@opentiny/next-sdk 0.1.15-beta.1 → 0.1.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. package/agent/AgentModelProvider.ts +1 -490
  2. package/agent/type.ts +2 -8
  3. package/dist/WebMcpClient.d.ts +26 -165
  4. package/dist/WebMcpServer.d.ts +147 -36
  5. package/dist/agent/AgentModelProvider.d.ts +1 -35
  6. package/dist/agent/type.d.ts +2 -8
  7. package/dist/index.es.dev.js +11175 -14893
  8. package/dist/index.es.js +18206 -20985
  9. package/dist/index.js +320 -2411
  10. package/dist/index.umd.dev.js +11200 -14918
  11. package/dist/index.umd.js +71 -111
  12. package/dist/{mcpsdk@1.24.3.dev.js → mcpsdk@1.23.0.dev.js} +6652 -8271
  13. package/dist/{mcpsdk@1.24.3.es.dev.js → mcpsdk@1.23.0.es.dev.js} +6641 -8260
  14. package/dist/mcpsdk@1.23.0.es.js +15584 -0
  15. package/dist/mcpsdk@1.23.0.js +43 -0
  16. package/dist/transport/ExtensionPageServerTransport.d.ts +2 -1
  17. package/dist/webagent.dev.js +19914 -23355
  18. package/dist/webagent.es.dev.js +19889 -23330
  19. package/dist/webagent.es.js +15583 -18140
  20. package/dist/webagent.js +65 -105
  21. package/dist/webmcp-full.dev.js +7263 -8880
  22. package/dist/webmcp-full.es.dev.js +7261 -8878
  23. package/dist/webmcp-full.es.js +9267 -10421
  24. package/dist/webmcp-full.js +32 -32
  25. package/dist/webmcp.dev.js +22 -14
  26. package/dist/webmcp.es.dev.js +20 -12
  27. package/dist/webmcp.es.js +179 -172
  28. package/dist/webmcp.js +1 -1
  29. package/dist/zod@3.25.76.dev.js +32 -30
  30. package/dist/zod@3.25.76.es.dev.js +30 -28
  31. package/dist/zod@3.25.76.es.js +145 -143
  32. package/dist/zod@3.25.76.js +1 -1
  33. package/package.json +8 -9
  34. package/transport/ExtensionPageServerTransport.ts +4 -2
  35. package/agent/utils/generateReActPrompt.ts +0 -55
  36. package/agent/utils/parseReActAction.ts +0 -34
  37. package/dist/agent/utils/generateReActPrompt.d.ts +0 -9
  38. package/dist/agent/utils/parseReActAction.d.ts +0 -14
  39. package/dist/mcpsdk@1.24.3.es.js +0 -16781
  40. package/dist/mcpsdk@1.24.3.js +0 -43
@@ -1,8 +1,5 @@
1
1
  import { streamText, stepCountIs, generateText, StreamTextResult } from 'ai'
2
- import {
3
- experimental_MCPClientConfig as MCPClientConfig,
4
- experimental_createMCPClient as createMCPClient
5
- } from '@ai-sdk/mcp'
2
+ import { experimental_MCPClientConfig as MCPClientConfig, experimental_createMCPClient as createMCPClient } from 'ai'
6
3
  import type { ToolSet } from 'ai'
7
4
  import { StreamableHTTPClientTransport } from '@modelcontextprotocol/sdk/client/streamableHttp.js'
8
5
  import { InMemoryTransport } from '@modelcontextprotocol/sdk/inMemory.js'
@@ -15,8 +12,6 @@ import { ExtensionClientTransport } from '../transport/ExtensionClientTransport'
15
12
  import { MessageChannelTransport } from '@opentiny/next'
16
13
  import { WebMcpClient } from '../WebMcpClient'
17
14
  import { getAISDKTools } from './utils/getAISDKTools'
18
- import { generateReActToolsPrompt } from './utils/generateReActPrompt'
19
- import { parseReActAction } from './utils/parseReActAction'
20
15
 
21
16
  export const AIProviderFactories = {
22
17
  ['openai']: createOpenAI,
@@ -48,8 +43,6 @@ export class AgentModelProvider {
48
43
  onClientDisconnected?: (serverName: string, reason?: string) => void
49
44
  /** 缓存 ai-sdk response 中的 多轮会话的上下文 */
50
45
  messages: any[] = []
51
- /** 是否使用 ReAct 模式(通过提示词而非 function calling 进行工具调用) */
52
- useReActMode: boolean = false
53
46
 
54
47
  constructor({ llmConfig, mcpServers }: IAgentModelProviderOption) {
55
48
  if (!llmConfig) {
@@ -77,9 +70,6 @@ export class AgentModelProvider {
77
70
  } else {
78
71
  throw new Error('Either llmConfig.llm or llmConfig.providerType must be provided')
79
72
  }
80
-
81
- // 读取 ReAct 模式配置
82
- this.useReActMode = (llmConfig as any).useReActMode ?? false
83
73
  }
84
74
 
85
75
  /** 创建一个 ai-sdk的 mcpClient, 创建失败则返回 null */
@@ -110,7 +100,6 @@ export class AgentModelProvider {
110
100
  { name: 'mcp-web-client', version: '1.0.0' },
111
101
  { capabilities: { roots: { listChanged: true }, sampling: {}, elicitation: {} } }
112
102
  )
113
- // @ts-ignore transport 已经在前面的条件分支中转换为 Transport 实例,类型系统无法正确推断
114
103
  await client.connect(transport)
115
104
 
116
105
  //@ts-ignore
@@ -295,488 +284,10 @@ export class AgentModelProvider {
295
284
  return toolsResult
296
285
  }
297
286
 
298
- /** 生成 ReAct 模式的系统提示词(包含工具描述) */
299
- private _generateReActSystemPrompt(tools: ToolSet, modelName: string, baseSystemPrompt?: string): string {
300
- // 统一使用 XML 格式的 ReAct 提示词(所有 ReAct 模式都使用相同格式)
301
- const toolsPrompt = generateReActToolsPrompt(tools)
302
-
303
- if (baseSystemPrompt) {
304
- return `${baseSystemPrompt}${toolsPrompt}`
305
- }
306
- return `你是一个智能助手,可以通过调用工具来完成任务。\n${toolsPrompt}`
307
- }
308
-
309
- /** 执行 ReAct 模式下的工具调用 */
310
- private async _executeReActToolCall(
311
- toolName: string,
312
- args: any,
313
- tools: ToolSet
314
- ): Promise<{ success: boolean; result?: any; error?: string }> {
315
- const tool = tools[toolName]
316
- if (!tool) {
317
- return { success: false, error: `工具 ${toolName} 不存在` }
318
- }
319
-
320
- try {
321
- const toolInfo = tool as any
322
- const executeFn = toolInfo.execute || toolInfo.call
323
- if (typeof executeFn !== 'function') {
324
- return { success: false, error: `工具 ${toolName} 没有可执行的函数` }
325
- }
326
-
327
- const result = await executeFn(args, {})
328
- return { success: true, result }
329
- } catch (error: any) {
330
- const errorMsg = error?.message || String(error) || '工具执行失败'
331
- return { success: false, error: errorMsg }
332
- }
333
- }
334
-
335
- /** ReAct 模式的对话实现 */
336
- private async _chatReAct(
337
- chatMethod: ChatMethodFn,
338
- { model, maxSteps = 5, ...options }: Parameters<typeof generateText>[0] & { maxSteps?: number; message?: string }
339
- ): Promise<any> {
340
- if (!this.llm) {
341
- throw new Error('LLM is not initialized')
342
- }
343
-
344
- await this.initClientsAndTools()
345
-
346
- // 合并所有可用工具
347
- const allTools = this._tempMergeTools(options.tools) as ToolSet
348
- const toolNames = Object.keys(allTools)
349
-
350
- // 如果没有工具,回退到普通模式
351
- if (toolNames.length === 0) {
352
- return this._chat(chatMethod, { model, maxSteps, ...options })
353
- }
354
-
355
- // 准备消息历史
356
- let currentMessages: any[] = []
357
- if (options.message && !options.messages) {
358
- currentMessages.push({ role: 'user', content: options.message })
359
- } else if (options.messages) {
360
- currentMessages = [...options.messages]
361
- } else {
362
- currentMessages = [...this.messages]
363
- }
364
-
365
- // 确保 model 是字符串类型(ReAct 模式下 model 应该是模型名称字符串)
366
- const modelName = typeof model === 'string' ? model : (model as any)?.modelId || 'default-model'
367
-
368
- // 生成包含工具描述的系统提示词
369
- const systemPrompt = this._generateReActSystemPrompt(allTools, modelName, options.system as string)
370
-
371
- const systemMessage = { role: 'system', content: systemPrompt }
372
-
373
- // 确保第一条消息是系统提示词
374
- const messagesWithSystem =
375
- currentMessages[0]?.role === 'system' ? currentMessages : [systemMessage, ...currentMessages]
376
-
377
- // 判断是否为流式输出
378
- const isStream = chatMethod === streamText
379
-
380
- if (isStream) {
381
- // 流式输出模式:创建一个包装的流
382
- return this._chatReActStream(messagesWithSystem, allTools, modelName, maxSteps, options)
383
- } else {
384
- // 非流式输出模式:循环对话直到完成
385
- return this._chatReActNonStream(messagesWithSystem, allTools, modelName, maxSteps, options)
386
- }
387
- }
388
-
389
- /**
390
- * 检查消息内容是否包含图片
391
- * @param content 消息内容
392
- * @returns 是否包含图片
393
- */
394
- private _messageHasImage(content: any): boolean {
395
- if (!content) return false
396
-
397
- // 如果 content 是数组,检查是否有 image 类型的项
398
- if (Array.isArray(content)) {
399
- return content.some((item) => item && item.type === 'image')
400
- }
401
-
402
- return false
403
- }
404
-
405
- /**
406
- * 从消息中移除图片,但保留文本内容
407
- * @param message 原始消息
408
- * @returns 移除图片后的消息(如果只有图片没有文本,返回 null)
409
- */
410
- private _removeImageFromMessage(message: any): any | null {
411
- if (!message || !message.content) {
412
- return null
413
- }
414
-
415
- // 如果 content 不是数组,直接返回(没有图片)
416
- if (!Array.isArray(message.content)) {
417
- return message
418
- }
419
-
420
- // 过滤掉图片类型的内容,保留文本
421
- const textContent = message.content.filter((item: any) => item && item.type !== 'image')
422
-
423
- // 如果过滤后没有内容,返回 null
424
- if (textContent.length === 0) {
425
- return null
426
- }
427
-
428
- // 返回只包含文本的消息副本
429
- return {
430
- ...message,
431
- content: textContent
432
- }
433
- }
434
-
435
- /**
436
- * 构建用于模型调用的消息列表(magentic-ui 风格)
437
- * 策略:保留所有文本消息,仅限制图片数量(类似 magentic-ui 的 maybe_remove_old_screenshots)
438
- *
439
- * @param systemMessage 系统提示词
440
- * @param allMessages 所有消息历史(包括初始消息和后续对话)
441
- * @param maxImages 最多保留的图片数量(默认3张)
442
- * @returns 构建好的消息列表
443
- */
444
- private _buildMessagesForModel(systemMessage: any | null, allMessages: any[], maxImages: number = 3): any[] {
445
- const messages: any[] = []
446
-
447
- // 1. 添加系统提示词
448
- if (systemMessage) {
449
- messages.push(systemMessage)
450
- }
451
-
452
- // 2. 保留所有文本消息,但限制图片数量
453
- // 从后往前遍历,优先保留最新的图片
454
- let imageCount = 0
455
- const processedMessages: any[] = []
456
-
457
- for (let i = allMessages.length - 1; i >= 0; i--) {
458
- const msg = allMessages[i]
459
-
460
- // 检查消息是否包含图片
461
- const hasImage = this._messageHasImage(msg.content)
462
-
463
- if (hasImage) {
464
- if (imageCount < maxImages) {
465
- // 图片数量未超限,保留完整消息
466
- processedMessages.unshift(msg)
467
- imageCount++
468
- } else {
469
- // 图片数量超限,移除图片但保留文本(如果有)
470
- const textOnly = this._removeImageFromMessage(msg)
471
- if (textOnly) {
472
- processedMessages.unshift(textOnly)
473
- }
474
- }
475
- } else {
476
- // 非图片消息:全部保留
477
- processedMessages.unshift(msg)
478
- }
479
- }
480
-
481
- messages.push(...processedMessages)
482
-
483
- return messages
484
- }
485
-
486
- /** ReAct 模式非流式对话 */
487
- private async _chatReActNonStream(
488
- messages: any[],
489
- tools: ToolSet,
490
- model: string,
491
- maxSteps: number,
492
- options: any
493
- ): Promise<any> {
494
- // 保存完整的消息历史(用于最终返回和传递给模型)
495
- let fullMessageHistory = [...messages]
496
- // 提取系统提示词(第一条消息)
497
- const systemMessage = messages[0]?.role === 'system' ? messages[0] : null
498
- // 提取所有非系统消息
499
- const allUserMessages = systemMessage ? messages.slice(1) : messages
500
-
501
- let stepCount = 0
502
- // 配置:最多保留的图片数量(默认3张,类似 magentic-ui)
503
- const maxImages = (options as any).maxImages ?? 3
504
-
505
- while (stepCount < maxSteps) {
506
- stepCount++
507
-
508
- // 构建用于模型调用的消息列表(magentic-ui 风格:保留所有文本,限制图片)
509
- const messagesForModel = this._buildMessagesForModel(systemMessage, allUserMessages, maxImages)
510
-
511
- // 调用 LLM(ReAct 模式下不传递 tools,因为工具调用通过提示词实现)
512
- // 参考 magentic-ui:保留所有文本历史(上下文完整),仅限制图片数量(优化 token)
513
- const { tools: _, ...restOptions } = options
514
- const result = await generateText({
515
- // @ts-ignore ProviderV2 是所有llm的父类,在每一个具体的llm类都有一个选择model的函数用法
516
- model: this.llm(model),
517
- messages: messagesForModel,
518
- ...restOptions
519
- })
520
-
521
- const assistantMessage = result.text
522
- // 添加到所有消息和完整历史
523
- const assistantMsg = { role: 'assistant', content: assistantMessage }
524
- allUserMessages.push(assistantMsg)
525
- fullMessageHistory.push(assistantMsg)
526
-
527
- // 解析工具调用
528
- const action = parseReActAction(assistantMessage, tools)
529
-
530
- if (!action) {
531
- // 没有工具调用,返回最终结果
532
- this.messages = fullMessageHistory
533
- return {
534
- text: assistantMessage,
535
- response: { messages: fullMessageHistory }
536
- }
537
- }
538
-
539
- // 执行工具调用
540
- const toolResult = await this._executeReActToolCall(action.toolName, action.arguments, tools)
541
-
542
- // 统一使用 XML 格式的 Observation
543
- const resultString = toolResult.success ? JSON.stringify(toolResult.result) : `工具执行失败 - ${toolResult.error}`
544
- const observation = `<tool_response>\n${resultString}\n</tool_response>`
545
-
546
- // 添加到所有消息和完整历史
547
- const observationMessage = {
548
- role: 'user',
549
- content: observation
550
- }
551
- allUserMessages.push(observationMessage)
552
- fullMessageHistory.push(observationMessage)
553
- }
554
-
555
- // 达到最大步数,返回最后一条消息
556
- this.messages = fullMessageHistory
557
- const lastMessage = fullMessageHistory[fullMessageHistory.length - 2]?.content || ''
558
- return {
559
- text: lastMessage,
560
- response: { messages: fullMessageHistory }
561
- }
562
- }
563
-
564
- /** ReAct 模式流式对话 */
565
- private _chatReActStream(messages: any[], tools: ToolSet, model: string, maxSteps: number, options: any): any {
566
- // 保存 this 引用,以便在异步生成器中使用
567
- const self = this
568
- // @ts-ignore ProviderV2 是所有llm的父类,在每一个具体的llm类都有一个选择model的函数用法
569
- const llmModel = this.llm(model)
570
-
571
- // 创建一个 Promise 来跟踪流完成状态,用于触发 onFinish
572
- let streamCompleteResolver: (value: any) => void
573
- let streamCompleteRejecter: (error: any) => void
574
- const streamCompletePromise = new Promise((resolve, reject) => {
575
- streamCompleteResolver = resolve
576
- streamCompleteRejecter = reject
577
- })
578
-
579
- // 创建一个异步生成器来模拟流式输出
580
- const stream = new ReadableStream({
581
- async start(controller) {
582
- // 保存完整的消息历史(用于最终返回和传递给模型)
583
- let fullMessageHistory = [...messages]
584
- // 提取系统提示词(第一条消息)
585
- const systemMessage = messages[0]?.role === 'system' ? messages[0] : null
586
- // 提取所有非系统消息
587
- const allUserMessages = systemMessage ? messages.slice(1) : [...messages]
588
-
589
- let stepCount = 0
590
- let accumulatedText = ''
591
- // 配置:最多保留的图片数量(默认3张,类似 magentic-ui)
592
- const maxImages = (options as any).maxImages ?? 3
593
-
594
- try {
595
- while (stepCount < maxSteps) {
596
- stepCount++
597
-
598
- // 构建用于模型调用的消息列表(magentic-ui 风格:保留所有文本,限制图片)
599
- const messagesForModel = self._buildMessagesForModel(systemMessage, allUserMessages, maxImages)
600
-
601
- // 移除 tools 选项,ReAct 模式下不传递 tools
602
- const { tools: _, ...restOptions } = options
603
- // 调用流式 LLM
604
- // 参考 magentic-ui:保留所有文本历史(上下文完整),仅限制图片数量(优化 token)
605
- delete restOptions.system
606
- const result = await streamText({
607
- ...restOptions,
608
- model: llmModel,
609
- messages: messagesForModel
610
- })
611
-
612
- // 收集流式输出
613
- let assistantText = ''
614
- for await (const part of result.fullStream) {
615
- if (part.type === 'text-delta') {
616
- assistantText += part.text || ''
617
- // 转发文本增量
618
- controller.enqueue({
619
- type: 'text-delta',
620
- text: part.text
621
- })
622
- } else if (part.type === 'text-start') {
623
- controller.enqueue({ type: 'text-start' })
624
- } else if (part.type === 'text-end') {
625
- // 暂时不关闭,等待检查是否有工具调用
626
- } else {
627
- // 转发其他类型的事件
628
- controller.enqueue(part)
629
- }
630
- }
631
-
632
- accumulatedText += assistantText
633
- // 添加到所有消息和完整历史
634
- const assistantMsg = { role: 'assistant', content: accumulatedText }
635
- allUserMessages.push(assistantMsg)
636
- fullMessageHistory.push(assistantMsg)
637
-
638
- // 解析工具调用
639
- const action = parseReActAction(accumulatedText, tools)
640
-
641
- if (!action) {
642
- // 没有工具调用,结束流
643
- controller.enqueue({ type: 'text-end' })
644
- controller.close()
645
- self.messages = fullMessageHistory
646
- // 触发 onFinish 回调
647
- streamCompleteResolver({ messages: fullMessageHistory })
648
- return
649
- }
650
-
651
- // 特殊处理: computer 工具的 terminate 操作
652
- if (action.toolName === 'computer' && action.arguments?.action === 'terminate') {
653
- // 视为对话结束
654
- controller.enqueue({ type: 'text-end' })
655
- controller.close()
656
- self.messages = fullMessageHistory
657
- streamCompleteResolver({ messages: fullMessageHistory })
658
- return
659
- }
660
-
661
- // 发送工具调用开始事件(符合 tiny-robot 格式)
662
- const toolCallId = `react-${Date.now()}`
663
- controller.enqueue({
664
- type: 'tool-input-start',
665
- id: toolCallId,
666
- toolName: action.toolName
667
- })
668
-
669
- // 发送工具调用参数(显示调用中状态)
670
- const argsString = JSON.stringify(action.arguments, null, 2)
671
- controller.enqueue({
672
- type: 'tool-input-delta',
673
- id: toolCallId,
674
- delta: argsString
675
- })
676
-
677
- // 执行工具调用
678
- const toolResult = await self._executeReActToolCall(action.toolName, action.arguments, tools)
679
-
680
- // 如果结果包含 screenshot,先提取出来,避免 JSON stringify 导致过大
681
- let screenshot = undefined
682
- let resultData = toolResult.result
683
- if (
684
- toolResult.success &&
685
- toolResult.result &&
686
- typeof toolResult.result === 'object' &&
687
- toolResult.result.screenshot
688
- ) {
689
- screenshot = toolResult.result.screenshot
690
- const { screenshot: _, ...rest } = toolResult.result
691
- resultData = rest
692
- }
693
-
694
- // 构造 Observation 文本(统一使用 XML 格式)
695
- let observationText = ''
696
-
697
- if (toolResult.success) {
698
- // 尝试从 resultData 中提取纯文本信息
699
- if (
700
- resultData &&
701
- Array.isArray(resultData.content) &&
702
- resultData.content.length > 0 &&
703
- resultData.content[0].text
704
- ) {
705
- observationText = resultData.content[0].text
706
- } else {
707
- observationText = JSON.stringify(resultData)
708
- }
709
- } else {
710
- observationText = `工具执行失败 - ${toolResult.error}`
711
- }
712
-
713
- // 统一使用 XML 格式的 Observation,如果有截图,添加验证提示
714
- let finalObservation = `<tool_response>\n${observationText}\n</tool_response>`
715
-
716
- if (screenshot) {
717
- finalObservation += `\n请检查截图以确认操作是否成功。如果成功,请继续下一步;如果失败,请重试。`
718
- }
719
-
720
- // 发送工具结果(符合 tiny-robot 格式,给 UI 展示用的,不包含 base64 防止卡顿)
721
- controller.enqueue({
722
- type: 'tool-result',
723
- toolCallId: toolCallId,
724
- result: finalObservation
725
- })
726
-
727
- // 添加工具结果到消息历史(ReAct 模式下,工具结果作为 user 消息添加)
728
- const observationMessage = screenshot
729
- ? {
730
- role: 'user',
731
- content: [
732
- { type: 'text', text: finalObservation },
733
- { type: 'image', image: screenshot }
734
- ]
735
- }
736
- : {
737
- role: 'user',
738
- content: finalObservation
739
- }
740
-
741
- // 添加到所有消息和完整历史
742
- allUserMessages.push(observationMessage)
743
- fullMessageHistory.push(observationMessage)
744
-
745
- // 重置累积文本,准备下一轮
746
- accumulatedText = ''
747
- }
748
-
749
- // 达到最大步数
750
- controller.enqueue({ type: 'text-end' })
751
- controller.close()
752
- self.messages = fullMessageHistory
753
- // 触发 onFinish 回调
754
- streamCompleteResolver({ messages: fullMessageHistory })
755
- } catch (error: any) {
756
- controller.error(error)
757
- streamCompleteRejecter(error)
758
- }
759
- }
760
- })
761
-
762
- // 返回一个类似 streamText 的结果对象
763
- // response Promise 需要在流结束时 resolve,这样才能触发 onFinish 回调
764
- return {
765
- fullStream: stream,
766
- response: streamCompletePromise
767
- }
768
- }
769
-
770
287
  private async _chat(
771
288
  chatMethod: ChatMethodFn,
772
289
  { model, maxSteps = 5, ...options }: Parameters<typeof generateText>[0] & { maxSteps?: number; message?: string }
773
290
  ): Promise<any> {
774
- // 如果启用 ReAct 模式,使用 ReAct 实现
775
- if (this.useReActMode) {
776
- return this._chatReAct(chatMethod, { model, maxSteps, ...options })
777
- }
778
-
779
- // 否则使用原有的 function calling 模式
780
291
  if (!this.llm) {
781
292
  throw new Error('LLM is not initialized')
782
293
  }
package/agent/type.ts CHANGED
@@ -1,8 +1,6 @@
1
+ export type { experimental_MCPClient as MCPClient } from 'ai'
1
2
  import type { ProviderV2 } from '@ai-sdk/provider'
2
- import type { experimental_MCPClientConfig as MCPClientConfig } from '@ai-sdk/mcp'
3
-
4
- // 从 MCPClientConfig 中提取 transport 类型
5
- export type MCPTransport = MCPClientConfig['transport']
3
+ import type { MCPTransport } from 'ai'
6
4
 
7
5
  type ProviderFactory = 'openai' | 'deepseek' | ((options: any) => ProviderV2)
8
6
 
@@ -15,8 +13,6 @@ type LlmFactoryConfig = {
15
13
  providerType: ProviderFactory
16
14
  /** 互斥:当使用 providerType 分支时不允许传入 llm */
17
15
  llm?: never
18
- /** 是否使用 ReAct 模式(通过提示词而非 function calling 进行工具调用),默认为 false */
19
- useReActMode?: boolean
20
16
  }
21
17
 
22
18
  type LlmInstanceConfig = {
@@ -26,8 +22,6 @@ type LlmInstanceConfig = {
26
22
  apiKey?: never
27
23
  baseURL?: never
28
24
  providerType?: never
29
- /** 是否使用 ReAct 模式(通过提示词而非 function calling 进行工具调用),默认为 false */
30
- useReActMode?: boolean
31
25
  }
32
26
 
33
27
  /** 代理模型提供器的大语言配置对象, 通过 XOR 表达二选一 */