiscriminant) / dirLengthSq;
|
|
17
|
+
const t2 = (-dot_ + sqrtDiscriminant) / dirLengthSq;
|
|
18
18
|
at(out[0], inLine, t1);
|
|
19
19
|
at(out[1], inLine, t2);
|
|
20
20
|
return true;
|
|
@@ -1,10 +1,8 @@
|
|
|
1
1
|
import { EPSILON } from "../constants";
|
|
2
|
-
import {
|
|
3
|
-
|
|
4
|
-
const
|
|
5
|
-
|
|
6
|
-
copy(_normal1, plane1.normal);
|
|
7
|
-
copy(_normal2, plane2.normal);
|
|
2
|
+
import { dot, cross, lengthSquared } from "../vec3";
|
|
3
|
+
export function planePlaneJunction(out, plane1, plane2) {
|
|
4
|
+
const _normal1 = plane1.normal;
|
|
5
|
+
const _normal2 = plane2.normal;
|
|
8
6
|
const distance1 = plane1.distance;
|
|
9
7
|
const distance2 = plane2.distance;
|
|
10
8
|
const { origin, direction } = out;
|
package/Math/methods.js
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { WORLD_RADIUS_3D, WORLD_RADIUS_MERCATOR } from './constants';
|
|
2
2
|
import { dot as dot3, copy as copy3 } from './vec3';
|
|
3
|
-
export const
|
|
3
|
+
export const RADIAN = Math.PI / 180;
|
|
4
4
|
const _0vec3 = [0, 0, 0];
|
|
5
5
|
const _0vec2 = [0, 0];
|
|
6
6
|
export const cartesian3dToRadian = (output, cartesian) => {
|
|
@@ -47,8 +47,8 @@ export const sphericalLinearInterpolation_Cartesian3d = (output, a, b, ratio) =>
|
|
|
47
47
|
output[2] = _0vec3[2] * height;
|
|
48
48
|
};
|
|
49
49
|
export const wgs84ToCartesian3d = (output, long, lat, height) => {
|
|
50
|
-
const longRad = long *
|
|
51
|
-
const latRad = lat *
|
|
50
|
+
const longRad = long * RADIAN;
|
|
51
|
+
const latRad = lat * RADIAN;
|
|
52
52
|
const x = Math.cos(latRad) * Math.cos(longRad);
|
|
53
53
|
const y = Math.cos(latRad) * Math.sin(longRad);
|
|
54
54
|
const z = Math.sin(latRad);
|
|
@@ -59,8 +59,8 @@ export const wgs84ToCartesian3d = (output, long, lat, height) => {
|
|
|
59
59
|
};
|
|
60
60
|
export const wgs84ToMercator = (long, lat) => {
|
|
61
61
|
return [
|
|
62
|
-
WORLD_RADIUS_MERCATOR * long *
|
|
63
|
-
WORLD_RADIUS_MERCATOR * Math.log(Math.tan(Math.PI / 4 + lat *
|
|
62
|
+
WORLD_RADIUS_MERCATOR * long * RADIAN,
|
|
63
|
+
WORLD_RADIUS_MERCATOR * Math.log(Math.tan(Math.PI / 4 + lat * RADIAN / 2))
|
|
64
64
|
];
|
|
65
65
|
};
|
|
66
66
|
export const pixelXYToRadians = (pixelXY) => {
|
|
@@ -41,7 +41,6 @@ export function createfillGrid(globe, origin, startX, startY, rowSize, columnSiz
|
|
|
41
41
|
grid[startY][i] = [long, lat];
|
|
42
42
|
}
|
|
43
43
|
// fill single horizontal from origin from startY to 0
|
|
44
|
-
console.log("grid", grid);
|
|
45
44
|
for (let i = startY - 1; i >= 0; i--) {
|
|
46
45
|
for (let j = 0; j < rowSize; j++) {
|
|
47
46
|
const [long, lat] = moveByAngle(grid[i + 1][j], angleRadians - Math.PI / 2, cellSizeY);
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
function geoJSONToEarcut(geojson) {
|
|
2
|
+
const vertices = [];
|
|
3
|
+
const holes = [];
|
|
4
|
+
const dimensions = 2; // Assuming 2D coordinates (longitude, latitude)
|
|
5
|
+
let holeIndex = 0;
|
|
6
|
+
if (geojson.type !== 'FeatureCollection') {
|
|
7
|
+
throw new Error('Invalid GeoJSON: Expected FeatureCollection');
|
|
8
|
+
}
|
|
9
|
+
const features = geojson.features;
|
|
10
|
+
function processPolygon(coordinates) {
|
|
11
|
+
for (let i = 0; i < coordinates.length; i++) {
|
|
12
|
+
if (i > 0) {
|
|
13
|
+
holeIndex += coordinates[i - 1].length;
|
|
14
|
+
holes.push(holeIndex);
|
|
15
|
+
}
|
|
16
|
+
for (const coord of coordinates[i]) {
|
|
17
|
+
vertices.push(coord[0], coord[1]);
|
|
18
|
+
}
|
|
19
|
+
}
|
|
20
|
+
}
|
|
21
|
+
function processMultiPolygon(coordinates) {
|
|
22
|
+
for (const polygon of coordinates) {
|
|
23
|
+
processPolygon(polygon);
|
|
24
|
+
}
|
|
25
|
+
}
|
|
26
|
+
for (const feature of features) {
|
|
27
|
+
const geometry = feature.geometry;
|
|
28
|
+
if (geometry.type === 'Polygon') {
|
|
29
|
+
processPolygon(geometry.coordinates);
|
|
30
|
+
}
|
|
31
|
+
else if (geometry.type === 'MultiPolygon') {
|
|
32
|
+
processMultiPolygon(geometry.coordinates);
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
return { vertices, holes, dimensions };
|
|
36
|
+
}
|
|
37
|
+
export { geoJSONToEarcut };
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
import { TILE_COUNTS } from "./zoom-catch";
|
|
2
|
+
/**
|
|
3
|
+
* If the slope is not close the zero not very important but
|
|
4
|
+
* If a line goes along a parallel its latitude can tilt a lot
|
|
5
|
+
* For these cases:
|
|
6
|
+
* Meridian junctions should be first.
|
|
7
|
+
* So we have information about possible edge latitude
|
|
8
|
+
* Or the counting box should be calculated accourding to great circle
|
|
9
|
+
*
|
|
10
|
+
*
|
|
11
|
+
*/
|
|
12
|
+
export function latToTileY(lat, zoom) {
|
|
13
|
+
return (1 - Math.log(Math.tan(lat) + 1 / Math.cos(lat)) / Math.PI) / 2 * TILE_COUNTS[zoom];
|
|
14
|
+
}
|
|
15
|
+
export function lonToTileX(lon, zoom) {
|
|
16
|
+
return (lon + Math.PI) / (2 * Math.PI) * TILE_COUNTS[zoom];
|
|
17
|
+
}
|
|
18
|
+
export function longLatToTileDecimal(lon, lat, zoom) {
|
|
19
|
+
return [lonToTileX(lon, zoom), latToTileY(lat, zoom)];
|
|
20
|
+
}
|
|
21
|
+
export function tileYtoLat(y, zoom) {
|
|
22
|
+
const n = Math.PI - 2 * Math.PI * y / TILE_COUNTS[zoom];
|
|
23
|
+
return (Math.PI / Math.PI * Math.atan(0.5 * (Math.exp(n) - Math.exp(-n))));
|
|
24
|
+
}
|
|
25
|
+
export function tileXtoLon(x, zoom) {
|
|
26
|
+
return x / TILE_COUNTS[zoom] * (2 * Math.PI) - Math.PI;
|
|
27
|
+
}
|
|
28
|
+
export function tessellationLatDimention(zoom, lowLat, highLat) {
|
|
29
|
+
const lowY = latToTileY(lowLat, zoom);
|
|
30
|
+
const highY = latToTileY(highLat, zoom);
|
|
31
|
+
const latitudes = [];
|
|
32
|
+
if (lowY % 1 !== 0)
|
|
33
|
+
latitudes.push(lowLat);
|
|
34
|
+
for (let y = Math.ceil(lowY); y <= Math.floor(highY); y++) {
|
|
35
|
+
latitudes.push(tileYtoLat(y, zoom));
|
|
36
|
+
}
|
|
37
|
+
if (highY % 1 !== 0)
|
|
38
|
+
latitudes.push(highLat);
|
|
39
|
+
return latitudes;
|
|
40
|
+
}
|
|
41
|
+
export function isOnTileEdge(longLat, zoom) {
|
|
42
|
+
const tileX = lonToTileX(longLat[0], zoom);
|
|
43
|
+
const tileY = latToTileY(longLat[1], zoom);
|
|
44
|
+
const epsilon = 1 / TILE_COUNTS[zoom] / 200;
|
|
45
|
+
return (Math.abs(tileX % 1) < epsilon || Math.abs(tileY % 1) < epsilon || Math.abs(tileX % 1 - 1) < epsilon || Math.abs(tileY % 1 - 1) < epsilon);
|
|
46
|
+
}
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
import earcut from "earcut";
|
|
2
|
+
import { createTriangleTessellationMeta } from "./triangle-tessellation-meta";
|
|
3
|
+
function shredInput(vertices, holes, zoomLevel) {
|
|
4
|
+
const result = [];
|
|
5
|
+
const triangles = earcut(vertices, holes, 2);
|
|
6
|
+
for (let i = 0; i < triangles.length; i += 3) {
|
|
7
|
+
const idx1 = triangles[i] * 2;
|
|
8
|
+
const idx2 = triangles[i + 1] * 2;
|
|
9
|
+
const idx3 = triangles[i + 2] * 2;
|
|
10
|
+
const p1 = [vertices[idx1], vertices[idx1 + 1]];
|
|
11
|
+
const p2 = [vertices[idx2], vertices[idx2 + 1]];
|
|
12
|
+
const p3 = [vertices[idx3], vertices[idx3 + 1]];
|
|
13
|
+
const triangleMeta = createTriangleTessellationMeta(p1, p2, p3);
|
|
14
|
+
result.push(triangleMeta);
|
|
15
|
+
}
|
|
16
|
+
// cut triangles into smaller pieces based on zoom level...
|
|
17
|
+
return result;
|
|
18
|
+
}
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
/**
|
|
3
|
+
* @input
|
|
4
|
+
* A series of points defining a polygon
|
|
5
|
+
* @output
|
|
6
|
+
* A series of triangles that fill the polygon
|
|
7
|
+
*
|
|
8
|
+
* @steps
|
|
9
|
+
* @1. cut
|
|
10
|
+
* @2. sort
|
|
11
|
+
* @3. connect
|
|
12
|
+
*
|
|
13
|
+
* @cut
|
|
14
|
+
* @1. find tile cuts on the arcs, tag: enum vertex {pillar, corner},
|
|
15
|
+
* @2. find inner cuts on the arcs
|
|
16
|
+
*
|
|
17
|
+
* @sorter
|
|
18
|
+
* sort by
|
|
19
|
+
* @1 y coordinate, then x coordinate
|
|
20
|
+
* @2
|
|
21
|
+
*
|
|
22
|
+
*
|
|
23
|
+
* @connect
|
|
24
|
+
*
|
|
25
|
+
* 1. Pick two rows from the top
|
|
26
|
+
* 2. Go left to right
|
|
27
|
+
* 3. Compeare x values to connect point closest to it
|
|
28
|
+
*
|
|
29
|
+
* @smartConnect
|
|
30
|
+
*
|
|
31
|
+
* if hit from left to right, take a break
|
|
32
|
+
* if hit a concave edge, fonnect all the points until jump over to the following point of the concave
|
|
33
|
+
*
|
|
34
|
+
* that way I can calculate polygons with holes
|
|
35
|
+
*
|
|
36
|
+
* That raises a division
|
|
37
|
+
*
|
|
38
|
+
* instead of dividing into triangles
|
|
39
|
+
* divide into convex polygons
|
|
40
|
+
*
|
|
41
|
+
* convex save points and zoom level of convex shape.
|
|
42
|
+
* populate middle points when on zoom level increase
|
|
43
|
+
*
|
|
44
|
+
* @Future
|
|
45
|
+
*
|
|
46
|
+
* 1. cut is ready.
|
|
47
|
+
* WEBMercator(DEM data) to globe:
|
|
48
|
+
* cutting with tileXY coordinates base and convert back to longlat and vector3
|
|
49
|
+
* solves
|
|
50
|
+
* 2. connect looks promising. Can run on triangle approach as well
|
|
51
|
+
*
|
|
52
|
+
* Solving a polygon
|
|
53
|
+
* in a single shot
|
|
54
|
+
* without dividing into triangles
|
|
55
|
+
* takes all the arcs to be cut in single go.
|
|
56
|
+
* To continue following questions arise:
|
|
57
|
+
* how to match points in a row?
|
|
58
|
+
* Cut arcs in two if they have Z limits
|
|
59
|
+
* cut by parallel lines,
|
|
60
|
+
* sort by x
|
|
61
|
+
* if 2
|
|
62
|
+
* How to handle points in between rows?
|
|
63
|
+
*
|
|
64
|
+
*
|
|
65
|
+
*/
|
|
66
|
+
class PartialTesselation {
|
|
67
|
+
}
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
// /**
|
|
3
|
+
// * Find length in x and y for a tile in given zoom level (in wgs84)
|
|
4
|
+
// * Find tile cuts for given line represented by two points
|
|
5
|
+
// * Find inner position of point in tile
|
|
6
|
+
// *
|
|
7
|
+
// */
|
|
8
|
+
// import { LongLat } from "../../types";
|
|
9
|
+
// export function tileLength(zoom: number): LongLat {
|
|
10
|
+
// const tileSize = 256; // in pixels
|
|
11
|
+
// const worldSize = tileSize * Math.pow(2, zoom);
|
|
12
|
+
// const latLength = 180 / worldSize;
|
|
13
|
+
// const lonLength = 360 / worldSize;
|
|
14
|
+
// return [lonLength, latLength];
|
|
15
|
+
// }
|
|
16
|
+
// // export function tileCuts(p1: LongLat, p2: LongLat, zoom: number): LongLat[] {
|
|
17
|
+
// // const cuts: LongLat[] = [];
|
|
18
|
+
// // const tileSize = 256;
|
|
19
|
+
// // const worldSize = tileSize * Math.pow(2, zoom);
|
|
20
|
+
// // const latLength = 180 / worldSize;
|
|
21
|
+
// // const lonLength = 360 / worldSize;
|
|
22
|
+
// // const x1 = (p1[0] + 180) / lonLength;
|
|
23
|
+
// // const y1 = (90 - p1[1]) / latLength;
|
|
24
|
+
// // const x2 = (p2[0] + 180) / lonLength;
|
|
25
|
+
// // const y2 = (90 - p2[1]) / latLength;
|
|
26
|
+
// // const dx = x2 - x1;
|
|
27
|
+
// // const dy = y2 - y1;
|
|
28
|
+
// // const steps = Math.max(Math.abs(dx), Math.abs(dy));
|
|
29
|
+
// // const xStep = dx / steps;
|
|
30
|
+
// // const yStep = dy / steps;
|
|
31
|
+
// // let x = x1;
|
|
32
|
+
// // let y = y1;
|
|
33
|
+
// // for (let i = 0; i <= steps; i++) {
|
|
34
|
+
// // const tileX = Math.floor(x);
|
|
35
|
+
// // const tileY = Math.floor(y);
|
|
36
|
+
// // const cutX = tileX * lonLength - 180;
|
|
37
|
+
// // const cutY = 90 - tileY * latLength;
|
|
38
|
+
// // const cut: LongLat = [cutX, cutY];
|
|
39
|
+
// // if (cuts.length === 0 || (cuts[cuts.length - 1][0] !== cut[0] || cuts[cuts.length - 1][1] !== cut[1])) {
|
|
40
|
+
// // cuts.push(cut);
|
|
41
|
+
// // }
|
|
42
|
+
// // x += xStep;
|
|
43
|
+
// // y += yStep;
|
|
44
|
+
// // }
|
|
45
|
+
// // return cuts;
|
|
46
|
+
// // }
|
|
47
|
+
// // function fillTriangle(p1: LongLat, p2: LongLat, p3: LongLat, zoom: number): {positions:LongLat[], indices:number[]} {
|
|
48
|
+
// // // this function fills the triangle triangle iteratively
|
|
49
|
+
// // //
|
|
50
|
+
// // }
|