@peonai/swarm 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.dockerignore +6 -0
- package/Dockerfile +9 -0
- package/README.md +29 -0
- package/app/api/health/route.ts +2 -0
- package/app/api/v1/admin/agents/[id]/route.ts +12 -0
- package/app/api/v1/admin/agents/route.ts +31 -0
- package/app/api/v1/admin/audit/route.ts +23 -0
- package/app/api/v1/admin/cleanup/route.ts +21 -0
- package/app/api/v1/admin/export/route.ts +15 -0
- package/app/api/v1/admin/history/route.ts +23 -0
- package/app/api/v1/admin/profile/route.ts +23 -0
- package/app/api/v1/admin/settings/route.ts +44 -0
- package/app/api/v1/auth/route.ts +5 -0
- package/app/api/v1/memory/route.ts +105 -0
- package/app/api/v1/persona/[agentId]/route.ts +13 -0
- package/app/api/v1/persona/me/route.ts +12 -0
- package/app/api/v1/profile/observe/route.ts +34 -0
- package/app/api/v1/profile/route.ts +72 -0
- package/app/api/v1/reflect/route.ts +96 -0
- package/app/globals.css +190 -0
- package/app/i18n.ts +161 -0
- package/app/layout.tsx +12 -0
- package/app/page.tsx +561 -0
- package/docker-compose.yml +34 -0
- package/docs/DEBATE-ROUND1.md +244 -0
- package/docs/DEBATE-ROUND2.md +158 -0
- package/docs/REQUIREMENTS.md +162 -0
- package/docs/docs.html +272 -0
- package/docs/index.html +228 -0
- package/docs/script.js +103 -0
- package/docs/style.css +418 -0
- package/lib/auth.ts +63 -0
- package/lib/db.ts +63 -0
- package/lib/embedding.ts +29 -0
- package/lib/schema.ts +134 -0
- package/mcp-server.ts +56 -0
- package/next-env.d.ts +6 -0
- package/next.config.ts +5 -0
- package/package.json +34 -0
- package/packages/cli/README.md +33 -0
- package/packages/cli/bin/swarm.mjs +274 -0
- package/packages/cli/package.json +10 -0
- package/postcss.config.mjs +2 -0
- package/skill/CLAUDE.md +40 -0
- package/skill/CODEX.md +43 -0
- package/skill/GEMINI.md +38 -0
- package/skill/IFLOW.md +38 -0
- package/skill/OPENCODE.md +38 -0
- package/skill/swarm-ai-skill/SKILL.md +74 -0
- package/skill/swarm-ai-skill/env.sh +4 -0
- package/skill/swarm-ai-skill/scripts/bootstrap.sh +21 -0
- package/skill/swarm-ai-skill/scripts/env.sh +4 -0
- package/skill/swarm-ai-skill/scripts/env.sh.example +3 -0
- package/skill/swarm-ai-skill/scripts/memory-read.sh +8 -0
- package/skill/swarm-ai-skill/scripts/memory-write.sh +10 -0
- package/skill/swarm-ai-skill/scripts/observe.sh +9 -0
- package/skill/swarm-ai-skill/scripts/profile-read.sh +9 -0
- package/skill/swarm-ai-skill/scripts/profile-update.sh +9 -0
- package/skill/swarm-ai-skill/scripts/session-start.sh +19 -0
- package/tsconfig.json +21 -0
- package/tsconfig.tsbuildinfo +1 -0
|
@@ -0,0 +1,244 @@
|
|
|
1
|
+
# 蜂群 AI — 第一轮辩论(反方质疑)
|
|
2
|
+
|
|
3
|
+
> 辩手:Grunt(反方) | 日期:2026-02-20 | 基于 REQUIREMENTS.md v0.1
|
|
4
|
+
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
## 1. CRDT 同步画像的技术可行性
|
|
8
|
+
|
|
9
|
+
### 质疑
|
|
10
|
+
|
|
11
|
+
CRDT 在文档协同编辑(如 Yjs、Automerge)中已被验证,但画像数据的冲突语义与文档截然不同。
|
|
12
|
+
|
|
13
|
+
文档冲突是「两个人同时编辑同一段文字」,合并策略清晰——保留两者或按时间戳取最新。但画像冲突是**语义冲突**:
|
|
14
|
+
|
|
15
|
+
- Agent A 观察到用户「喜欢简洁回复」(confidence: 0.8),Agent B 同时观察到用户「需要详细解释」(confidence: 0.7)——这不是同一个 key 的冲突,而是**语义矛盾**的两个推断,CRDT 的 Last-Writer-Wins 或 Multi-Value Register 都无法解决。
|
|
16
|
+
- L3 上下文层「频繁变化」,多个 agent 高频写入同一个 key(如 `current_mood`),CRDT 的因果序在跨设备、跨 agent 场景下维护成本极高。
|
|
17
|
+
- `confidence` 字段本身就是模糊的——0.8 和 0.7 谁赢?按数值大小合并?那 confidence 的计算标准各 agent 都不同,数值不可比。
|
|
18
|
+
|
|
19
|
+
### 反驳
|
|
20
|
+
|
|
21
|
+
合理的担忧,但可以分层处理:
|
|
22
|
+
|
|
23
|
+
- L1(身份层)极少变化,用简单的 LWW(Last-Writer-Wins)即可,几乎不会冲突。
|
|
24
|
+
- L2/L3 的语义冲突,不应该靠 CRDT 自动解决,而是**保留多值 + 延迟合并**:先用 MV-Register 保留所有版本,再由一个本地的「画像仲裁器」(可以是 LLM)做语义合并。
|
|
25
|
+
- confidence 不可比的问题,可以通过标准化 confidence 计算规则 + source 权重来缓解。
|
|
26
|
+
|
|
27
|
+
### 结论/建议
|
|
28
|
+
|
|
29
|
+
**CRDT 只解决传输层的冲突,不要指望它解决语义层的冲突。** 需求文档应明确区分「同步冲突」和「语义冲突」,并为后者设计独立的合并策略(如 LLM 仲裁、用户确认)。建议在 P0 阶段只对 L1 用 LWW-CRDT,L2/L3 用 append-only log + 手动/半自动合并。
|
|
30
|
+
|
|
31
|
+
---
|
|
32
|
+
|
|
33
|
+
## 2. 冷启动问题
|
|
34
|
+
|
|
35
|
+
### 质疑
|
|
36
|
+
|
|
37
|
+
经典的双边市场鸡生蛋问题:
|
|
38
|
+
|
|
39
|
+
- 没有 agent 接入 → 画像数据为空 → 用户看不到价值 → 不会安装 Profile Daemon
|
|
40
|
+
- 没有用户安装 → agent 开发者没有动力接入 SDK → 没有 agent 接入
|
|
41
|
+
|
|
42
|
+
需求文档提到「画像导入」(P1)和「从现有 agent 导入」,但这恰恰是最难的部分——ChatGPT、Claude 的记忆数据没有开放 API 导出,你怎么导?
|
|
43
|
+
|
|
44
|
+
更致命的是:即使你自己的 OpenClaw agent 接入了,一个 agent 的画像数据价值极低。用户不会为了「让一个 agent 的记忆同步到另一个 agent」而安装一个 daemon 服务——直接复制粘贴更快。
|
|
45
|
+
|
|
46
|
+
### 反驳
|
|
47
|
+
|
|
48
|
+
冷启动可以通过以下路径破解:
|
|
49
|
+
|
|
50
|
+
1. **自举**:先让 OpenClaw 自己的 agent 生态(Peon、Grunt 等)原生支持 SPP,形成第一批画像数据。用户在 OpenClaw 生态内就能体验到价值。
|
|
51
|
+
2. **手动导入**:提供一个简单的表单/向导,让用户手动填写 L1 身份信息(姓名、语言、时区、职业),5 分钟就能建立基础画像。
|
|
52
|
+
3. **渐进积累**:每次 agent 交互自动 observe,画像会自然丰富起来,不需要一开始就完整。
|
|
53
|
+
|
|
54
|
+
### 结论/建议
|
|
55
|
+
|
|
56
|
+
**冷启动是真实风险,但不是死局。** 关键策略:先在 OpenClaw 生态内闭环验证,不要一上来就追求「跨生态」。把「手动填写基础画像」从 P1 提到 P0——这是冷启动的救命稻草。同时,考虑提供一个「导出你的 ChatGPT Memory」的浏览器脚本作为增长黑客手段。
|
|
57
|
+
|
|
58
|
+
---
|
|
59
|
+
|
|
60
|
+
## 3. 封闭生态接入
|
|
61
|
+
|
|
62
|
+
### 质疑
|
|
63
|
+
|
|
64
|
+
架构图里画了 ChatGPT 作为 Agent 2 接入 Profile Daemon,但现实是:
|
|
65
|
+
|
|
66
|
+
- **ChatGPT/Gemini/Claude 都没有开放 agent 扩展接口。** 它们不会主动调用你的 localhost API。
|
|
67
|
+
- 需求文档自己也在「开放问题」里承认了这一点,提到「浏览器插件代理」。
|
|
68
|
+
- 浏览器插件方案的问题:
|
|
69
|
+
- 依赖 DOM 结构,ChatGPT 改版一次你就得跟着改
|
|
70
|
+
- 只能拦截网页版,移动端 App 完全无法覆盖
|
|
71
|
+
- 注入内容到 system prompt 的方式不稳定,且可能违反 ToS
|
|
72
|
+
- 用户安装浏览器插件的意愿本就不高(Chrome 插件平均安装率 < 1%)
|
|
73
|
+
|
|
74
|
+
这意味着「跨生态」这个核心卖点,在 MVP 阶段基本是空中楼阁。
|
|
75
|
+
|
|
76
|
+
### 反驳
|
|
77
|
+
|
|
78
|
+
短期内确实无法原生接入封闭生态,但:
|
|
79
|
+
|
|
80
|
+
1. **浏览器插件虽然脆弱,但已有先例**:如 WebChatGPT、ChatGPT Exporter 等插件证明了可行性,且用户群体不小。
|
|
81
|
+
2. **趋势在变**:OpenAI 已推出 GPTs 和 Actions,未来可能开放更多扩展点。MCP 协议的兴起也在推动 agent 互操作。
|
|
82
|
+
3. **不需要所有 agent 都接入**:即使只有 2-3 个开放 agent(OpenClaw + 本地 LLM + 一个开源 agent)能互通画像,对重度用户已有价值。
|
|
83
|
+
|
|
84
|
+
### 结论/建议
|
|
85
|
+
|
|
86
|
+
**诚实面对:MVP 阶段放弃「接入 ChatGPT/Gemini」的叙事。** 把竞品对比表里的「跨生态」改为「开放生态优先」,聚焦于开源/本地 agent 的互通。浏览器插件可以作为 P2 的实验性功能,但绝不能作为核心依赖。如果把「跨生态」作为融资故事讲,要准备好被投资人追问「ChatGPT 怎么接」时的诚实回答。
|
|
87
|
+
|
|
88
|
+
---
|
|
89
|
+
|
|
90
|
+
## 4. 隐私悖论
|
|
91
|
+
|
|
92
|
+
### 质疑
|
|
93
|
+
|
|
94
|
+
需求文档强调「端到端加密」「零知识架构」「用户主权」,但蜂群 AI 的本质是**把分散在各 agent 的用户数据汇聚到一个统一的 Profile Daemon**。这带来了一个根本性的悖论:
|
|
95
|
+
|
|
96
|
+
- **攻击面集中化**:原来攻击者要分别攻破 ChatGPT、Claude、本地 agent 才能拼凑出完整画像,现在只需攻破一个 Profile Daemon 就能获得全部。
|
|
97
|
+
- **本地 daemon 的安全性**:SQLite 文件存在本地磁盘,任何有文件系统访问权限的恶意软件都能读取。E2E 加密保护的是传输层,不是本地存储。
|
|
98
|
+
- **agent 信任问题**:一个恶意 agent 注册为 `trustLevel: "trusted"`,就能读取所有画像数据。信任模型怎么建立?谁来审核 agent?
|
|
99
|
+
- **画像推断的隐私风险**:agent 自动 observe 用户行为并写入画像,用户可能完全不知道自己的「情绪状态」「兴趣领域」被记录了。
|
|
100
|
+
|
|
101
|
+
### 反驳
|
|
102
|
+
|
|
103
|
+
这些风险真实存在,但可以通过设计缓解:
|
|
104
|
+
|
|
105
|
+
1. **本地加密**:SQLite 可以用 SQLCipher 加密,密钥存在系统 keychain 中。
|
|
106
|
+
2. **agent 注册审核**:trustLevel 由用户手动授予,不是 agent 自己声明的。新 agent 默认 `readonly`。
|
|
107
|
+
3. **observe 透明度**:每次 agent 写入画像条目时,daemon 可以弹出通知让用户确认(至少对 L2/L3 敏感条目)。
|
|
108
|
+
4. **数据最小化**:agent 只能读取自己被授权的 scope,不是全部画像。
|
|
109
|
+
|
|
110
|
+
### 结论/建议
|
|
111
|
+
|
|
112
|
+
**隐私不是「加密就完了」的问题,是架构级的信任设计问题。** 建议:(1) P0 必须包含本地存储加密(SQLCipher);(2) 默认所有 agent 为 `readonly`,用户显式授权才能写入;(3) 增加「画像审计日志」——用户可以看到哪个 agent 在什么时候读/写了什么;(4) L3 上下文层的自动 observe 默认关闭,需用户 opt-in。
|
|
113
|
+
|
|
114
|
+
---
|
|
115
|
+
|
|
116
|
+
## 5. 商业模式
|
|
117
|
+
|
|
118
|
+
### 质疑
|
|
119
|
+
|
|
120
|
+
需求文档提到「开源协议 + 云服务收费」,但这条路的护城河极其脆弱:
|
|
121
|
+
|
|
122
|
+
- **协议开源 = 大厂可以直接实现**:如果 SPP 协议真的好用,Apple/Google/OpenAI 完全可以自己实现一个兼容版本,还能跟自家生态深度整合。你的协议反而成了他们的免费设计文档。
|
|
123
|
+
- **云 relay 服务没有壁垒**:一个 E2E 加密的中转服务器,技术上极其简单,任何云厂商都能提供。
|
|
124
|
+
- **开源社区的变现困境**:参考 Redis、Elasticsearch 的教训——AWS 直接推出兼容服务,原厂被迫改许可证。
|
|
125
|
+
- **目标用户付费意愿存疑**:「重度 AI 用户」已经在为 ChatGPT Plus、Claude Pro 付费,再为一个画像同步服务付费的意愿有多高?
|
|
126
|
+
|
|
127
|
+
### 反驳
|
|
128
|
+
|
|
129
|
+
1. **网络效应是护城河**:如果蜂群 AI 成为事实标准,agent 开发者会围绕它构建,这种生态粘性不是大厂轻易能复制的。
|
|
130
|
+
2. **企业版是变现重点**:企业需要「统一管理员工 AI 画像」,这是 B2B SaaS 的经典模式,客单价高、粘性强。
|
|
131
|
+
3. **先占位再说**:在 AI agent 互操作这个领域,目前没有标准。先成为事实标准,商业模式自然会浮现。
|
|
132
|
+
|
|
133
|
+
### 结论/建议
|
|
134
|
+
|
|
135
|
+
**「先占位再说」不是商业模式,是赌博。** 建议:(1) 许可证选择要慎重——考虑 AGPL 或 BSL(Business Source License)而非 MIT/Apache,防止大厂白嫖;(2) 企业版从 Day 1 就要规划,不要等协议成熟了再想;(3) 短期变现路径可以考虑「画像托管服务」(帮不想自建 daemon 的用户托管)+ 「agent 认证市场」(类似 App Store 的 agent 信任认证)。
|
|
136
|
+
|
|
137
|
+
---
|
|
138
|
+
|
|
139
|
+
## 6. MVP 范围
|
|
140
|
+
|
|
141
|
+
### 质疑
|
|
142
|
+
|
|
143
|
+
看一下 P0 的范围:
|
|
144
|
+
|
|
145
|
+
- 画像 CRUD + 多端同步 + CRDT 冲突解决 + 权限控制 + 本地优先
|
|
146
|
+
- 轻量级 SDK(JS/Python/Rust 三种语言)
|
|
147
|
+
- 认证机制 + 事件订阅
|
|
148
|
+
- Profile Daemon(SQLite + HTTP API + 同步引擎)
|
|
149
|
+
|
|
150
|
+
这不是 MVP,这是一个**完整产品的 v1.0**。仅「CRDT 同步引擎 + E2E 加密 + 多端同步」这一项,就够一个团队做 3-6 个月。再加上三种语言的 SDK、认证系统、权限控制……
|
|
151
|
+
|
|
152
|
+
对于一个还没验证需求的项目,P0 太大了。如果花 6 个月做完发现没人用,沉没成本巨大。
|
|
153
|
+
|
|
154
|
+
### 反驳
|
|
155
|
+
|
|
156
|
+
P0 确实偏大,但核心功能之间有强依赖——没有同步就不是「蜂群」,没有权限就不能让多 agent 接入,没有 SDK 就没有 agent 能用。砍掉任何一个,产品就不完整。
|
|
157
|
+
|
|
158
|
+
### 结论/建议
|
|
159
|
+
|
|
160
|
+
**MVP 应该是「能验证核心假设的最小集合」,而不是「功能完整的最小集合」。** 建议把 P0 砍成两阶段:
|
|
161
|
+
|
|
162
|
+
**P0-alpha(2-4 周,验证需求):**
|
|
163
|
+
- 单设备、单用户、仅 localhost
|
|
164
|
+
- 画像 CRUD(HTTP API)
|
|
165
|
+
- 仅 JS SDK
|
|
166
|
+
- 无同步、无加密、无认证
|
|
167
|
+
- 让 OpenClaw 的 2-3 个 agent 接入,验证「多 agent 共享画像」是否真的有用
|
|
168
|
+
|
|
169
|
+
**P0-beta(在 alpha 验证后):**
|
|
170
|
+
- 加入多端同步(先用简单的 HTTP 轮询,不用 CRDT)
|
|
171
|
+
- 加入基础认证
|
|
172
|
+
- 根据 alpha 反馈决定是否继续
|
|
173
|
+
|
|
174
|
+
**不要在需求未验证前就投入 CRDT 和 E2E 加密。**
|
|
175
|
+
|
|
176
|
+
---
|
|
177
|
+
|
|
178
|
+
## 7. 跟 MCP 的关系
|
|
179
|
+
|
|
180
|
+
### 质疑
|
|
181
|
+
|
|
182
|
+
MCP(Model Context Protocol)已经在做「为 LLM 提供上下文」这件事,而且有 Anthropic 背书,生态在快速增长。蜂群 AI 的 SPP 协议跟 MCP 的关系是什么?
|
|
183
|
+
|
|
184
|
+
- 如果 SPP 是 MCP 的竞争者——你没有 Anthropic 的资源和影响力,赢不了。
|
|
185
|
+
- 如果 SPP 是 MCP 的补充——为什么不直接做一个 MCP Server,把画像数据通过 MCP 协议暴露给 agent?
|
|
186
|
+
|
|
187
|
+
需求文档完全没有提到 MCP,这在 2026 年是一个明显的盲点。任何做 agent 互操作的项目都绕不开 MCP。
|
|
188
|
+
|
|
189
|
+
### 反驳
|
|
190
|
+
|
|
191
|
+
MCP 解决的是「agent 如何获取外部工具和数据」,SPP 解决的是「用户画像如何跨 agent 同步」。两者的关注点不同:
|
|
192
|
+
|
|
193
|
+
- MCP 是 agent → 工具/数据 的连接协议
|
|
194
|
+
- SPP 是 agent ↔ agent 之间通过共享画像的间接协作协议
|
|
195
|
+
|
|
196
|
+
但确实,SPP 可以(也应该)通过 MCP 暴露——即 Profile Daemon 同时是一个 MCP Server,agent 通过 MCP 标准接口读写画像。
|
|
197
|
+
|
|
198
|
+
### 结论/建议
|
|
199
|
+
|
|
200
|
+
**不要发明独立协议,做 MCP 扩展。** 具体建议:(1) Profile Daemon 实现为 MCP Server;(2) 画像读写通过 MCP Tools 暴露(`profile.get`、`profile.set`、`profile.observe`);(3) 画像数据通过 MCP Resources 暴露;(4) SPP 协议聚焦于「多 daemon 之间的同步协议」,而非「agent 与 daemon 之间的通信协议」——后者直接用 MCP。这样可以借助 MCP 生态获得 agent 接入,大幅降低冷启动难度。
|
|
201
|
+
|
|
202
|
+
---
|
|
203
|
+
|
|
204
|
+
## 8. 真实需求验证
|
|
205
|
+
|
|
206
|
+
### 质疑
|
|
207
|
+
|
|
208
|
+
需求文档假设「用户被迫反复告知每个 agent 相同的偏好和背景信息」是一个痛点,但:
|
|
209
|
+
|
|
210
|
+
- **大多数用户只重度使用 1-2 个 AI agent**,不是 3-5 个。ChatGPT 占据了绝大部分市场份额,很多人只用 ChatGPT。
|
|
211
|
+
- **AI agent 的记忆功能在快速进化**:ChatGPT Memory、Claude Projects、Gemini 的个性化——每个 agent 都在自己解决这个问题。用户的痛感在递减。
|
|
212
|
+
- **「教一次,所有 agent 都知道」听起来很美,但用户真的在乎吗?** 告诉 Claude「我是程序员,喜欢简洁回复」只需要 10 秒。大多数用户的偏好就这么几条,手动设置的成本极低。
|
|
213
|
+
- **目标用户「重度 AI 用户,日常使用 3+ 个不同 AI 工具」**——这个群体有多大?可能只占 AI 用户的 1-5%。为一个小众群体做一个复杂的基础设施项目,ROI 存疑。
|
|
214
|
+
|
|
215
|
+
### 反驳
|
|
216
|
+
|
|
217
|
+
1. **痛点会随 agent 数量增长而加剧**:2026 年 agent 生态在爆发,未来每个人可能有 10+ 个专用 agent(编程 agent、写作 agent、健康 agent、财务 agent……),画像同步的需求会指数级增长。
|
|
218
|
+
2. **开发者是更直接的用户**:对于构建 AI 应用的开发者来说,「接入用户画像」是刚需——他们不想让用户从零开始配置。
|
|
219
|
+
3. **企业场景是强需求**:企业需要统一管理员工的 AI 交互偏好,这不是「10 秒手动设置」能解决的。
|
|
220
|
+
|
|
221
|
+
### 结论/建议
|
|
222
|
+
|
|
223
|
+
**在投入开发前,必须做需求验证。** 建议:(1) 先做一个 landing page + waitlist,看有多少人注册;(2) 在 AI 开发者社区(如 r/LocalLLaMA、HuggingFace、Discord)发帖描述这个概念,收集反馈;(3) 找 5-10 个「重度 AI 用户」做深度访谈,验证痛点是否真实;(4) 如果验证结果不理想,考虑 pivot 到更窄的场景——比如只做「OpenClaw 生态内的 agent 画像同步」,而非通用协议。**不要为一个假设的需求建造大教堂。**
|
|
224
|
+
|
|
225
|
+
---
|
|
226
|
+
|
|
227
|
+
## 总结
|
|
228
|
+
|
|
229
|
+
| # | 议题 | 风险等级 | 核心建议 |
|
|
230
|
+
|---|------|----------|----------|
|
|
231
|
+
| 1 | CRDT 可行性 | 🟡 中 | 分层策略,语义冲突不靠 CRDT |
|
|
232
|
+
| 2 | 冷启动 | 🔴 高 | 先在 OpenClaw 内闭环,手动填写提到 P0 |
|
|
233
|
+
| 3 | 封闭生态 | 🔴 高 | MVP 放弃跨封闭生态叙事 |
|
|
234
|
+
| 4 | 隐私悖论 | 🟡 中 | 本地加密 + 审计日志 + 默认最小权限 |
|
|
235
|
+
| 5 | 商业模式 | 🟡 中 | 用 AGPL/BSL 防白嫖,Day 1 规划企业版 |
|
|
236
|
+
| 6 | MVP 范围 | 🔴 高 | 砍成 alpha/beta 两阶段,先验证再投入 |
|
|
237
|
+
| 7 | MCP 关系 | 🟡 中 | 做 MCP Server,不要发明独立协议 |
|
|
238
|
+
| 8 | 需求验证 | 🔴 高 | 开发前必须做用户验证 |
|
|
239
|
+
|
|
240
|
+
**反方总结陈词:蜂群 AI 的愿景很美,但当前需求文档在「假设需求存在」的前提下直接跳到了架构设计。建议先退一步:用 2-4 周做一个极简 alpha(单机、单语言 SDK、无同步),在 OpenClaw 生态内验证「多 agent 共享画像」是否真的改善了用户体验。如果验证通过,再逐步加入同步、加密、多语言 SDK。如果验证不通过,及时止损。**
|
|
241
|
+
|
|
242
|
+
---
|
|
243
|
+
|
|
244
|
+
*辩论记录 v1.0 | 2026-02-20 | 反方辩手:Grunt ⚔️*
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
# 蜂群 AI — 第二轮辩论(Server + Skill 方向)
|
|
2
|
+
|
|
3
|
+
> Peon 自辩自驳 | 2026-02-20 | 基于 REQUIREMENTS v0.2
|
|
4
|
+
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
## 1. Server vs Daemon 的取舍
|
|
8
|
+
|
|
9
|
+
### 质疑
|
|
10
|
+
从本地 daemon 转向服务器部署,确实解决了冷启动和 CRDT 复杂度,但引入了新问题:
|
|
11
|
+
- **延迟**:每次 agent 启动都要网络请求拉画像,弱网环境体验差
|
|
12
|
+
- **可用性**:服务器挂了 = 所有 agent 丢失画像,单点故障
|
|
13
|
+
- **隐私倒退**:v0.1 的核心卖点是「本地优先、用户控制数据」,现在数据在服务器上,跟 ChatGPT Memory 有什么区别?
|
|
14
|
+
|
|
15
|
+
### 反驳
|
|
16
|
+
- 延迟:画像数据量小(几 KB),一次请求 < 100ms,agent 可以本地缓存
|
|
17
|
+
- 可用性:自托管方案用户自己控制,云托管做多可用区
|
|
18
|
+
- 隐私:自托管 = 数据在自己服务器上,跟本地 daemon 本质一样。云托管版本可以做 E2E 加密
|
|
19
|
+
|
|
20
|
+
### 结论
|
|
21
|
+
**提供两种部署模式**:自托管(Docker,数据完全自控)+ 云托管(便捷但需信任)。MVP 先做自托管,验证后再做云托管。agent 端加本地缓存,断网也能用上次的画像。
|
|
22
|
+
|
|
23
|
+
---
|
|
24
|
+
|
|
25
|
+
## 2. Skill 通用性
|
|
26
|
+
|
|
27
|
+
### 质疑
|
|
28
|
+
SKILL.md 是 OpenClaw 的概念。ChatGPT 没有 Skill 系统,Claude 没有,Gemini 也没有。所谓「agent 通过 Skill 集成」实际上只有 OpenClaw 能用。这跟 Round 1 的封闭生态问题本质一样——只是换了个说法。
|
|
29
|
+
|
|
30
|
+
### 反驳
|
|
31
|
+
Skill 的本质是「教 agent 怎么调 API」,不同 agent 有不同的实现方式:
|
|
32
|
+
- **OpenClaw**:装 Skill 目录,自动学会
|
|
33
|
+
- **Claude Projects**:把 API 文档放进 Project Knowledge
|
|
34
|
+
- **ChatGPT GPTs**:通过 Actions 配置 API 调用
|
|
35
|
+
- **开发者自建 agent**:直接调 REST API
|
|
36
|
+
|
|
37
|
+
REST API 是通用的,Skill 只是 OpenClaw 的便捷包装。
|
|
38
|
+
|
|
39
|
+
### 结论
|
|
40
|
+
**核心是 API,Skill 是锦上添花。** 提供:(1) REST API 文档(通用);(2) OpenAPI/Swagger spec(GPTs Actions 可直接导入);(3) OpenClaw Skill(便捷集成);(4) MCP Server(支持 MCP 的 agent 直接用)。四种接入方式覆盖主流场景。
|
|
41
|
+
|
|
42
|
+
---
|
|
43
|
+
|
|
44
|
+
## 3. 自托管 vs 云托管
|
|
45
|
+
|
|
46
|
+
### 质疑
|
|
47
|
+
自托管需要用户有服务器、会 Docker,门槛太高。目标用户是「重度 AI 用户」不是「DevOps 工程师」。云托管易用但要处理多租户隔离、数据安全、合规,开发成本高。先做哪个?
|
|
48
|
+
|
|
49
|
+
### 反驳
|
|
50
|
+
- 自托管的目标用户是开发者和技术型用户——这恰好是早期采用者
|
|
51
|
+
- 云托管可以后做,但需要从架构上预留多租户支持
|
|
52
|
+
|
|
53
|
+
### 结论
|
|
54
|
+
**先自托管(Docker Compose 一键部署),后云托管。** 理由:(1) 早期用户是技术型,能接受 Docker;(2) 自托管不需要处理多租户和支付;(3) 自托管用户的反馈帮助打磨产品,再做云托管。
|
|
55
|
+
|
|
56
|
+
---
|
|
57
|
+
|
|
58
|
+
## 4. 商业可行性
|
|
59
|
+
|
|
60
|
+
### 质疑
|
|
61
|
+
v0.2 的商业模式比 v0.1 清晰了一点(服务器 = 可以收费),但核心问题没变:
|
|
62
|
+
- 自托管免费 → 技术用户都自建,不付费
|
|
63
|
+
- 云托管收费 → 跟 Mem0、Zep 正面竞争
|
|
64
|
+
- API 调用量收费 → 画像读写频率低,ARPU 极低
|
|
65
|
+
|
|
66
|
+
### 反驳
|
|
67
|
+
变现不靠基础 API,靠增值服务:
|
|
68
|
+
- **画像智能**:AI 自动从交互中提炼画像(不只是存储,是理解)
|
|
69
|
+
- **跨 agent 洞察**:「你的 coding agent 发现你最近在学 Rust,要不要同步给你的学习 agent?」
|
|
70
|
+
- **企业版**:团队画像管理、合规审计、SSO
|
|
71
|
+
|
|
72
|
+
### 结论
|
|
73
|
+
**短期不追求变现,先追求用户量。** 个人版完全免费(自托管),等用户量到一定规模再推企业版和增值服务。这是开源基础设施的标准路径。
|
|
74
|
+
|
|
75
|
+
---
|
|
76
|
+
|
|
77
|
+
## 5. 竞品分析
|
|
78
|
+
|
|
79
|
+
### 质疑
|
|
80
|
+
这个赛道已经有玩家了:
|
|
81
|
+
- **Mem0**:AI memory layer,提供 API 存储和检索 AI 对话记忆,已融资
|
|
82
|
+
- **Zep**:长期记忆服务,支持用户画像和会话历史
|
|
83
|
+
- **LangMem**:LangChain 生态的记忆管理
|
|
84
|
+
- **Letta (MemGPT)**:有状态 agent 框架,内置记忆管理
|
|
85
|
+
|
|
86
|
+
这些产品已经在做「AI agent 的记忆/画像服务」,蜂群 AI 的差异化在哪?
|
|
87
|
+
|
|
88
|
+
### 反驳
|
|
89
|
+
关键差异:
|
|
90
|
+
- Mem0/Zep/LangMem 聚焦**单 agent 记忆**,蜂群聚焦**跨 agent 画像同步**
|
|
91
|
+
- 它们是开发者工具(SDK),蜂群有**用户管理界面**(非技术用户也能管理画像)
|
|
92
|
+
- 它们不管 agent 人设,蜂群把**画像 + 人设 + 记忆**统一管理
|
|
93
|
+
- 蜂群的 Skill 集成方式更轻量——不需要改代码,装个 Skill 就行
|
|
94
|
+
|
|
95
|
+
### 结论
|
|
96
|
+
**差异化在「跨 agent」和「用户可控」。** 但要诚实:如果 Mem0 加一个「跨 agent 同步」功能,差异化就没了。护城河在于:(1) 先发优势——先占「跨 agent 画像」这个定位;(2) Skill 生态——让接入尽可能简单;(3) 用户体验——管理界面做到非技术用户也能用。
|
|
97
|
+
|
|
98
|
+
---
|
|
99
|
+
|
|
100
|
+
## 6. MCP 兼容
|
|
101
|
+
|
|
102
|
+
### 质疑
|
|
103
|
+
Round 1 建议「做 MCP Server」,v0.2 没有明确回应。API 是否应该同时暴露为 MCP Server?
|
|
104
|
+
|
|
105
|
+
### 反驳
|
|
106
|
+
成本低、收益高:
|
|
107
|
+
- MCP Server 就是把 REST API 包一层 MCP 协议,工作量 1-2 天
|
|
108
|
+
- 所有支持 MCP 的 agent(Claude Desktop、OpenClaw、Cursor 等)直接能用
|
|
109
|
+
- 不做 MCP = 放弃一大批潜在用户
|
|
110
|
+
|
|
111
|
+
### 结论
|
|
112
|
+
**P0 就做 MCP Server。** 工作量小,收益大。REST API + MCP Server 双协议暴露。
|
|
113
|
+
|
|
114
|
+
---
|
|
115
|
+
|
|
116
|
+
## 7. MVP 范围评估
|
|
117
|
+
|
|
118
|
+
### 质疑
|
|
119
|
+
v0.2 的 P0-alpha:
|
|
120
|
+
- 服务器 REST API(画像 CRUD + 记忆 CRUD)
|
|
121
|
+
- API Key 认证
|
|
122
|
+
- 管理界面(画像编辑 + Agent 管理)
|
|
123
|
+
- OpenClaw Skill
|
|
124
|
+
- Peon 集成
|
|
125
|
+
|
|
126
|
+
2-4 周能做完吗?
|
|
127
|
+
|
|
128
|
+
### 反驳
|
|
129
|
+
拆解工作量:
|
|
130
|
+
- 后端 API(Express + PostgreSQL):3-4 天
|
|
131
|
+
- API Key 认证:1 天
|
|
132
|
+
- 管理界面(React + Tailwind):5-7 天
|
|
133
|
+
- OpenClaw Skill:1 天
|
|
134
|
+
- Peon 集成测试:1-2 天
|
|
135
|
+
- 总计:11-15 天,2-3 周可完成
|
|
136
|
+
|
|
137
|
+
### 结论
|
|
138
|
+
**范围合理,但建议进一步精简管理界面。** P0-alpha 的管理界面只做:(1) 画像查看/编辑;(2) API Key 生成。Agent 管理和记忆浏览放到 P0-beta。这样可以压缩到 2 周。
|
|
139
|
+
|
|
140
|
+
---
|
|
141
|
+
|
|
142
|
+
## 总结
|
|
143
|
+
|
|
144
|
+
| # | 议题 | 结论 |
|
|
145
|
+
|---|------|------|
|
|
146
|
+
| 1 | Server vs Daemon | 先自托管 Docker,agent 端加本地缓存 |
|
|
147
|
+
| 2 | Skill 通用性 | API 为核心,Skill/OpenAPI/MCP 四种接入方式 |
|
|
148
|
+
| 3 | 自托管 vs 云托管 | 先自托管,后云托管 |
|
|
149
|
+
| 4 | 商业可行性 | 短期不变现,先追用户量 |
|
|
150
|
+
| 5 | 竞品 | 差异化在「跨 agent」+「用户可控」,但护城河薄 |
|
|
151
|
+
| 6 | MCP | P0 就做,成本低收益高 |
|
|
152
|
+
| 7 | MVP 范围 | 合理,精简管理界面后 2 周可完成 |
|
|
153
|
+
|
|
154
|
+
**Round 2 核心结论:Server + Skill 方向比 v0.1 务实得多,竞品存在但差异化明确。最大风险从「技术复杂度」变成了「市场竞争」——需要快速推出 MVP 抢占「跨 agent 画像」这个定位。**
|
|
155
|
+
|
|
156
|
+
---
|
|
157
|
+
|
|
158
|
+
*Round 2 | Peon ⛏️ | 2026-02-20*
|
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
# 蜂群 AI — 需求分析 v0.2(Server + Skill 方向)
|
|
2
|
+
|
|
3
|
+
> v0.1 → v0.2 重大转向:从本地 daemon 改为服务器部署 + Agent Skill 集成
|
|
4
|
+
|
|
5
|
+
## 1. 核心方向
|
|
6
|
+
|
|
7
|
+
**一句话**:部署在服务器的用户画像中心,agent 通过 Skill 学会调用 API 读写画像。
|
|
8
|
+
|
|
9
|
+
**关键转变**:
|
|
10
|
+
- ~~本地 Profile Daemon~~ → 服务器部署(自托管或云托管)
|
|
11
|
+
- ~~P2P/CRDT 同步~~ → 服务器为单一数据源
|
|
12
|
+
- ~~多语言 SDK~~ → Agent Skill(SKILL.md)+ REST API
|
|
13
|
+
- ~~零安装~~ → 用户注册账号,agent 装 Skill
|
|
14
|
+
|
|
15
|
+
## 2. 系统架构
|
|
16
|
+
|
|
17
|
+
```
|
|
18
|
+
┌─────────────────────────────────┐
|
|
19
|
+
│ 蜂群 AI Server │
|
|
20
|
+
│ │
|
|
21
|
+
│ ┌──────────┐ ┌─────────────┐ │
|
|
22
|
+
│ │ REST API │ │ Web 管理台 │ │
|
|
23
|
+
│ └────┬─────┘ └──────┬──────┘ │
|
|
24
|
+
│ └────────┬───────┘ │
|
|
25
|
+
│ ┌─────▼──────┐ │
|
|
26
|
+
│ │ Core Engine │ │
|
|
27
|
+
│ │ • 用户画像 │ │
|
|
28
|
+
│ │ • Agent 人设 │ │
|
|
29
|
+
│ │ • 共享记忆 │ │
|
|
30
|
+
│ │ • 权限管理 │ │
|
|
31
|
+
│ └─────────────┘ │
|
|
32
|
+
│ ┌─────────────┐ │
|
|
33
|
+
│ │ PostgreSQL │ │
|
|
34
|
+
│ └─────────────┘ │
|
|
35
|
+
└─────────────────────────────────┘
|
|
36
|
+
▲ ▲ ▲
|
|
37
|
+
│ │ │
|
|
38
|
+
┌────┴───┐ ┌───┴────┐ ┌──┴─────┐
|
|
39
|
+
│OpenClaw│ │ Claude │ │ 任意 │
|
|
40
|
+
│+ Skill │ │+ Skill │ │ Agent │
|
|
41
|
+
└────────┘ └────────┘ └────────┘
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
## 3. 核心数据模型
|
|
45
|
+
|
|
46
|
+
### 3.1 用户画像(Profile)
|
|
47
|
+
```json
|
|
48
|
+
{
|
|
49
|
+
"userId": "user_xxx",
|
|
50
|
+
"layers": {
|
|
51
|
+
"identity": { "name": "邱展悦", "language": "zh-CN", "timezone": "Asia/Shanghai" },
|
|
52
|
+
"preferences": { "communication_style": "direct", "tech_stack": ["TypeScript", "React"] },
|
|
53
|
+
"context": { "current_projects": ["swarm-ai", "repurpose-ext"], "mood": "focused" }
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
### 3.2 Agent 人设(Persona)
|
|
59
|
+
```json
|
|
60
|
+
{
|
|
61
|
+
"agentId": "peon",
|
|
62
|
+
"name": "Peon",
|
|
63
|
+
"personality": "直接、实在、不废话",
|
|
64
|
+
"instructions": "先动手再开口,说实话哪怕不好听",
|
|
65
|
+
"constraints": ["不泄露私人数据", "破坏性操作先问"]
|
|
66
|
+
}
|
|
67
|
+
```
|
|
68
|
+
|
|
69
|
+
### 3.3 共享记忆(Memory)
|
|
70
|
+
```json
|
|
71
|
+
{
|
|
72
|
+
"key": "project_repurpose_pivot",
|
|
73
|
+
"content": "Repurpose 从 Next.js 网站转为 Chrome 插件",
|
|
74
|
+
"source": "agent:peon",
|
|
75
|
+
"tags": ["project", "decision"],
|
|
76
|
+
"createdAt": "2026-02-19T00:00:00Z"
|
|
77
|
+
}
|
|
78
|
+
```
|
|
79
|
+
|
|
80
|
+
## 4. API 设计
|
|
81
|
+
|
|
82
|
+
### 认证
|
|
83
|
+
- API Key per agent:`Authorization: Bearer swarm_xxx`
|
|
84
|
+
- 每个 key 绑定 agent 身份和权限范围
|
|
85
|
+
|
|
86
|
+
### 端点
|
|
87
|
+
```
|
|
88
|
+
GET /api/v1/profile # 读取用户画像
|
|
89
|
+
PATCH /api/v1/profile # 更新画像字段
|
|
90
|
+
POST /api/v1/profile/observe # 提交观察(agent 推断)
|
|
91
|
+
|
|
92
|
+
GET /api/v1/persona/:agentId # 读取 agent 人设
|
|
93
|
+
GET /api/v1/persona/me # 读取当前 agent 人设
|
|
94
|
+
|
|
95
|
+
GET /api/v1/memory # 查询共享记忆
|
|
96
|
+
POST /api/v1/memory # 写入记忆条目
|
|
97
|
+
GET /api/v1/memory/search?q= # 语义搜索记忆
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
## 5. Agent Skill 集成
|
|
101
|
+
|
|
102
|
+
Skill 是一个目录,包含:
|
|
103
|
+
```
|
|
104
|
+
swarm-ai-skill/
|
|
105
|
+
├── SKILL.md # 教 agent 怎么用(集成文档)
|
|
106
|
+
├── scripts/
|
|
107
|
+
│ └── setup.sh # 可选:自动配置
|
|
108
|
+
└── examples/
|
|
109
|
+
└── usage.md # 使用示例
|
|
110
|
+
```
|
|
111
|
+
|
|
112
|
+
SKILL.md 核心内容:
|
|
113
|
+
1. 什么是蜂群 AI(一句话)
|
|
114
|
+
2. 认证方式(API Key 从哪拿)
|
|
115
|
+
3. 会话开始时:调 GET /profile 和 GET /persona/me
|
|
116
|
+
4. 交互中:有新发现时调 POST /profile/observe
|
|
117
|
+
5. 需要历史上下文时:调 GET /memory/search
|
|
118
|
+
|
|
119
|
+
## 6. Web 管理界面
|
|
120
|
+
|
|
121
|
+
### P0 功能
|
|
122
|
+
- 用户注册/登录
|
|
123
|
+
- 画像编辑(三层可视化编辑)
|
|
124
|
+
- Agent 管理(添加 agent、分配 API Key、设置权限)
|
|
125
|
+
- 记忆浏览和管理
|
|
126
|
+
|
|
127
|
+
### P1 功能
|
|
128
|
+
- Agent 人设编辑器
|
|
129
|
+
- 画像变更历史
|
|
130
|
+
- API 调用日志/审计
|
|
131
|
+
- 数据导入/导出
|
|
132
|
+
|
|
133
|
+
## 7. 技术栈(建议)
|
|
134
|
+
|
|
135
|
+
- **后端**:Node.js + Express/Fastify
|
|
136
|
+
- **数据库**:PostgreSQL(画像+记忆)+ pgvector(语义搜索)
|
|
137
|
+
- **前端**:React + Tailwind(管理界面)
|
|
138
|
+
- **部署**:Docker compose(自托管)/ Vercel + Supabase(云托管)
|
|
139
|
+
- **认证**:JWT + API Key
|
|
140
|
+
|
|
141
|
+
## 8. MVP 范围(P0-alpha,2-4 周)
|
|
142
|
+
|
|
143
|
+
- [ ] 服务器:REST API(画像 CRUD + 记忆 CRUD)
|
|
144
|
+
- [ ] 认证:API Key 基础认证
|
|
145
|
+
- [ ] 管理界面:最简画像编辑 + Agent 管理
|
|
146
|
+
- [ ] Skill:OpenClaw Agent Skill(SKILL.md + 示例)
|
|
147
|
+
- [ ] 集成:Peon 作为第一个接入的 agent
|
|
148
|
+
|
|
149
|
+
**不做**:语义搜索、E2E 加密、多用户、agent 人设管理
|
|
150
|
+
|
|
151
|
+
## 9. 待辩论问题(Round 2)
|
|
152
|
+
|
|
153
|
+
1. **自托管 vs 云托管优先**:先做 Docker 自托管还是先做云服务?
|
|
154
|
+
2. **Skill 通用性**:SKILL.md 只能教会支持 Skill 的 agent(如 OpenClaw),其他 agent 怎么办?
|
|
155
|
+
3. **数据安全**:服务器存储明文画像,安全性如何保证?
|
|
156
|
+
4. **定价**:自托管免费 + 云托管收费?还是按 API 调用量收费?
|
|
157
|
+
5. **与 MCP 的关系**:API 是否同时暴露为 MCP Server?
|
|
158
|
+
6. **市场时机**:现在做这个方向,竞争对手有谁?
|
|
159
|
+
|
|
160
|
+
---
|
|
161
|
+
|
|
162
|
+
*v0.2 | 2026-02-20 | 方向:Server + Skill | 作者:Peon ⛏️*
|