@orbcharts/core 3.0.3 → 3.0.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +200 -200
- package/dist/orbcharts-core.es.js +1896 -1847
- package/dist/orbcharts-core.umd.js +5 -5
- package/dist/src/series/seriesObservables.d.ts +18 -7
- package/dist/src/utils/errorMessage.d.ts +1 -4
- package/lib/core-types.ts +7 -7
- package/package.json +46 -46
- package/src/AbstractChart.ts +57 -57
- package/src/GridChart.ts +24 -24
- package/src/MultiGridChart.ts +24 -24
- package/src/MultiValueChart.ts +24 -24
- package/src/RelationshipChart.ts +24 -24
- package/src/SeriesChart.ts +24 -24
- package/src/TreeChart.ts +24 -24
- package/src/base/createBaseChart.ts +524 -526
- package/src/base/createBasePlugin.ts +154 -154
- package/src/base/validators/chartOptionsValidator.ts +23 -23
- package/src/base/validators/chartParamsValidator.ts +133 -133
- package/src/base/validators/elementValidator.ts +13 -13
- package/src/base/validators/pluginsValidator.ts +14 -14
- package/src/defaults.ts +284 -283
- package/src/defineGridPlugin.ts +3 -3
- package/src/defineMultiGridPlugin.ts +3 -3
- package/src/defineMultiValuePlugin.ts +3 -3
- package/src/defineNoneDataPlugin.ts +4 -4
- package/src/defineRelationshipPlugin.ts +3 -3
- package/src/defineSeriesPlugin.ts +3 -3
- package/src/defineTreePlugin.ts +3 -3
- package/src/grid/computedDataFn.ts +129 -129
- package/src/grid/contextObserverCallback.ts +201 -201
- package/src/grid/dataFormatterValidator.ts +125 -125
- package/src/grid/dataValidator.ts +12 -12
- package/src/grid/gridObservables.ts +694 -718
- package/src/index.ts +20 -20
- package/src/multiGrid/computedDataFn.ts +123 -123
- package/src/multiGrid/contextObserverCallback.ts +75 -75
- package/src/multiGrid/dataFormatterValidator.ts +120 -120
- package/src/multiGrid/dataValidator.ts +12 -12
- package/src/multiGrid/multiGridObservables.ts +357 -401
- package/src/multiValue/computedDataFn.ts +113 -113
- package/src/multiValue/contextObserverCallback.ts +328 -328
- package/src/multiValue/dataFormatterValidator.ts +94 -94
- package/src/multiValue/dataValidator.ts +12 -12
- package/src/multiValue/multiValueObservables.ts +865 -1219
- package/src/relationship/computedDataFn.ts +159 -159
- package/src/relationship/contextObserverCallback.ts +80 -80
- package/src/relationship/dataFormatterValidator.ts +13 -13
- package/src/relationship/dataValidator.ts +13 -13
- package/src/relationship/relationshipObservables.ts +84 -84
- package/src/series/computedDataFn.ts +88 -88
- package/src/series/contextObserverCallback.ts +132 -107
- package/src/series/dataFormatterValidator.ts +46 -46
- package/src/series/dataValidator.ts +12 -12
- package/src/series/seriesObservables.ts +209 -175
- package/src/tree/computedDataFn.ts +129 -129
- package/src/tree/contextObserverCallback.ts +58 -58
- package/src/tree/dataFormatterValidator.ts +13 -13
- package/src/tree/dataValidator.ts +13 -13
- package/src/tree/treeObservables.ts +105 -105
- package/src/utils/commonUtils.ts +55 -55
- package/src/utils/d3Scale.ts +198 -198
- package/src/utils/errorMessage.ts +40 -43
- package/src/utils/index.ts +3 -3
- package/src/utils/observables.ts +308 -293
- package/src/utils/orbchartsUtils.ts +396 -396
- package/src/utils/validator.ts +126 -126
- package/tsconfig.base.json +13 -13
- package/tsconfig.json +2 -2
- package/vite-env.d.ts +6 -6
- package/vite.config.js +22 -22
@@ -1,1219 +1,865 @@
|
|
1
|
-
import {
|
2
|
-
combineLatest,
|
3
|
-
distinctUntilChanged,
|
4
|
-
iif,
|
5
|
-
filter,
|
6
|
-
map,
|
7
|
-
merge,
|
8
|
-
takeUntil,
|
9
|
-
shareReplay,
|
10
|
-
switchMap,
|
11
|
-
Subject,
|
12
|
-
Observable } from 'rxjs'
|
13
|
-
import type {
|
14
|
-
AxisPosition,
|
15
|
-
ChartType,
|
16
|
-
ChartParams,
|
17
|
-
ComputedDataTypeMap,
|
18
|
-
ComputedDatumTypeMap,
|
19
|
-
ComputedDataMultiValue,
|
20
|
-
ComputedDatumMultiValue,
|
21
|
-
ComputedDatumWithSumMultiValue,
|
22
|
-
ContainerSize,
|
23
|
-
DataFormatterTypeMap,
|
24
|
-
DataFormatterMultiValue,
|
25
|
-
DataFormatterXYAxis,
|
26
|
-
ComputedXYDatumMultiValue,
|
27
|
-
ComputedXYDataMultiValue,
|
28
|
-
ContainerPositionScaled,
|
29
|
-
HighlightTarget,
|
30
|
-
Layout,
|
31
|
-
TransformData } from '../../lib/core-types'
|
32
|
-
import { getMinMax, createDefaultValueLabel } from '../utils/orbchartsUtils'
|
33
|
-
import { createValueToAxisScale, createLabelToAxisScale, createAxisToLabelIndexScale } from '../utils/d3Scale'
|
34
|
-
import { calcContainerPositionScaled } from '../utils/orbchartsUtils'
|
35
|
-
|
36
|
-
export const valueLabelsObservable = ({ computedData$, fullDataFormatter$ }: {
|
37
|
-
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
38
|
-
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
39
|
-
}) => {
|
40
|
-
return combineLatest({
|
41
|
-
computedData: computedData$,
|
42
|
-
fullDataFormatter: fullDataFormatter$,
|
43
|
-
}).pipe(
|
44
|
-
map(data => {
|
45
|
-
return data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
46
|
-
? data.computedData[0][0].value.map((d, i) => data.fullDataFormatter.valueLabels[i] ?? createDefaultValueLabel('multiValue', i))
|
47
|
-
: []
|
48
|
-
}),
|
49
|
-
)
|
50
|
-
}
|
51
|
-
|
52
|
-
export const xyMinMaxObservable = ({ computedData$, xyValueIndex$ }: {
|
53
|
-
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
54
|
-
xyValueIndex$: Observable<[number, number]>
|
55
|
-
}) => {
|
56
|
-
return combineLatest({
|
57
|
-
computedData: computedData$,
|
58
|
-
xyValueIndex: xyValueIndex$,
|
59
|
-
}).pipe(
|
60
|
-
map(data => {
|
61
|
-
const flatData = data.computedData.flat()
|
62
|
-
const [minX, maxX] = getMinMax(flatData.map(d => d.value[data.xyValueIndex[0]]))
|
63
|
-
const [minY, maxY] = getMinMax(flatData.map(d => d.value[data.xyValueIndex[1]]))
|
64
|
-
return { minX, maxX, minY, maxY }
|
65
|
-
})
|
66
|
-
)
|
67
|
-
}
|
68
|
-
|
69
|
-
export const computedXYDataObservable = ({ computedData$, xyMinMax$, xyValueIndex$, fullDataFormatter$, layout$ }: {
|
70
|
-
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
71
|
-
xyMinMax$: Observable<{ minX: number, maxX: number, minY: number, maxY: number }>
|
72
|
-
xyValueIndex$: Observable<[number, number]>
|
73
|
-
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
74
|
-
layout$: Observable<Layout>
|
75
|
-
}): Observable<ComputedXYDataMultiValue> => {
|
76
|
-
|
77
|
-
// 未篩選範圍前的 scale
|
78
|
-
function createOriginXScale (xyMinMax: { minX: number, maxX: number, minY: number, maxY: number }, layout: Layout) {
|
79
|
-
let maxValue = xyMinMax.maxX
|
80
|
-
let minValue = xyMinMax.minX
|
81
|
-
if (minValue === maxValue && maxValue === 0) {
|
82
|
-
// 避免最大及最小值相同造成無法計算scale
|
83
|
-
maxValue = 1
|
84
|
-
}
|
85
|
-
const valueScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
86
|
-
maxValue,
|
87
|
-
minValue,
|
88
|
-
axisWidth: layout.width,
|
89
|
-
scaleDomain: ['auto', 'auto'], // 不使用dataFormatter設定 --> 以0為基準到最大或最小值為範圍( * 如果是使用[minValue, maxValue]的話,在兩者很接近的情況下有可能造成scale倍率過高而svg變型時失真的情況)
|
90
|
-
scaleRange: [0, 1] // 不使用dataFormatter設定
|
91
|
-
})
|
92
|
-
|
93
|
-
return valueScale
|
94
|
-
}
|
95
|
-
|
96
|
-
// 未篩選範圍及visible前的 scale
|
97
|
-
function createOriginYScale (xyMinMax: { minX: number, maxX: number, minY: number, maxY: number }, layout: Layout) {
|
98
|
-
let maxValue = xyMinMax.maxY
|
99
|
-
let minValue = xyMinMax.minY
|
100
|
-
if (minValue === maxValue && maxValue === 0) {
|
101
|
-
// 避免最大及最小值相同造成無法計算scale
|
102
|
-
maxValue = 1
|
103
|
-
}
|
104
|
-
const valueScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
105
|
-
maxValue,
|
106
|
-
minValue,
|
107
|
-
axisWidth: layout.height,
|
108
|
-
scaleDomain: ['auto', 'auto'], // 不使用dataFormatter設定 --> 以0為基準到最大或最小值為範圍( * 如果是使用[minValue, maxValue]的話,在兩者很接近的情況下有可能造成scale倍率過高而svg變型時失真的情況)
|
109
|
-
scaleRange: [0, 1], // 不使用dataFormatter設定
|
110
|
-
reverse: true
|
111
|
-
})
|
112
|
-
|
113
|
-
return valueScale
|
114
|
-
}
|
115
|
-
|
116
|
-
return combineLatest({
|
117
|
-
computedData: computedData$,
|
118
|
-
xyMinMax: xyMinMax$,
|
119
|
-
xyValueIndex: xyValueIndex$,
|
120
|
-
fullDataFormatter: fullDataFormatter$,
|
121
|
-
layout: layout$
|
122
|
-
}).pipe(
|
123
|
-
switchMap(async d => d),
|
124
|
-
map(data => {
|
125
|
-
|
126
|
-
const xScale = createOriginXScale(data.xyMinMax, data.layout)
|
127
|
-
const yScale = createOriginYScale(data.xyMinMax, data.layout)
|
128
|
-
|
129
|
-
return data.computedData
|
130
|
-
.map((categoryData, categoryIndex) => {
|
131
|
-
return categoryData.map((datum, datumIndex) => {
|
132
|
-
return {
|
133
|
-
...datum,
|
134
|
-
axisX: xScale(datum.value[data.xyValueIndex[0]] ?? 0),
|
135
|
-
// axisY: data.layout.height - yScale(datum.value[1] ?? 0), // y軸的繪圖座標是從上到下,所以反轉
|
136
|
-
axisY: yScale(datum.value[data.xyValueIndex[1]] ?? 0), // y軸的繪圖座標是從上到下,所以反轉
|
137
|
-
}
|
138
|
-
})
|
139
|
-
})
|
140
|
-
})
|
141
|
-
)
|
142
|
-
}
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
//
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
//
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
//
|
216
|
-
|
217
|
-
//
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
//
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
//
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
//
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
//
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
//
|
272
|
-
|
273
|
-
|
274
|
-
//
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
//
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
//
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
}
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
}
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
})
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
export const
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
return combineLatest({
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
map(data => {
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
}
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
const
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
//
|
539
|
-
//
|
540
|
-
//
|
541
|
-
//
|
542
|
-
//
|
543
|
-
//
|
544
|
-
//
|
545
|
-
//
|
546
|
-
//
|
547
|
-
//
|
548
|
-
//
|
549
|
-
|
550
|
-
//
|
551
|
-
//
|
552
|
-
|
553
|
-
//
|
554
|
-
|
555
|
-
//
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
//
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
//
|
568
|
-
|
569
|
-
|
570
|
-
//
|
571
|
-
|
572
|
-
|
573
|
-
|
574
|
-
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
|
579
|
-
|
580
|
-
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
597
|
-
|
598
|
-
|
599
|
-
|
600
|
-
|
601
|
-
|
602
|
-
|
603
|
-
|
604
|
-
|
605
|
-
|
606
|
-
|
607
|
-
|
608
|
-
|
609
|
-
|
610
|
-
|
611
|
-
|
612
|
-
|
613
|
-
|
614
|
-
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
648
|
-
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
}
|
662
|
-
|
663
|
-
|
664
|
-
//
|
665
|
-
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
//
|
672
|
-
//
|
673
|
-
//
|
674
|
-
//
|
675
|
-
//
|
676
|
-
//
|
677
|
-
|
678
|
-
//
|
679
|
-
//
|
680
|
-
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
//
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
//
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
701
|
-
//
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
//
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
713
|
-
|
714
|
-
|
715
|
-
//
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
723
|
-
|
724
|
-
|
725
|
-
|
726
|
-
|
727
|
-
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
|
741
|
-
|
742
|
-
|
743
|
-
|
744
|
-
//
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
761
|
-
|
762
|
-
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
796
|
-
|
797
|
-
|
798
|
-
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
|
817
|
-
|
818
|
-
|
819
|
-
|
820
|
-
|
821
|
-
|
822
|
-
|
823
|
-
|
824
|
-
|
825
|
-
|
826
|
-
|
827
|
-
|
828
|
-
|
829
|
-
|
830
|
-
|
831
|
-
|
832
|
-
|
833
|
-
|
834
|
-
|
835
|
-
|
836
|
-
|
837
|
-
|
838
|
-
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
|
843
|
-
|
844
|
-
//
|
845
|
-
|
846
|
-
|
847
|
-
|
848
|
-
|
849
|
-
|
850
|
-
|
851
|
-
|
852
|
-
|
853
|
-
|
854
|
-
|
855
|
-
|
856
|
-
|
857
|
-
|
858
|
-
|
859
|
-
|
860
|
-
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
|
865
|
-
|
866
|
-
})
|
867
|
-
|
868
|
-
// -- translateX, scaleX --
|
869
|
-
const rangeMinX = xScale(minX > 0 ? 0 : minX) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
870
|
-
const rangeMaxX = xScale(maxX < 0 ? 0 : maxX) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
871
|
-
translateX = rangeMinX
|
872
|
-
const gWidth = rangeMaxX - rangeMinX
|
873
|
-
scaleX = gWidth / width
|
874
|
-
// console.log({ gWidth, width, rangeMaxX, rangeMinX, scaleX, translateX })
|
875
|
-
// -- yScale --
|
876
|
-
const yScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
877
|
-
maxValue: filteredMaxY,
|
878
|
-
minValue: filteredMinY,
|
879
|
-
axisWidth: height,
|
880
|
-
scaleDomain: yAxis.scaleDomain,
|
881
|
-
scaleRange: yAxis.scaleRange,
|
882
|
-
reverse: true
|
883
|
-
})
|
884
|
-
|
885
|
-
// -- translateY, scaleY --
|
886
|
-
const rangeMinY = yScale(minY > 0 ? 0 : minY) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
887
|
-
const rangeMaxY = yScale(maxY < 0 ? 0 : maxY) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
888
|
-
translateY = rangeMaxY // 最大值的 y 最小(最上方)
|
889
|
-
const gHeight = rangeMinY - rangeMaxY // 最大的 y 減最小的 y
|
890
|
-
scaleY = gHeight / height
|
891
|
-
|
892
|
-
return {
|
893
|
-
translate: [translateX, translateY],
|
894
|
-
scale: [scaleX, scaleY],
|
895
|
-
rotate: 0,
|
896
|
-
rotateX: 0,
|
897
|
-
rotateY: 0,
|
898
|
-
value: `translate(${translateX}px, ${translateY}px) scale(${scaleX}, ${scaleY})`
|
899
|
-
}
|
900
|
-
}
|
901
|
-
|
902
|
-
return new Observable(subscriber => {
|
903
|
-
combineLatest({
|
904
|
-
xyMinMax: xyMinMax$,
|
905
|
-
xyValueIndex: xyValueIndex$,
|
906
|
-
filteredXYMinMaxData: filteredXYMinMaxData$,
|
907
|
-
fullDataFormatter: fullDataFormatter$,
|
908
|
-
layout: layout$
|
909
|
-
}).pipe(
|
910
|
-
takeUntil(destroy$),
|
911
|
-
switchMap(async (d) => d),
|
912
|
-
).subscribe(data => {
|
913
|
-
if (!data.filteredXYMinMaxData.minXDatum || !data.filteredXYMinMaxData.maxXDatum
|
914
|
-
|| data.filteredXYMinMaxData.minXDatum.value[data.xyValueIndex[0]] == null || data.filteredXYMinMaxData.maxXDatum.value[data.xyValueIndex[0]] == null
|
915
|
-
|| !data.filteredXYMinMaxData.minYDatum || !data.filteredXYMinMaxData.maxYDatum
|
916
|
-
|| data.filteredXYMinMaxData.minYDatum.value[data.xyValueIndex[1]] == null || data.filteredXYMinMaxData.maxYDatum.value[data.xyValueIndex[1]] == null
|
917
|
-
) {
|
918
|
-
return
|
919
|
-
}
|
920
|
-
const dataAreaTransformData = calcDataAreaTransform({
|
921
|
-
xyMinMax: data.xyMinMax,
|
922
|
-
xyValueIndex: data.xyValueIndex,
|
923
|
-
filteredXYMinMaxData: data.filteredXYMinMaxData,
|
924
|
-
xAxis: data.fullDataFormatter.xAxis,
|
925
|
-
yAxis: data.fullDataFormatter.yAxis,
|
926
|
-
width: data.layout.width,
|
927
|
-
height: data.layout.height
|
928
|
-
})
|
929
|
-
|
930
|
-
// console.log('dataAreaTransformData', dataAreaTransformData)
|
931
|
-
|
932
|
-
subscriber.next(dataAreaTransformData)
|
933
|
-
})
|
934
|
-
|
935
|
-
return function unscbscribe () {
|
936
|
-
destroy$.next(undefined)
|
937
|
-
}
|
938
|
-
})
|
939
|
-
}
|
940
|
-
|
941
|
-
export const graphicReverseScaleObservable = ({ containerPosition$, graphicTransform$ }: {
|
942
|
-
containerPosition$: Observable<ContainerPositionScaled[]>
|
943
|
-
// multiValueAxesTransform$: Observable<TransformData>
|
944
|
-
graphicTransform$: Observable<TransformData>
|
945
|
-
}): Observable<[number, number][]> => {
|
946
|
-
return combineLatest({
|
947
|
-
containerPosition: containerPosition$,
|
948
|
-
// multiValueAxesTransform: multiValueAxesTransform$,
|
949
|
-
graphicTransform: graphicTransform$,
|
950
|
-
}).pipe(
|
951
|
-
switchMap(async (d) => d),
|
952
|
-
map(data => {
|
953
|
-
// if (data.multiValueAxesTransform.rotate == 0 || data.multiValueAxesTransform.rotate == 180) {
|
954
|
-
return data.containerPosition.map((series, seriesIndex) => {
|
955
|
-
return [
|
956
|
-
1 / data.graphicTransform.scale[0] / data.containerPosition[seriesIndex].scale[0],
|
957
|
-
1 / data.graphicTransform.scale[1] / data.containerPosition[seriesIndex].scale[1],
|
958
|
-
]
|
959
|
-
})
|
960
|
-
// } else {
|
961
|
-
// return data.containerPosition.map((series, seriesIndex) => {
|
962
|
-
// // 由於有垂直的旋轉,所以外層 (container) x和y的scale要互換
|
963
|
-
// return [
|
964
|
-
// 1 / data.graphicTransform.scale[0] / data.containerPosition[seriesIndex].scale[1],
|
965
|
-
// 1 / data.graphicTransform.scale[1] / data.containerPosition[seriesIndex].scale[0],
|
966
|
-
// ]
|
967
|
-
// })
|
968
|
-
// }
|
969
|
-
}),
|
970
|
-
)
|
971
|
-
}
|
972
|
-
|
973
|
-
// X 軸圖軸 - 用 value[index]
|
974
|
-
export const xScaleObservable = ({ visibleComputedSumData$, fullDataFormatter$, filteredXYMinMaxData$, containerSize$ }: {
|
975
|
-
visibleComputedSumData$: Observable<ComputedDatumMultiValue[][]>
|
976
|
-
fullDataFormatter$: Observable<DataFormatterMultiValue>
|
977
|
-
filteredXYMinMaxData$: Observable<{
|
978
|
-
minXDatum: ComputedXYDatumMultiValue
|
979
|
-
maxXDatum: ComputedXYDatumMultiValue
|
980
|
-
minYDatum: ComputedXYDatumMultiValue
|
981
|
-
maxYDatum: ComputedXYDatumMultiValue
|
982
|
-
}>
|
983
|
-
// layout$: Observable<Layout>
|
984
|
-
containerSize$: Observable<ContainerSize>
|
985
|
-
}) => {
|
986
|
-
return combineLatest({
|
987
|
-
visibleComputedSumData: visibleComputedSumData$,
|
988
|
-
fullDataFormatter: fullDataFormatter$,
|
989
|
-
containerSize: containerSize$,
|
990
|
-
// xyMinMax: xyMinMax$
|
991
|
-
filteredXYMinMaxData: filteredXYMinMaxData$
|
992
|
-
}).pipe(
|
993
|
-
switchMap(async (d) => d),
|
994
|
-
map(data => {
|
995
|
-
const valueIndex = data.fullDataFormatter.xAxis.valueIndex
|
996
|
-
if (!data.filteredXYMinMaxData.minXDatum || !data.filteredXYMinMaxData.maxXDatum
|
997
|
-
// || data.filteredXYMinMaxData.minXDatum.value[valueIndex] == null || data.filteredXYMinMaxData.maxXDatum.value[valueIndex] == null
|
998
|
-
) {
|
999
|
-
return
|
1000
|
-
}
|
1001
|
-
let maxValue: number | null = data.filteredXYMinMaxData.maxXDatum.value[valueIndex]
|
1002
|
-
let minValue: number | null = data.filteredXYMinMaxData.minXDatum.value[valueIndex]
|
1003
|
-
if (maxValue === minValue && maxValue === 0) {
|
1004
|
-
// 避免最大及最小值同等於 0 造成無法計算scale
|
1005
|
-
maxValue = 1
|
1006
|
-
}
|
1007
|
-
|
1008
|
-
const xScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
1009
|
-
maxValue,
|
1010
|
-
minValue,
|
1011
|
-
axisWidth: data.containerSize.width,
|
1012
|
-
scaleDomain: data.fullDataFormatter.xAxis.scaleDomain,
|
1013
|
-
scaleRange: data.fullDataFormatter.xAxis.scaleRange,
|
1014
|
-
})
|
1015
|
-
return xScale
|
1016
|
-
})
|
1017
|
-
)
|
1018
|
-
}
|
1019
|
-
|
1020
|
-
// X 軸圖軸 - 用所有 valueIndex 加總資料
|
1021
|
-
// export const xSumScaleObservable = ({ fullDataFormatter$, filteredXYMinMaxData$, containerSize$ }: {
|
1022
|
-
// // valueIndex$: Observable<number>
|
1023
|
-
// fullDataFormatter$: Observable<DataFormatterMultiValue>
|
1024
|
-
// filteredXYMinMaxData$: Observable<{
|
1025
|
-
// minXDatum: ComputedXYDatumMultiValue
|
1026
|
-
// maxXDatum: ComputedXYDatumMultiValue
|
1027
|
-
// minYDatum: ComputedXYDatumMultiValue
|
1028
|
-
// maxYDatum: ComputedXYDatumMultiValue
|
1029
|
-
// }>
|
1030
|
-
// // layout$: Observable<Layout>
|
1031
|
-
// containerSize$: Observable<ContainerSize>
|
1032
|
-
// }) => {
|
1033
|
-
// return combineLatest({
|
1034
|
-
// // valueIndex: valueIndex$,
|
1035
|
-
// fullDataFormatter: fullDataFormatter$,
|
1036
|
-
// containerSize: containerSize$,
|
1037
|
-
// // xyMinMax: xyMinMax$
|
1038
|
-
// filteredXYMinMaxData: filteredXYMinMaxData$
|
1039
|
-
// }).pipe(
|
1040
|
-
// switchMap(async (d) => d),
|
1041
|
-
// map(data => {
|
1042
|
-
// const valueIndex = data.fullDataFormatter.xAxis.valueIndex
|
1043
|
-
// if (!data.filteredXYMinMaxData.minXDatum || !data.filteredXYMinMaxData.maxXDatum
|
1044
|
-
// // || data.filteredXYMinMaxData.minXDatum.value[valueIndex] == null || data.filteredXYMinMaxData.maxXDatum.value[valueIndex] == null
|
1045
|
-
// ) {
|
1046
|
-
// return
|
1047
|
-
// }
|
1048
|
-
// let maxValue: number | null = data.filteredXYMinMaxData.maxXDatum.value[valueIndex]
|
1049
|
-
// let minValue: number | null = data.filteredXYMinMaxData.minXDatum.value[valueIndex]
|
1050
|
-
// if (maxValue === minValue && maxValue === 0) {
|
1051
|
-
// // 避免最大及最小值同等於 0 造成無法計算scale
|
1052
|
-
// maxValue = 1
|
1053
|
-
// }
|
1054
|
-
|
1055
|
-
// const xScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
1056
|
-
// maxValue,
|
1057
|
-
// minValue,
|
1058
|
-
// axisWidth: data.containerSize.width,
|
1059
|
-
// scaleDomain: data.fullDataFormatter.xAxis.scaleDomain,
|
1060
|
-
// scaleRange: data.fullDataFormatter.xAxis.scaleRange,
|
1061
|
-
// })
|
1062
|
-
// return xScale
|
1063
|
-
// })
|
1064
|
-
// )
|
1065
|
-
// }
|
1066
|
-
|
1067
|
-
export const yScaleObservable = ({ fullDataFormatter$, filteredXYMinMaxData$, containerSize$ }: {
|
1068
|
-
fullDataFormatter$: Observable<DataFormatterMultiValue>
|
1069
|
-
filteredXYMinMaxData$: Observable<{
|
1070
|
-
minXDatum: ComputedXYDatumMultiValue
|
1071
|
-
maxXDatum: ComputedXYDatumMultiValue
|
1072
|
-
minYDatum: ComputedXYDatumMultiValue
|
1073
|
-
maxYDatum: ComputedXYDatumMultiValue
|
1074
|
-
}>
|
1075
|
-
containerSize$: Observable<ContainerSize>
|
1076
|
-
}) => {
|
1077
|
-
return combineLatest({
|
1078
|
-
fullDataFormatter: fullDataFormatter$,
|
1079
|
-
containerSize: containerSize$,
|
1080
|
-
// xyMinMax: observer.xyMinMax$
|
1081
|
-
filteredXYMinMaxData: filteredXYMinMaxData$
|
1082
|
-
}).pipe(
|
1083
|
-
switchMap(async (d) => d),
|
1084
|
-
map(data => {
|
1085
|
-
const valueIndex = data.fullDataFormatter.yAxis.valueIndex
|
1086
|
-
if (!data.filteredXYMinMaxData.minYDatum || !data.filteredXYMinMaxData.maxYDatum
|
1087
|
-
|| data.filteredXYMinMaxData.minYDatum.value[valueIndex] == null || data.filteredXYMinMaxData.maxYDatum.value[valueIndex] == null
|
1088
|
-
) {
|
1089
|
-
return
|
1090
|
-
}
|
1091
|
-
let maxValue = data.filteredXYMinMaxData.maxYDatum.value[valueIndex]
|
1092
|
-
let minValue = data.filteredXYMinMaxData.minYDatum.value[valueIndex]
|
1093
|
-
if (maxValue === minValue && maxValue === 0) {
|
1094
|
-
// 避免最大及最小值同等於 0 造成無法計算scale
|
1095
|
-
maxValue = 1
|
1096
|
-
}
|
1097
|
-
|
1098
|
-
const yScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
1099
|
-
maxValue,
|
1100
|
-
minValue,
|
1101
|
-
axisWidth: data.containerSize.height,
|
1102
|
-
scaleDomain: data.fullDataFormatter.yAxis.scaleDomain,
|
1103
|
-
scaleRange: data.fullDataFormatter.yAxis.scaleRange,
|
1104
|
-
reverse: true
|
1105
|
-
})
|
1106
|
-
return yScale
|
1107
|
-
})
|
1108
|
-
)
|
1109
|
-
}
|
1110
|
-
|
1111
|
-
export const ordinalPaddingObservable = ({ ordinalScaleDomain$, computedData$, containerSize$ }: {
|
1112
|
-
// fullDataFormatter$: Observable<DataFormatterMultiValue>
|
1113
|
-
ordinalScaleDomain$: Observable<[number, number]>
|
1114
|
-
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
1115
|
-
containerSize$: Observable<ContainerSize>
|
1116
|
-
}) => {
|
1117
|
-
return combineLatest({
|
1118
|
-
ordinalScaleDomain: ordinalScaleDomain$,
|
1119
|
-
containerSize: containerSize$,
|
1120
|
-
computedData: computedData$
|
1121
|
-
}).pipe(
|
1122
|
-
switchMap(async (d) => d),
|
1123
|
-
map(data => {
|
1124
|
-
let maxValue: number = data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
1125
|
-
? data.computedData[0][0].value.length - 1
|
1126
|
-
: 0
|
1127
|
-
let minValue: number = 0
|
1128
|
-
|
1129
|
-
let axisWidth = data.containerSize.width
|
1130
|
-
// const scaleDomain: [number, number] = [
|
1131
|
-
// data.fullDataFormatter.xAxis.scaleDomain[0] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[0] === 'min'
|
1132
|
-
// ? 0
|
1133
|
-
// : data.fullDataFormatter.xAxis.scaleDomain[0] as number,
|
1134
|
-
// data.fullDataFormatter.xAxis.scaleDomain[1] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[1] === 'max'
|
1135
|
-
// ? maxValue
|
1136
|
-
// : data.fullDataFormatter.xAxis.scaleDomain[1] as number
|
1137
|
-
// ]
|
1138
|
-
const distance = data.ordinalScaleDomain[1] - data.ordinalScaleDomain[0]
|
1139
|
-
// console.log('distance', distance)
|
1140
|
-
if (distance >= 1) {
|
1141
|
-
return axisWidth / (distance + 1) / 2
|
1142
|
-
} else {
|
1143
|
-
return 0
|
1144
|
-
}
|
1145
|
-
})
|
1146
|
-
)
|
1147
|
-
}
|
1148
|
-
|
1149
|
-
// 定性的 X 軸圖軸 - 用 value 的 index 計算
|
1150
|
-
export const ordinalScaleObservable = ({ ordinalScaleDomain$, computedData$, containerSize$, ordinalPadding$ }: {
|
1151
|
-
// fullDataFormatter$: Observable<DataFormatterMultiValue>
|
1152
|
-
ordinalScaleDomain$: Observable<[number, number]>
|
1153
|
-
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
1154
|
-
containerSize$: Observable<ContainerSize>
|
1155
|
-
ordinalPadding$: Observable<number>
|
1156
|
-
}) => {
|
1157
|
-
return combineLatest({
|
1158
|
-
// fullDataFormatter: fullDataFormatter$,
|
1159
|
-
ordinalScaleDomain: ordinalScaleDomain$,
|
1160
|
-
computedData: computedData$,
|
1161
|
-
containerSize: containerSize$,
|
1162
|
-
ordinalPadding: ordinalPadding$,
|
1163
|
-
}).pipe(
|
1164
|
-
switchMap(async (d) => d),
|
1165
|
-
map(data => {
|
1166
|
-
let maxValue: number = data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
1167
|
-
? data.computedData[0][0].value.length - 1
|
1168
|
-
: 0
|
1169
|
-
let minValue: number = 0
|
1170
|
-
let axisWidth = data.containerSize.width - (data.ordinalPadding * 2)
|
1171
|
-
// const scaleDomain: [number, number] = [
|
1172
|
-
// data.fullDataFormatter.xAxis.scaleDomain[0] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[0] === 'min'
|
1173
|
-
// ? 0
|
1174
|
-
// : data.fullDataFormatter.xAxis.scaleDomain[0] as number,
|
1175
|
-
// data.fullDataFormatter.xAxis.scaleDomain[1] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[1] === 'max'
|
1176
|
-
// ? maxValue
|
1177
|
-
// : data.fullDataFormatter.xAxis.scaleDomain[1] as number
|
1178
|
-
// ]
|
1179
|
-
// const distance = scaleDomain[1] - scaleDomain[0]
|
1180
|
-
// // console.log('distance', distance)
|
1181
|
-
// if (distance >= 1) {
|
1182
|
-
// axisWidth = axisWidth - (axisWidth / (distance + 1))
|
1183
|
-
// }
|
1184
|
-
|
1185
|
-
const xScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
1186
|
-
maxValue,
|
1187
|
-
minValue,
|
1188
|
-
axisWidth,
|
1189
|
-
scaleDomain: data.ordinalScaleDomain,
|
1190
|
-
scaleRange: [0, 1],
|
1191
|
-
})
|
1192
|
-
|
1193
|
-
// const xScale = createLabelToAxisScale({
|
1194
|
-
// axisLabels: new Array(maxValue + 1).fill('').map((d, i) => String(i)),
|
1195
|
-
// axisWidth: data.containerSize.width,
|
1196
|
-
// padding: 0.5
|
1197
|
-
// })
|
1198
|
-
return xScale
|
1199
|
-
})
|
1200
|
-
)
|
1201
|
-
}
|
1202
|
-
|
1203
|
-
// export const valueLabelsObservable = ({ fullDataFormatter$, computedData$ }: {
|
1204
|
-
// fullDataFormatter$: Observable<DataFormatterMultiValue>
|
1205
|
-
// computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
1206
|
-
// }) => {
|
1207
|
-
// return combineLatest({
|
1208
|
-
// fullDataFormatter: fullDataFormatter$,
|
1209
|
-
// computedData: computedData$
|
1210
|
-
// }).pipe(
|
1211
|
-
// switchMap(async (d) => d),
|
1212
|
-
// map(data => {
|
1213
|
-
// const valueLabels = data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
1214
|
-
// ? data.computedData[0][0].value.map((d, i) => data.fullDataFormatter.valueLabels[i] ?? String(i)) // 預設為 0, 1, 2, 3...
|
1215
|
-
// : []
|
1216
|
-
// return valueLabels
|
1217
|
-
// })
|
1218
|
-
// )
|
1219
|
-
// }
|
1
|
+
import {
|
2
|
+
combineLatest,
|
3
|
+
distinctUntilChanged,
|
4
|
+
iif,
|
5
|
+
filter,
|
6
|
+
map,
|
7
|
+
merge,
|
8
|
+
takeUntil,
|
9
|
+
shareReplay,
|
10
|
+
switchMap,
|
11
|
+
Subject,
|
12
|
+
Observable } from 'rxjs'
|
13
|
+
import type {
|
14
|
+
AxisPosition,
|
15
|
+
ChartType,
|
16
|
+
ChartParams,
|
17
|
+
ComputedDataTypeMap,
|
18
|
+
ComputedDatumTypeMap,
|
19
|
+
ComputedDataMultiValue,
|
20
|
+
ComputedDatumMultiValue,
|
21
|
+
ComputedDatumWithSumMultiValue,
|
22
|
+
ContainerSize,
|
23
|
+
DataFormatterTypeMap,
|
24
|
+
DataFormatterMultiValue,
|
25
|
+
DataFormatterXYAxis,
|
26
|
+
ComputedXYDatumMultiValue,
|
27
|
+
ComputedXYDataMultiValue,
|
28
|
+
ContainerPositionScaled,
|
29
|
+
HighlightTarget,
|
30
|
+
Layout,
|
31
|
+
TransformData } from '../../lib/core-types'
|
32
|
+
import { getMinMax, createDefaultValueLabel } from '../utils/orbchartsUtils'
|
33
|
+
import { createValueToAxisScale, createLabelToAxisScale, createAxisToLabelIndexScale } from '../utils/d3Scale'
|
34
|
+
import { calcContainerPositionScaled } from '../utils/orbchartsUtils'
|
35
|
+
|
36
|
+
export const valueLabelsObservable = ({ computedData$, fullDataFormatter$ }: {
|
37
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
38
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
39
|
+
}) => {
|
40
|
+
return combineLatest({
|
41
|
+
computedData: computedData$,
|
42
|
+
fullDataFormatter: fullDataFormatter$,
|
43
|
+
}).pipe(
|
44
|
+
map(data => {
|
45
|
+
return data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
46
|
+
? data.computedData[0][0].value.map((d, i) => data.fullDataFormatter.valueLabels[i] ?? createDefaultValueLabel('multiValue', i))
|
47
|
+
: []
|
48
|
+
}),
|
49
|
+
)
|
50
|
+
}
|
51
|
+
|
52
|
+
export const xyMinMaxObservable = ({ computedData$, xyValueIndex$ }: {
|
53
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
54
|
+
xyValueIndex$: Observable<[number, number]>
|
55
|
+
}) => {
|
56
|
+
return combineLatest({
|
57
|
+
computedData: computedData$,
|
58
|
+
xyValueIndex: xyValueIndex$,
|
59
|
+
}).pipe(
|
60
|
+
map(data => {
|
61
|
+
const flatData = data.computedData.flat()
|
62
|
+
const [minX, maxX] = getMinMax(flatData.map(d => d.value[data.xyValueIndex[0]]))
|
63
|
+
const [minY, maxY] = getMinMax(flatData.map(d => d.value[data.xyValueIndex[1]]))
|
64
|
+
return { minX, maxX, minY, maxY }
|
65
|
+
})
|
66
|
+
)
|
67
|
+
}
|
68
|
+
|
69
|
+
export const computedXYDataObservable = ({ computedData$, xyMinMax$, xyValueIndex$, fullDataFormatter$, layout$ }: {
|
70
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
71
|
+
xyMinMax$: Observable<{ minX: number, maxX: number, minY: number, maxY: number }>
|
72
|
+
xyValueIndex$: Observable<[number, number]>
|
73
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
74
|
+
layout$: Observable<Layout>
|
75
|
+
}): Observable<ComputedXYDataMultiValue> => {
|
76
|
+
|
77
|
+
// 未篩選範圍前的 scale
|
78
|
+
function createOriginXScale (xyMinMax: { minX: number, maxX: number, minY: number, maxY: number }, layout: Layout) {
|
79
|
+
let maxValue = xyMinMax.maxX
|
80
|
+
let minValue = xyMinMax.minX
|
81
|
+
if (minValue === maxValue && maxValue === 0) {
|
82
|
+
// 避免最大及最小值相同造成無法計算scale
|
83
|
+
maxValue = 1
|
84
|
+
}
|
85
|
+
const valueScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
86
|
+
maxValue,
|
87
|
+
minValue,
|
88
|
+
axisWidth: layout.width,
|
89
|
+
scaleDomain: ['auto', 'auto'], // 不使用dataFormatter設定 --> 以0為基準到最大或最小值為範圍( * 如果是使用[minValue, maxValue]的話,在兩者很接近的情況下有可能造成scale倍率過高而svg變型時失真的情況)
|
90
|
+
scaleRange: [0, 1] // 不使用dataFormatter設定
|
91
|
+
})
|
92
|
+
|
93
|
+
return valueScale
|
94
|
+
}
|
95
|
+
|
96
|
+
// 未篩選範圍及visible前的 scale
|
97
|
+
function createOriginYScale (xyMinMax: { minX: number, maxX: number, minY: number, maxY: number }, layout: Layout) {
|
98
|
+
let maxValue = xyMinMax.maxY
|
99
|
+
let minValue = xyMinMax.minY
|
100
|
+
if (minValue === maxValue && maxValue === 0) {
|
101
|
+
// 避免最大及最小值相同造成無法計算scale
|
102
|
+
maxValue = 1
|
103
|
+
}
|
104
|
+
const valueScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
105
|
+
maxValue,
|
106
|
+
minValue,
|
107
|
+
axisWidth: layout.height,
|
108
|
+
scaleDomain: ['auto', 'auto'], // 不使用dataFormatter設定 --> 以0為基準到最大或最小值為範圍( * 如果是使用[minValue, maxValue]的話,在兩者很接近的情況下有可能造成scale倍率過高而svg變型時失真的情況)
|
109
|
+
scaleRange: [0, 1], // 不使用dataFormatter設定
|
110
|
+
reverse: true
|
111
|
+
})
|
112
|
+
|
113
|
+
return valueScale
|
114
|
+
}
|
115
|
+
|
116
|
+
return combineLatest({
|
117
|
+
computedData: computedData$,
|
118
|
+
xyMinMax: xyMinMax$,
|
119
|
+
xyValueIndex: xyValueIndex$,
|
120
|
+
fullDataFormatter: fullDataFormatter$,
|
121
|
+
layout: layout$
|
122
|
+
}).pipe(
|
123
|
+
switchMap(async d => d),
|
124
|
+
map(data => {
|
125
|
+
|
126
|
+
const xScale = createOriginXScale(data.xyMinMax, data.layout)
|
127
|
+
const yScale = createOriginYScale(data.xyMinMax, data.layout)
|
128
|
+
|
129
|
+
return data.computedData
|
130
|
+
.map((categoryData, categoryIndex) => {
|
131
|
+
return categoryData.map((datum, datumIndex) => {
|
132
|
+
return {
|
133
|
+
...datum,
|
134
|
+
axisX: xScale(datum.value[data.xyValueIndex[0]] ?? 0),
|
135
|
+
// axisY: data.layout.height - yScale(datum.value[1] ?? 0), // y軸的繪圖座標是從上到下,所以反轉
|
136
|
+
axisY: yScale(datum.value[data.xyValueIndex[1]] ?? 0), // y軸的繪圖座標是從上到下,所以反轉
|
137
|
+
}
|
138
|
+
})
|
139
|
+
})
|
140
|
+
})
|
141
|
+
)
|
142
|
+
}
|
143
|
+
|
144
|
+
export const categoryLabelsObservable = ({ computedData$, fullDataFormatter$ }: {
|
145
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
146
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
147
|
+
}) => {
|
148
|
+
return computedData$.pipe(
|
149
|
+
map(data => {
|
150
|
+
return data
|
151
|
+
.map(d => d[0] ? d[0].categoryLabel : '')
|
152
|
+
// .filter(d => d != null && d != '')
|
153
|
+
}),
|
154
|
+
distinctUntilChanged((a, b) => {
|
155
|
+
return JSON.stringify(a) === JSON.stringify(b)
|
156
|
+
}),
|
157
|
+
)
|
158
|
+
}
|
159
|
+
|
160
|
+
export const visibleComputedDataObservable = ({ computedData$ }: { computedData$: Observable<ComputedDataTypeMap<'multiValue'>> }) => {
|
161
|
+
return computedData$.pipe(
|
162
|
+
map(data => {
|
163
|
+
return data
|
164
|
+
.map(categoryData => {
|
165
|
+
return categoryData.filter(d => d.visible == true)
|
166
|
+
})
|
167
|
+
.filter(categoryData => {
|
168
|
+
return categoryData.length > 0
|
169
|
+
})
|
170
|
+
})
|
171
|
+
)
|
172
|
+
}
|
173
|
+
|
174
|
+
export const ordinalScaleDomainObservable = ({ visibleComputedData$, fullDataFormatter$ }: {
|
175
|
+
visibleComputedData$: Observable<ComputedDataMultiValue>
|
176
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
177
|
+
}) => {
|
178
|
+
return combineLatest({
|
179
|
+
visibleComputedData: visibleComputedData$,
|
180
|
+
fullDataFormatter: fullDataFormatter$,
|
181
|
+
}).pipe(
|
182
|
+
map(data => {
|
183
|
+
let maxValue: number = data.visibleComputedData[0] && data.visibleComputedData[0][0] && data.visibleComputedData[0][0].value.length
|
184
|
+
? data.visibleComputedData[0][0].value.length - 1
|
185
|
+
: 0
|
186
|
+
const scaleDomain: [number, number] = [
|
187
|
+
data.fullDataFormatter.xAxis.scaleDomain[0] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[0] === 'min'
|
188
|
+
? 0
|
189
|
+
: data.fullDataFormatter.xAxis.scaleDomain[0] as number,
|
190
|
+
data.fullDataFormatter.xAxis.scaleDomain[1] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[1] === 'max'
|
191
|
+
? maxValue
|
192
|
+
: data.fullDataFormatter.xAxis.scaleDomain[1] as number
|
193
|
+
]
|
194
|
+
return scaleDomain
|
195
|
+
}),
|
196
|
+
distinctUntilChanged((a, b) => a[0] === b[0] && a[1] === b[1])
|
197
|
+
)
|
198
|
+
}
|
199
|
+
|
200
|
+
export const visibleComputedSumDataObservable = ({ visibleComputedData$, ordinalScaleDomain$ }: {
|
201
|
+
visibleComputedData$: Observable<ComputedDataMultiValue>
|
202
|
+
// fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
203
|
+
ordinalScaleDomain$: Observable<[number, number]>
|
204
|
+
}) => {
|
205
|
+
|
206
|
+
return combineLatest({
|
207
|
+
visibleComputedData: visibleComputedData$,
|
208
|
+
ordinalScaleDomain: ordinalScaleDomain$,
|
209
|
+
}).pipe(
|
210
|
+
map(data => {
|
211
|
+
return data.visibleComputedData.map(categoryData => {
|
212
|
+
return categoryData
|
213
|
+
.map((d, i) => {
|
214
|
+
let newDatum = d as ComputedDatumWithSumMultiValue
|
215
|
+
// 新增總計資料欄位
|
216
|
+
newDatum.sum = newDatum.value
|
217
|
+
// 只加總範圍內的
|
218
|
+
.filter((d, i) => i >= data.ordinalScaleDomain[0] && i <= data.ordinalScaleDomain[1])
|
219
|
+
.reduce((acc, curr) => acc + curr, 0)
|
220
|
+
return newDatum
|
221
|
+
})
|
222
|
+
})
|
223
|
+
})
|
224
|
+
)
|
225
|
+
}
|
226
|
+
|
227
|
+
// Ranking資料 - 用 value[index] 排序
|
228
|
+
export const visibleComputedRankingByIndexDataObservable = ({ xyValueIndex$, isCategorySeprate$, visibleComputedData$ }: {
|
229
|
+
xyValueIndex$: Observable<[number, number]>
|
230
|
+
isCategorySeprate$: Observable<boolean>
|
231
|
+
visibleComputedData$: Observable<ComputedDatumMultiValue[][]>
|
232
|
+
}) => {
|
233
|
+
|
234
|
+
return combineLatest({
|
235
|
+
isCategorySeprate: isCategorySeprate$,
|
236
|
+
xyValueIndex: xyValueIndex$,
|
237
|
+
visibleComputedData: visibleComputedData$
|
238
|
+
}).pipe(
|
239
|
+
switchMap(async d => d),
|
240
|
+
map(data => {
|
241
|
+
const xValueIndex = data.xyValueIndex[0]
|
242
|
+
// -- category 分開 --
|
243
|
+
if (data.isCategorySeprate) {
|
244
|
+
return data.visibleComputedData
|
245
|
+
.map(categoryData => {
|
246
|
+
return categoryData
|
247
|
+
.sort((a, b) => {
|
248
|
+
const bValue = b.value[xValueIndex] ?? - Infinity // - Infinity 為最小值
|
249
|
+
const aValue = a.value[xValueIndex] ?? - Infinity
|
250
|
+
|
251
|
+
return bValue - aValue
|
252
|
+
})
|
253
|
+
})
|
254
|
+
// -- 用 value[index] 排序 --
|
255
|
+
} else {
|
256
|
+
return [
|
257
|
+
data.visibleComputedData
|
258
|
+
.flat()
|
259
|
+
.sort((a, b) => {
|
260
|
+
const bValue = b.value[xValueIndex] ?? - Infinity // - Infinity 為最小值
|
261
|
+
const aValue = a.value[xValueIndex] ?? - Infinity
|
262
|
+
|
263
|
+
return bValue - aValue
|
264
|
+
})
|
265
|
+
]
|
266
|
+
}
|
267
|
+
})
|
268
|
+
)
|
269
|
+
}
|
270
|
+
|
271
|
+
// Ranking資料 - 用所有 valueIndex 加總資料排序
|
272
|
+
export const visibleComputedRankingBySumDataObservable = ({ isCategorySeprate$, visibleComputedSumData$ }: {
|
273
|
+
isCategorySeprate$: Observable<boolean>
|
274
|
+
// visibleComputedData$: Observable<ComputedDatumMultiValue[][]>
|
275
|
+
visibleComputedSumData$: Observable<ComputedDatumWithSumMultiValue[][]>
|
276
|
+
}) => {
|
277
|
+
|
278
|
+
return combineLatest({
|
279
|
+
isCategorySeprate: isCategorySeprate$,
|
280
|
+
visibleComputedSumData: visibleComputedSumData$
|
281
|
+
}).pipe(
|
282
|
+
switchMap(async d => d),
|
283
|
+
map(data => {
|
284
|
+
// -- category 分開 --
|
285
|
+
if (data.isCategorySeprate) {
|
286
|
+
return data.visibleComputedSumData
|
287
|
+
.map(categoryData => {
|
288
|
+
return categoryData
|
289
|
+
.sort((a, b) => b.sum - a.sum)
|
290
|
+
})
|
291
|
+
// -- 用 value[index] 排序 --
|
292
|
+
} else {
|
293
|
+
return [
|
294
|
+
data.visibleComputedSumData
|
295
|
+
.flat()
|
296
|
+
.sort((a, b) => b.sum - a.sum)
|
297
|
+
]
|
298
|
+
}
|
299
|
+
})
|
300
|
+
)
|
301
|
+
}
|
302
|
+
|
303
|
+
export const visibleComputedXYDataObservable = ({ computedXYData$ }: { computedXYData$: Observable<ComputedXYDataMultiValue> }) => {
|
304
|
+
return computedXYData$.pipe(
|
305
|
+
map(data => {
|
306
|
+
return data
|
307
|
+
.map(categoryData => {
|
308
|
+
return categoryData.filter(d => d.visible == true)
|
309
|
+
})
|
310
|
+
.filter(categoryData => {
|
311
|
+
return categoryData.length > 0
|
312
|
+
})
|
313
|
+
})
|
314
|
+
)
|
315
|
+
}
|
316
|
+
|
317
|
+
// 所有container位置(對應category)
|
318
|
+
export const containerPositionObservable = ({ computedData$, fullDataFormatter$, layout$ }: {
|
319
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
320
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
321
|
+
layout$: Observable<Layout>
|
322
|
+
}): Observable<ContainerPositionScaled[]> => {
|
323
|
+
|
324
|
+
const containerPosition$ = combineLatest({
|
325
|
+
computedData: computedData$,
|
326
|
+
fullDataFormatter: fullDataFormatter$,
|
327
|
+
layout: layout$,
|
328
|
+
}).pipe(
|
329
|
+
switchMap(async (d) => d),
|
330
|
+
map(data => {
|
331
|
+
// 無資料時回傳預設container位置
|
332
|
+
if (data.computedData.length === 0) {
|
333
|
+
const defaultPositionArr: ContainerPositionScaled[] = [
|
334
|
+
{
|
335
|
+
"slotIndex": 0,
|
336
|
+
"rowIndex": 0,
|
337
|
+
"columnIndex": 0,
|
338
|
+
"translate": [0, 0],
|
339
|
+
"scale": [1, 1]
|
340
|
+
}
|
341
|
+
]
|
342
|
+
return defaultPositionArr
|
343
|
+
}
|
344
|
+
if (data.fullDataFormatter.separateCategory) {
|
345
|
+
// -- 依slotIndexes計算 --
|
346
|
+
return calcContainerPositionScaled(data.layout, data.fullDataFormatter.container, data.computedData.length)
|
347
|
+
// return data.computedData.map((seriesData, seriesIndex) => {
|
348
|
+
// const columnIndex = seriesIndex % data.fullDataFormatter.container.columnAmount
|
349
|
+
// const rowIndex = Math.floor(seriesIndex / data.fullDataFormatter.container.columnAmount)
|
350
|
+
// const { translate, scale } = calcMultiValueContainerPosition(data.layout, data.fullDataFormatter.container, rowIndex, columnIndex)
|
351
|
+
// return {
|
352
|
+
// slotIndex: seriesIndex,
|
353
|
+
// rowIndex,
|
354
|
+
// columnIndex,
|
355
|
+
// translate,
|
356
|
+
// scale,
|
357
|
+
// }
|
358
|
+
// })
|
359
|
+
} else {
|
360
|
+
// -- 無拆分 --
|
361
|
+
const containerPositionArr = calcContainerPositionScaled(data.layout, data.fullDataFormatter.container, 1)
|
362
|
+
return data.computedData.map((d, i) => containerPositionArr[0]) // 每個series相同位置
|
363
|
+
// const columnIndex = 0
|
364
|
+
// const rowIndex = 0
|
365
|
+
// return data.computedData.map((seriesData, seriesIndex) => {
|
366
|
+
// const { translate, scale } = calcMultiValueContainerPosition(data.layout, data.fullDataFormatter.container, rowIndex, columnIndex)
|
367
|
+
// return {
|
368
|
+
// slotIndex: 0,
|
369
|
+
// rowIndex,
|
370
|
+
// columnIndex,
|
371
|
+
// translate,
|
372
|
+
// scale,
|
373
|
+
// }
|
374
|
+
// })
|
375
|
+
}
|
376
|
+
})
|
377
|
+
)
|
378
|
+
|
379
|
+
return containerPosition$
|
380
|
+
}
|
381
|
+
|
382
|
+
export const filteredXYMinMaxDataObservable = ({ visibleComputedXYData$, xyMinMax$, xyValueIndex$, fullDataFormatter$ }: {
|
383
|
+
visibleComputedXYData$: Observable<ComputedXYDataMultiValue>
|
384
|
+
xyMinMax$: Observable<{ minX: number, maxX: number, minY: number, maxY: number }>
|
385
|
+
xyValueIndex$: Observable<[number, number]>
|
386
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
387
|
+
}) => {
|
388
|
+
return combineLatest({
|
389
|
+
visibleComputedXYData: visibleComputedXYData$,
|
390
|
+
xyMinMax: xyMinMax$,
|
391
|
+
xyValueIndex: xyValueIndex$,
|
392
|
+
fullDataFormatter: fullDataFormatter$,
|
393
|
+
}).pipe(
|
394
|
+
map(data => {
|
395
|
+
// 所有可見資料依 dataFormatter 的 scale 設定篩選出最大小值
|
396
|
+
const { minX, maxX, minY, maxY } = (() => {
|
397
|
+
|
398
|
+
let { minX, maxX, minY, maxY } = data.xyMinMax
|
399
|
+
|
400
|
+
if (data.fullDataFormatter.xAxis.scaleDomain[0] === 'auto' && minX > 0) {
|
401
|
+
minX = 0
|
402
|
+
} else if (typeof data.fullDataFormatter.xAxis.scaleDomain[0] === 'number') {
|
403
|
+
minX = data.fullDataFormatter.xAxis.scaleDomain[0] as number
|
404
|
+
}
|
405
|
+
if (data.fullDataFormatter.xAxis.scaleDomain[1] === 'auto' && maxX < 0) {
|
406
|
+
maxX = 0
|
407
|
+
} else if (typeof data.fullDataFormatter.xAxis.scaleDomain[1] === 'number') {
|
408
|
+
maxX = data.fullDataFormatter.xAxis.scaleDomain[1] as number
|
409
|
+
}
|
410
|
+
if (data.fullDataFormatter.yAxis.scaleDomain[0] === 'auto' && minY > 0) {
|
411
|
+
minY = 0
|
412
|
+
} else if (typeof data.fullDataFormatter.yAxis.scaleDomain[0] === 'number') {
|
413
|
+
minY = data.fullDataFormatter.yAxis.scaleDomain[0] as number
|
414
|
+
}
|
415
|
+
if (data.fullDataFormatter.yAxis.scaleDomain[1] === 'auto' && maxY < 0) {
|
416
|
+
maxY = 0
|
417
|
+
} else if (typeof data.fullDataFormatter.yAxis.scaleDomain[1] === 'number') {
|
418
|
+
maxY = data.fullDataFormatter.yAxis.scaleDomain[1] as number
|
419
|
+
}
|
420
|
+
|
421
|
+
return { minX, maxX, minY, maxY }
|
422
|
+
})()
|
423
|
+
// console.log({ minX, maxX, minY, maxY })
|
424
|
+
let datumList: ComputedXYDatumMultiValue[] = []
|
425
|
+
let minXDatum: ComputedXYDatumMultiValue | null = null
|
426
|
+
let maxXDatum: ComputedXYDatumMultiValue | null = null
|
427
|
+
let minYDatum: ComputedXYDatumMultiValue | null = null
|
428
|
+
let maxYDatum: ComputedXYDatumMultiValue | null = null
|
429
|
+
// console.log('data.visibleComputedXYData', data.visibleComputedXYData)
|
430
|
+
// minX, maxX, minY, maxY 範圍內的最大最小值資料
|
431
|
+
// console.log({ minX, maxX, minY, maxY })
|
432
|
+
for (let categoryData of data.visibleComputedXYData) {
|
433
|
+
for (let datum of categoryData) {
|
434
|
+
const xValue = datum.value[data.xyValueIndex[0]]
|
435
|
+
const yValue = datum.value[data.xyValueIndex[1]]
|
436
|
+
// 比較矩形範圍(所以 minX, maxX, minY, maxY 要同時比較)
|
437
|
+
if (xValue >= minX && xValue <= maxX && yValue >= minY && yValue <= maxY) {
|
438
|
+
datumList.push(datum)
|
439
|
+
if (minXDatum == null || xValue < minXDatum.value[data.xyValueIndex[0]]) {
|
440
|
+
minXDatum = datum
|
441
|
+
}
|
442
|
+
if (maxXDatum == null || xValue > maxXDatum.value[data.xyValueIndex[0]]) {
|
443
|
+
maxXDatum = datum
|
444
|
+
}
|
445
|
+
if (minYDatum == null || yValue < minYDatum.value[data.xyValueIndex[1]]) {
|
446
|
+
minYDatum = datum
|
447
|
+
}
|
448
|
+
if (maxYDatum == null || yValue > maxYDatum.value[data.xyValueIndex[1]]) {
|
449
|
+
maxYDatum = datum
|
450
|
+
}
|
451
|
+
}
|
452
|
+
}
|
453
|
+
}
|
454
|
+
|
455
|
+
return {
|
456
|
+
datumList,
|
457
|
+
minXDatum,
|
458
|
+
maxXDatum,
|
459
|
+
minYDatum,
|
460
|
+
maxYDatum
|
461
|
+
}
|
462
|
+
})
|
463
|
+
)
|
464
|
+
}
|
465
|
+
|
466
|
+
export const graphicTransformObservable = ({ xyMinMax$, xyValueIndex$, filteredXYMinMaxData$, fullDataFormatter$, layout$ }: {
|
467
|
+
xyMinMax$: Observable<{ minX: number, maxX: number, minY: number, maxY: number }>
|
468
|
+
xyValueIndex$: Observable<[number, number]>
|
469
|
+
filteredXYMinMaxData$: Observable<{
|
470
|
+
minXDatum: ComputedXYDatumMultiValue
|
471
|
+
maxXDatum: ComputedXYDatumMultiValue
|
472
|
+
minYDatum: ComputedXYDatumMultiValue
|
473
|
+
maxYDatum: ComputedXYDatumMultiValue
|
474
|
+
}>
|
475
|
+
fullDataFormatter$: Observable<DataFormatterTypeMap<'multiValue'>>
|
476
|
+
layout$: Observable<Layout>
|
477
|
+
}): Observable<TransformData> => {
|
478
|
+
const destroy$ = new Subject()
|
479
|
+
|
480
|
+
function calcDataAreaTransform ({ xyMinMax, xyValueIndex, filteredXYMinMaxData, xAxis, yAxis, width, height }: {
|
481
|
+
xyMinMax: { minX: number, maxX: number, minY: number, maxY: number }
|
482
|
+
xyValueIndex: [number, number]
|
483
|
+
filteredXYMinMaxData: {
|
484
|
+
minXDatum: ComputedXYDatumMultiValue
|
485
|
+
maxXDatum: ComputedXYDatumMultiValue
|
486
|
+
minYDatum: ComputedXYDatumMultiValue
|
487
|
+
maxYDatum: ComputedXYDatumMultiValue
|
488
|
+
}
|
489
|
+
xAxis: DataFormatterXYAxis
|
490
|
+
yAxis: DataFormatterXYAxis
|
491
|
+
width: number
|
492
|
+
height: number
|
493
|
+
}): TransformData {
|
494
|
+
// const flatData = data.flat()
|
495
|
+
|
496
|
+
let translateX = 0
|
497
|
+
let translateY = 0
|
498
|
+
let scaleX = 0
|
499
|
+
let scaleY = 0
|
500
|
+
|
501
|
+
// // minX, maxX, filteredMinX, filteredMaxX
|
502
|
+
// let filteredMinX = 0
|
503
|
+
// let filteredMaxX = 0
|
504
|
+
// let [minX, maxX] = getMinMax(flatData.map(d => d.value[0]))
|
505
|
+
// if (minX === maxX) {
|
506
|
+
// minX = maxX - 1 // 避免最大及最小值相同造成無法計算scale
|
507
|
+
// }
|
508
|
+
// if (xAxis.scaleDomain[0] === 'auto' && filteredMinX > 0) {
|
509
|
+
// filteredMinX = 0
|
510
|
+
// } else if (typeof xAxis.scaleDomain[0] === 'number') {
|
511
|
+
// filteredMinX = xAxis.scaleDomain[0] as number
|
512
|
+
// } else {
|
513
|
+
// filteredMinX = minX
|
514
|
+
// }
|
515
|
+
// if (xAxis.scaleDomain[1] === 'auto' && filteredMaxX < 0) {
|
516
|
+
// filteredMaxX = 0
|
517
|
+
// } else if (typeof xAxis.scaleDomain[1] === 'number') {
|
518
|
+
// filteredMaxX = xAxis.scaleDomain[1] as number
|
519
|
+
// } else {
|
520
|
+
// filteredMaxX = maxX
|
521
|
+
// }
|
522
|
+
// if (filteredMinX === filteredMaxX) {
|
523
|
+
// filteredMinX = filteredMaxX - 1 // 避免最大及最小值相同造成無法計算scale
|
524
|
+
// }
|
525
|
+
|
526
|
+
// // minY, maxY, filteredMinY, filteredMaxY
|
527
|
+
// let filteredMinY = 0
|
528
|
+
// let filteredMaxY = 0
|
529
|
+
// let [minY, maxY] = getMinMax(flatData.map(d => d.value[1]))
|
530
|
+
// console.log('filteredXYMinMaxData', filteredXYMinMaxData)
|
531
|
+
let { minX, maxX, minY, maxY } = xyMinMax
|
532
|
+
// console.log({ minX, maxX, minY, maxY })
|
533
|
+
let filteredMinX = filteredXYMinMaxData.minXDatum.value[xyValueIndex[0]] ?? 0
|
534
|
+
let filteredMaxX = filteredXYMinMaxData.maxXDatum.value[xyValueIndex[0]] ?? 0
|
535
|
+
let filteredMinY = filteredXYMinMaxData.minYDatum.value[xyValueIndex[1]] ?? 0
|
536
|
+
let filteredMaxY = filteredXYMinMaxData.maxYDatum.value[xyValueIndex[1]] ?? 0
|
537
|
+
|
538
|
+
// if (yAxis.scaleDomain[0] === 'auto' && filteredMinY > 0) {
|
539
|
+
// filteredMinY = 0
|
540
|
+
// } else if (typeof yAxis.scaleDomain[0] === 'number') {
|
541
|
+
// filteredMinY = yAxis.scaleDomain[0] as number
|
542
|
+
// } else {
|
543
|
+
// filteredMinY = minY
|
544
|
+
// }
|
545
|
+
// if (yAxis.scaleDomain[1] === 'auto' && filteredMaxY < 0) {
|
546
|
+
// filteredMaxY = 0
|
547
|
+
// } else if (typeof yAxis.scaleDomain[1] === 'number') {
|
548
|
+
// filteredMaxY = yAxis.scaleDomain[1] as number
|
549
|
+
// } else {
|
550
|
+
// filteredMaxY = maxY
|
551
|
+
// }
|
552
|
+
|
553
|
+
// console.log({ minX, maxX, minY, maxY, filteredMinX, filteredMaxX, filteredMinY, filteredMaxY })
|
554
|
+
if (filteredMinX === filteredMaxX && filteredMaxX === 0) {
|
555
|
+
// 避免最大及最小值相同造成無法計算scale
|
556
|
+
filteredMaxX = 1
|
557
|
+
}
|
558
|
+
if (filteredMinY === filteredMaxY && filteredMaxY === 0) {
|
559
|
+
// 避免最大及最小值相同造成無法計算scale
|
560
|
+
filteredMaxY = 1
|
561
|
+
}
|
562
|
+
if (minX === maxX && maxX === 0) {
|
563
|
+
// 避免最大及最小值相同造成無法計算scale
|
564
|
+
maxX = 1
|
565
|
+
}
|
566
|
+
if (minY === maxY && maxY === 0) {
|
567
|
+
// 避免最大及最小值相同造成無法計算scale
|
568
|
+
maxY = 1
|
569
|
+
}
|
570
|
+
// -- xScale --
|
571
|
+
const xScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
572
|
+
maxValue: filteredMaxX,
|
573
|
+
minValue: filteredMinX,
|
574
|
+
axisWidth: width,
|
575
|
+
scaleDomain: xAxis.scaleDomain,
|
576
|
+
scaleRange: xAxis.scaleRange
|
577
|
+
})
|
578
|
+
|
579
|
+
// -- translateX, scaleX --
|
580
|
+
const rangeMinX = xScale(minX > 0 ? 0 : minX) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
581
|
+
const rangeMaxX = xScale(maxX < 0 ? 0 : maxX) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
582
|
+
translateX = rangeMinX
|
583
|
+
const gWidth = rangeMaxX - rangeMinX
|
584
|
+
scaleX = gWidth / width
|
585
|
+
// console.log({ gWidth, width, rangeMaxX, rangeMinX, scaleX, translateX })
|
586
|
+
// -- yScale --
|
587
|
+
const yScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
588
|
+
maxValue: filteredMaxY,
|
589
|
+
minValue: filteredMinY,
|
590
|
+
axisWidth: height,
|
591
|
+
scaleDomain: yAxis.scaleDomain,
|
592
|
+
scaleRange: yAxis.scaleRange,
|
593
|
+
reverse: true
|
594
|
+
})
|
595
|
+
|
596
|
+
// -- translateY, scaleY --
|
597
|
+
const rangeMinY = yScale(minY > 0 ? 0 : minY) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
598
|
+
const rangeMaxY = yScale(maxY < 0 ? 0 : maxY) // * 因為原本的座標就是以 0 到最大值或最小值範範圍計算的,所以這邊也是用同樣的方式計算
|
599
|
+
translateY = rangeMaxY // 最大值的 y 最小(最上方)
|
600
|
+
const gHeight = rangeMinY - rangeMaxY // 最大的 y 減最小的 y
|
601
|
+
scaleY = gHeight / height
|
602
|
+
|
603
|
+
return {
|
604
|
+
translate: [translateX, translateY],
|
605
|
+
scale: [scaleX, scaleY],
|
606
|
+
rotate: 0,
|
607
|
+
rotateX: 0,
|
608
|
+
rotateY: 0,
|
609
|
+
value: `translate(${translateX}px, ${translateY}px) scale(${scaleX}, ${scaleY})`
|
610
|
+
}
|
611
|
+
}
|
612
|
+
|
613
|
+
return new Observable(subscriber => {
|
614
|
+
combineLatest({
|
615
|
+
xyMinMax: xyMinMax$,
|
616
|
+
xyValueIndex: xyValueIndex$,
|
617
|
+
filteredXYMinMaxData: filteredXYMinMaxData$,
|
618
|
+
fullDataFormatter: fullDataFormatter$,
|
619
|
+
layout: layout$
|
620
|
+
}).pipe(
|
621
|
+
takeUntil(destroy$),
|
622
|
+
switchMap(async (d) => d),
|
623
|
+
).subscribe(data => {
|
624
|
+
if (!data.filteredXYMinMaxData.minXDatum || !data.filteredXYMinMaxData.maxXDatum
|
625
|
+
|| data.filteredXYMinMaxData.minXDatum.value[data.xyValueIndex[0]] == null || data.filteredXYMinMaxData.maxXDatum.value[data.xyValueIndex[0]] == null
|
626
|
+
|| !data.filteredXYMinMaxData.minYDatum || !data.filteredXYMinMaxData.maxYDatum
|
627
|
+
|| data.filteredXYMinMaxData.minYDatum.value[data.xyValueIndex[1]] == null || data.filteredXYMinMaxData.maxYDatum.value[data.xyValueIndex[1]] == null
|
628
|
+
) {
|
629
|
+
return
|
630
|
+
}
|
631
|
+
const dataAreaTransformData = calcDataAreaTransform({
|
632
|
+
xyMinMax: data.xyMinMax,
|
633
|
+
xyValueIndex: data.xyValueIndex,
|
634
|
+
filteredXYMinMaxData: data.filteredXYMinMaxData,
|
635
|
+
xAxis: data.fullDataFormatter.xAxis,
|
636
|
+
yAxis: data.fullDataFormatter.yAxis,
|
637
|
+
width: data.layout.width,
|
638
|
+
height: data.layout.height
|
639
|
+
})
|
640
|
+
|
641
|
+
// console.log('dataAreaTransformData', dataAreaTransformData)
|
642
|
+
|
643
|
+
subscriber.next(dataAreaTransformData)
|
644
|
+
})
|
645
|
+
|
646
|
+
return function unscbscribe () {
|
647
|
+
destroy$.next(undefined)
|
648
|
+
}
|
649
|
+
})
|
650
|
+
}
|
651
|
+
|
652
|
+
export const graphicReverseScaleObservable = ({ containerPosition$, graphicTransform$ }: {
|
653
|
+
containerPosition$: Observable<ContainerPositionScaled[]>
|
654
|
+
// multiValueAxesTransform$: Observable<TransformData>
|
655
|
+
graphicTransform$: Observable<TransformData>
|
656
|
+
}): Observable<[number, number][]> => {
|
657
|
+
return combineLatest({
|
658
|
+
containerPosition: containerPosition$,
|
659
|
+
// multiValueAxesTransform: multiValueAxesTransform$,
|
660
|
+
graphicTransform: graphicTransform$,
|
661
|
+
}).pipe(
|
662
|
+
switchMap(async (d) => d),
|
663
|
+
map(data => {
|
664
|
+
// if (data.multiValueAxesTransform.rotate == 0 || data.multiValueAxesTransform.rotate == 180) {
|
665
|
+
return data.containerPosition.map((series, seriesIndex) => {
|
666
|
+
return [
|
667
|
+
1 / data.graphicTransform.scale[0] / data.containerPosition[seriesIndex].scale[0],
|
668
|
+
1 / data.graphicTransform.scale[1] / data.containerPosition[seriesIndex].scale[1],
|
669
|
+
]
|
670
|
+
})
|
671
|
+
// } else {
|
672
|
+
// return data.containerPosition.map((series, seriesIndex) => {
|
673
|
+
// // 由於有垂直的旋轉,所以外層 (container) x和y的scale要互換
|
674
|
+
// return [
|
675
|
+
// 1 / data.graphicTransform.scale[0] / data.containerPosition[seriesIndex].scale[1],
|
676
|
+
// 1 / data.graphicTransform.scale[1] / data.containerPosition[seriesIndex].scale[0],
|
677
|
+
// ]
|
678
|
+
// })
|
679
|
+
// }
|
680
|
+
}),
|
681
|
+
)
|
682
|
+
}
|
683
|
+
|
684
|
+
// X 軸圖軸 - 用 value[index]
|
685
|
+
export const xScaleObservable = ({ visibleComputedSumData$, fullDataFormatter$, filteredXYMinMaxData$, containerSize$ }: {
|
686
|
+
visibleComputedSumData$: Observable<ComputedDatumMultiValue[][]>
|
687
|
+
fullDataFormatter$: Observable<DataFormatterMultiValue>
|
688
|
+
filteredXYMinMaxData$: Observable<{
|
689
|
+
minXDatum: ComputedXYDatumMultiValue
|
690
|
+
maxXDatum: ComputedXYDatumMultiValue
|
691
|
+
minYDatum: ComputedXYDatumMultiValue
|
692
|
+
maxYDatum: ComputedXYDatumMultiValue
|
693
|
+
}>
|
694
|
+
// layout$: Observable<Layout>
|
695
|
+
containerSize$: Observable<ContainerSize>
|
696
|
+
}) => {
|
697
|
+
return combineLatest({
|
698
|
+
visibleComputedSumData: visibleComputedSumData$,
|
699
|
+
fullDataFormatter: fullDataFormatter$,
|
700
|
+
containerSize: containerSize$,
|
701
|
+
// xyMinMax: xyMinMax$
|
702
|
+
filteredXYMinMaxData: filteredXYMinMaxData$
|
703
|
+
}).pipe(
|
704
|
+
switchMap(async (d) => d),
|
705
|
+
map(data => {
|
706
|
+
const valueIndex = data.fullDataFormatter.xAxis.valueIndex
|
707
|
+
if (!data.filteredXYMinMaxData.minXDatum || !data.filteredXYMinMaxData.maxXDatum
|
708
|
+
// || data.filteredXYMinMaxData.minXDatum.value[valueIndex] == null || data.filteredXYMinMaxData.maxXDatum.value[valueIndex] == null
|
709
|
+
) {
|
710
|
+
return
|
711
|
+
}
|
712
|
+
let maxValue: number | null = data.filteredXYMinMaxData.maxXDatum.value[valueIndex]
|
713
|
+
let minValue: number | null = data.filteredXYMinMaxData.minXDatum.value[valueIndex]
|
714
|
+
if (maxValue === minValue && maxValue === 0) {
|
715
|
+
// 避免最大及最小值同等於 0 造成無法計算scale
|
716
|
+
maxValue = 1
|
717
|
+
}
|
718
|
+
|
719
|
+
const xScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
720
|
+
maxValue,
|
721
|
+
minValue,
|
722
|
+
axisWidth: data.containerSize.width,
|
723
|
+
scaleDomain: data.fullDataFormatter.xAxis.scaleDomain,
|
724
|
+
scaleRange: data.fullDataFormatter.xAxis.scaleRange,
|
725
|
+
})
|
726
|
+
return xScale
|
727
|
+
})
|
728
|
+
)
|
729
|
+
}
|
730
|
+
|
731
|
+
export const yScaleObservable = ({ fullDataFormatter$, filteredXYMinMaxData$, containerSize$ }: {
|
732
|
+
fullDataFormatter$: Observable<DataFormatterMultiValue>
|
733
|
+
filteredXYMinMaxData$: Observable<{
|
734
|
+
minXDatum: ComputedXYDatumMultiValue
|
735
|
+
maxXDatum: ComputedXYDatumMultiValue
|
736
|
+
minYDatum: ComputedXYDatumMultiValue
|
737
|
+
maxYDatum: ComputedXYDatumMultiValue
|
738
|
+
}>
|
739
|
+
containerSize$: Observable<ContainerSize>
|
740
|
+
}) => {
|
741
|
+
return combineLatest({
|
742
|
+
fullDataFormatter: fullDataFormatter$,
|
743
|
+
containerSize: containerSize$,
|
744
|
+
// xyMinMax: observer.xyMinMax$
|
745
|
+
filteredXYMinMaxData: filteredXYMinMaxData$
|
746
|
+
}).pipe(
|
747
|
+
switchMap(async (d) => d),
|
748
|
+
map(data => {
|
749
|
+
const valueIndex = data.fullDataFormatter.yAxis.valueIndex
|
750
|
+
if (!data.filteredXYMinMaxData.minYDatum || !data.filteredXYMinMaxData.maxYDatum
|
751
|
+
|| data.filteredXYMinMaxData.minYDatum.value[valueIndex] == null || data.filteredXYMinMaxData.maxYDatum.value[valueIndex] == null
|
752
|
+
) {
|
753
|
+
return
|
754
|
+
}
|
755
|
+
let maxValue = data.filteredXYMinMaxData.maxYDatum.value[valueIndex]
|
756
|
+
let minValue = data.filteredXYMinMaxData.minYDatum.value[valueIndex]
|
757
|
+
if (maxValue === minValue && maxValue === 0) {
|
758
|
+
// 避免最大及最小值同等於 0 造成無法計算scale
|
759
|
+
maxValue = 1
|
760
|
+
}
|
761
|
+
|
762
|
+
const yScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
763
|
+
maxValue,
|
764
|
+
minValue,
|
765
|
+
axisWidth: data.containerSize.height,
|
766
|
+
scaleDomain: data.fullDataFormatter.yAxis.scaleDomain,
|
767
|
+
scaleRange: data.fullDataFormatter.yAxis.scaleRange,
|
768
|
+
reverse: true
|
769
|
+
})
|
770
|
+
return yScale
|
771
|
+
})
|
772
|
+
)
|
773
|
+
}
|
774
|
+
|
775
|
+
export const ordinalPaddingObservable = ({ ordinalScaleDomain$, computedData$, containerSize$ }: {
|
776
|
+
// fullDataFormatter$: Observable<DataFormatterMultiValue>
|
777
|
+
ordinalScaleDomain$: Observable<[number, number]>
|
778
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
779
|
+
containerSize$: Observable<ContainerSize>
|
780
|
+
}) => {
|
781
|
+
return combineLatest({
|
782
|
+
ordinalScaleDomain: ordinalScaleDomain$,
|
783
|
+
containerSize: containerSize$,
|
784
|
+
computedData: computedData$
|
785
|
+
}).pipe(
|
786
|
+
switchMap(async (d) => d),
|
787
|
+
map(data => {
|
788
|
+
let maxValue: number = data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
789
|
+
? data.computedData[0][0].value.length - 1
|
790
|
+
: 0
|
791
|
+
let minValue: number = 0
|
792
|
+
|
793
|
+
let axisWidth = data.containerSize.width
|
794
|
+
// const scaleDomain: [number, number] = [
|
795
|
+
// data.fullDataFormatter.xAxis.scaleDomain[0] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[0] === 'min'
|
796
|
+
// ? 0
|
797
|
+
// : data.fullDataFormatter.xAxis.scaleDomain[0] as number,
|
798
|
+
// data.fullDataFormatter.xAxis.scaleDomain[1] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[1] === 'max'
|
799
|
+
// ? maxValue
|
800
|
+
// : data.fullDataFormatter.xAxis.scaleDomain[1] as number
|
801
|
+
// ]
|
802
|
+
const distance = data.ordinalScaleDomain[1] - data.ordinalScaleDomain[0]
|
803
|
+
// console.log('distance', distance)
|
804
|
+
if (distance >= 1) {
|
805
|
+
return axisWidth / (distance + 1) / 2
|
806
|
+
} else {
|
807
|
+
return 0
|
808
|
+
}
|
809
|
+
})
|
810
|
+
)
|
811
|
+
}
|
812
|
+
|
813
|
+
// 定性的 X 軸圖軸 - 用 value 的 index 計算
|
814
|
+
export const ordinalScaleObservable = ({ ordinalScaleDomain$, computedData$, containerSize$, ordinalPadding$ }: {
|
815
|
+
// fullDataFormatter$: Observable<DataFormatterMultiValue>
|
816
|
+
ordinalScaleDomain$: Observable<[number, number]>
|
817
|
+
computedData$: Observable<ComputedDataTypeMap<'multiValue'>>
|
818
|
+
containerSize$: Observable<ContainerSize>
|
819
|
+
ordinalPadding$: Observable<number>
|
820
|
+
}) => {
|
821
|
+
return combineLatest({
|
822
|
+
// fullDataFormatter: fullDataFormatter$,
|
823
|
+
ordinalScaleDomain: ordinalScaleDomain$,
|
824
|
+
computedData: computedData$,
|
825
|
+
containerSize: containerSize$,
|
826
|
+
ordinalPadding: ordinalPadding$,
|
827
|
+
}).pipe(
|
828
|
+
switchMap(async (d) => d),
|
829
|
+
map(data => {
|
830
|
+
let maxValue: number = data.computedData[0] && data.computedData[0][0] && data.computedData[0][0].value.length
|
831
|
+
? data.computedData[0][0].value.length - 1
|
832
|
+
: 0
|
833
|
+
let minValue: number = 0
|
834
|
+
let axisWidth = data.containerSize.width - (data.ordinalPadding * 2)
|
835
|
+
// const scaleDomain: [number, number] = [
|
836
|
+
// data.fullDataFormatter.xAxis.scaleDomain[0] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[0] === 'min'
|
837
|
+
// ? 0
|
838
|
+
// : data.fullDataFormatter.xAxis.scaleDomain[0] as number,
|
839
|
+
// data.fullDataFormatter.xAxis.scaleDomain[1] === 'auto' || data.fullDataFormatter.xAxis.scaleDomain[1] === 'max'
|
840
|
+
// ? maxValue
|
841
|
+
// : data.fullDataFormatter.xAxis.scaleDomain[1] as number
|
842
|
+
// ]
|
843
|
+
// const distance = scaleDomain[1] - scaleDomain[0]
|
844
|
+
// // console.log('distance', distance)
|
845
|
+
// if (distance >= 1) {
|
846
|
+
// axisWidth = axisWidth - (axisWidth / (distance + 1))
|
847
|
+
// }
|
848
|
+
|
849
|
+
const xScale: d3.ScaleLinear<number, number> = createValueToAxisScale({
|
850
|
+
maxValue,
|
851
|
+
minValue,
|
852
|
+
axisWidth,
|
853
|
+
scaleDomain: data.ordinalScaleDomain,
|
854
|
+
scaleRange: [0, 1],
|
855
|
+
})
|
856
|
+
|
857
|
+
// const xScale = createLabelToAxisScale({
|
858
|
+
// axisLabels: new Array(maxValue + 1).fill('').map((d, i) => String(i)),
|
859
|
+
// axisWidth: data.containerSize.width,
|
860
|
+
// padding: 0.5
|
861
|
+
// })
|
862
|
+
return xScale
|
863
|
+
})
|
864
|
+
)
|
865
|
+
}
|